
Deep Cost Ray Fusion for
Sparse Depth Video Completion

Jungeon Kim1 , Soongjin Kim1 , Jaesik Park2 , and Seungyong Lee1

1 POSTECH, South Korea
2 Seoul National University, South Korea

{jungeonkim,kimsj0302,leesy}@postech.ac.kr
jaesik.park@snu.ac.kr

Abstract. In this paper, we present a learning-based framework for
sparse depth video completion. Given a sparse depth map and a color
image at a certain viewpoint, our approach makes a cost volume that
is constructed on depth hypothesis planes. To effectively fuse sequential
cost volumes of the multiple viewpoints for improved depth completion,
we introduce a learning-based cost volume fusion framework, namely
RayFusion, that effectively leverages the attention mechanism for each
pair of overlapped rays in adjacent cost volumes. As a result of leveraging
feature statistics accumulated over time, our proposed framework consis-
tently outperforms or rivals state-of-the-art approaches on diverse indoor
and outdoor datasets, including the KITTI Depth Completion bench-
mark, VOID Depth Completion benchmark, and ScanNetV2 dataset,
using much fewer network parameters.
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1 Introduction

With the benefit of capturing the actual distance, range-sensing devices such
as Microsoft Kinect, LiDARs, and Intel RealSense have become increasingly
popular. Notably, recent releases of high-end mobile devices like the iPhone are
equipped with LiDARs, reflecting this trend. However, these depth sensors often
suffer from missing or insufficient depth measurements. To address the challenge,
a variety of learning-based depth completion methods have been proposed [11,26,
29,47,60,70]. Most of the state-of-the-art depth completion methods use merely a
single-view RGB-D image to fill in missing depth values, predominantly focusing
on extracting informative multimodal features from an input RGB-D image.

Given the accessibility of RGB-D video data, self-supervised depth comple-
tion studies utilized multiple RGB frames for auxiliary photometric loss [59,60]
for the network training. For more direct utilization of temporal information
for enhanced depth completion at test time, a few recent studies [24, 37] tried
to fuse feature maps of individual frames using a convolutional long short-term
memory (ConvLSTM) [43] or spatio-temporal convolution [50]. These feature
fusion methods basically need warping the previous feature map to align it with
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Fig. 1: Depth video completion result of our RayFusion framework. The framework
takes RGB and sparse depth (0.1% density) video pairs as input (left) and infers com-
pleted depth maps (middle). Additionally, we show 3D reconstructions using raw sparse
depths (top right) and the completed depths (bottom right). See the supplementary
video for various video depth completion results.

the current feature map. However, the alignment is error-prone because such
a warping depends on the predicted depths of the previous frame. Although
achieving better temporal smoothness, these methods [24, 37] tend to exhibit
inferior accuracy compared to the single-view completion methods.

In this paper, instead of the feature map alignment approach, we utilize a
cost volume [18,22,64,66], which has been widely adopted for multi-view stereo,
for temporal fusion (Figure 1). A cost volume is computed with hypothesis depth
planes and contains information about probability distributions used for subse-
quent depth regression. It spatially spans the viewing frustum in the Euclidean
space (Figure 2 (a)), enabling fusion for cost volumes to be directly performed in
the 3D overlapped region of viewing frustums through volume resampling. There-
fore, unlike feature image fusion methods, the approach remains unaffected by
erroneous depth predictions.

To effectively fuse cost volumes obtained from an RGB-D video, a potential
approach is to apply a recurrent neural network (RNN) [4, 13] to overlapped
voxels in the cost volume. However, this fusion approach can overlook global
attributes contained in the cost volumes (Table 4 (v)). The attention mecha-
nism [52] could be a good alternative, but applying a global attention scheme
to the entire cost volume requires a huge memory footprint and computation
resource (Figure 2 (d)).

This paper introduces a framework that utilizes a ray-based cost volume fu-
sion scheme. Consider a ray that penetrates two cost volumes of different view-
points (Figure 2 (a)). Our fusion scheme is basically motivated by observation
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that the features along the ray within cost volumes contain information about
probability distributions on hypothesis depth planes. We make the ray-wise fea-
tures (Figure 2 (b)) from two views become a minimal unit for the volume fusion,
avoiding a heavy memory footprint, unlike whole volume attention. Our fusion
procedure for ray-wise features comprises two sequential stages: self-attention for
refining a current-view depth hypothesis and cross-attention for fusing current-
view and previous-view cost volumes. We employ the cross entropy (CE) loss
to effectively train the fusion module using pseudo ground truth probability
distributions [34].

We validate the proposed framework through comprehensive experiments
on diverse indoor and outdoor datasets, including the KITTI Depth Comple-
tion benchmark [51], VOID Depth Completion benchmark [59], and ScanNetV2
dataset [5]. As a result, we demonstrate outperforming performance over state-of-
the-art (SOTA) depth completion methods in both depth and 3D reconstruction
metrics and generalization ability despite utilizing significantly fewer network
parameters (1.15M parameters - 94.5% smaller than LRRU [55]) thanks to our
effective ray-wise attention design. More interestingly, we demonstrate that the
proposed framework, despite not utilizing multiview information (i.e., only using
the self-attention stage), still achieves SOTA performance on VOID and Scan-
NetV2 datasets. This achievement is attributed to our self-attention stage, which
refines the cost volume by considering intrinsic properties such as the entropy of
probability distributions within the cost volumes.

To summarize, our contributions are as follows:

– We propose an end-to-end deep learning-based framework, RayFusion, that
effectively utilizes temporal information from an input RGB-D video to en-
hance sparse depth completion.

– We propose a novel ray-based cost volume fusion scheme that leverages the
attention mechanism of the Transformer [52] to consider attributes of prob-
ability distributions within cost volumes.

– Our RayFusion consistently outperforms or competes with previous SOTA
depth completion methods on various indoor and outdoor datasets with sig-
nificantly fewer network parameters.

2 Related Work

Our framework is closely related to multi-view stereo and depth completion
research. We review representative methods of those fields.
Multi-view stereo. With the advent of deep learning, many multi-view stereo
(MVS) methods using deep neural networks have been proposed to replace tradi-
tional MVS approaches [42]. Inspired by the plane sweep stereo, the mainstream
deep learning-based methodology in MVS is basically composed of three main
stages [66]; image feature extraction, cost volume creation, and cost regulariza-
tion. Numerous studies have tried to improve those stages or craft novel loss
functions to predict accurate depths [3, 12, 18, 44, 53, 64, 64, 67]. Recently, a few
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Fig. 2: Illustration of the proposed cost volume fusion scheme. A cost volume is con-
structed on D depth hypothesis planes and each voxel contains a C-dimensional feature
vector. When fusing two aligned cost volumes (V′

(t−1)→t,Vt) (b), the proposed scheme
(c) applies the attention mechanism into feature sequences corresponding to rays. It is
computationally- and memory-efficient than the naive approach (d) of calculating the
attention for all features in cost volumes.

studies [6,54,61] have employed the attention approach of Transformer for global
feature matching on epipolar lines in the image space.

As another line of research, methods that use a monocular RGB video as the
input [7, 14, 28] have been proposed. Unlike the common MVS studies that use
multi-view RGB images with proper baselines as the input, they fully leverage
the RGB sequence by the temporal fusion of various representations, including
feature images [7], a latent vector without spatial information [14], and a proba-
bility volume [28] using different techniques (ConvLSTM [7]; the nonparametric
Gaussian process [14]; Bayesian filtering implemented as a naive 3D CNN [28]).
Depth completion. Early studies in this field achieve depth completion by con-
sidering a depth image as an additional RGB image channel and concatenating
it along the channel dimension. The resulting image is then fed into 2D convolu-
tional networks [26,33]. Follow-up studies deal with depth images using separate
networks for late fusion with RGB features [11,29,47,60,70]. A few studies utilize
networks that estimate a surface normal [16,38,68], uncertainty [8,15,46,49], or
edge [39,48] as a local property related to depth information.

Recent methods consider depth images in 3D space to properly use 3D po-
sitional information [1, 2, 17, 21]. They back-projected a depth map to obtain a
point cloud and extract features on the point cloud. The point cloud features
are projected onto the image space and concatenated with RGB features. A few
methods adopt Vision Transformer as the backbone to fully leverage the global
context on the image domain at the expense of huge network parameters [40,69].
Unlike aforementioned approaches that focus on extracting better multimodal
(2D and 3D) image features, CostDCNet [22] forms a multi-modal feature vol-
ume in 3D space, called a cost volume, from a single RGB-D image and infers a
completed depth from the cost volume.

The depth completion methods with state-of-the-art (SOTA) performances
mainly focus on using only a single-view RGB-D image. While a few stud-
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Fig. 3: Overall pipeline of our framework. For each frame, our framework infers a
cost volume from a single-view RGB-D image (Section 4.1) and then fuses the cost
volume with the cost volume updated up to the previous frame (Section 4.2). The
fused cost volume is used for completed depth regression (Section 4.3) and becomes
the cost volume for fusion at the next frame. Finally, the completed depth is refined
by non-local spatial propagation networks (NLSPN).

ies [24, 37] tried to utilize multiple RGB-D frames by temporally fusing image
features via ConvLSTM or spatio-temporal convolution, their results may ex-
hibit inferior accuracy than single-view approaches since their fusion scheme
does not adequately address misalignments of adjacent images.

In this paper, we propose an effective framework that fuses two temporally
adjacent cost volumes of different viewpoints to infer a more accurate completed
depth map. Unlike existing RGB-D video-based methods, our framework per-
forms cost volume fusion in 3D space, which does not rely on the previous erro-
neous depth prediction. For efficient and effective fusion, we propose a ray-based
fusion scheme that leverages the attention mechanism of Transformer [52].

3 Overview

For depth video completion with a calibrated camera, we formulate the super-
vised learning problem as follows:

θ⋆ = argmin
θ

L(Dt,Dgt), (1)

Dt = fθ((It,St), ..., (I1,S1),Tt, ...,T1,K),

where fθ is a predictor with learnable parameters θ that uses color It and sparse
depth St images, camera poses Tt ∈ SE(3), and camera intrinsic parameters
K to infer a completed depth image Dt at the current frame t, Dgt is the
ground truth completed depth, and L(·, ·) is a loss function. To implement the
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predictor fθ, we propose an incremental cost volume update approach with ray-
wise attention, called RayFusion, and reformulate the problem as follows:

θ⋆ = argmin
θ

L(D′
t,Dgt,Pt,Pgt), (2)

D′
t = Hθ(Dt,Pt, It,St), Dt,Pt = Rθ(V

′
t),

V′
t = Fθ(V

′
t−1,Vt,Tt,Tt−1,K), Vt = Cθ(It,St,K),

where Cθ, Fθ, Rθ, and Hθ are neural networks for cost volume creation, cost
volume fusion, depth regression, and depth refinement, respectively.

For each frame, Cθ predicts a cost volume Vt using the current RGB It
and sparse depth St images, and camera intrinsics K as the input. Then, the
predicted cost volume Vt is fused with the cost volume V′

t−1 updated up to the
previous frame by Fθ. The fused cost volume V′

t at the current frame is used for
regressing a completed depth image Dt via a probability volume Pt computed by
Rθ. Lastly, the depth refinement module Hθ improves the completed depth on
the image domain using non-local spatial propagation (NLSPN) [35] to obtain
the final completed depth D′

t.
Figure 3 shows the overall pipeline of our framework. In the following sections,

we elaborate on the main components of our framework, RGB-D cost volume
creation (Section 4.1), ray-based cost volume fusion (Section 4.2), and completed
depth regression and refinement (Section 4.3).

4 Deep Cost Ray Fusion

4.1 Cost Volume Creation

Given an input RGB image and sparse depth samples at each frame, our cost
volume creation module Cθ forms occupancy Vo, residual volumes Vr from
sparse depth samples, and RGB feature volume Vi from multi-scale image fea-
tures (Figure 3 (a)). We concatenate these input feature volumes along channel
dimensions to obtain an RGB-D feature volume. Then, we feed the RGB-D fea-
ture volume into a 3D convolutional U-Net to infer a cost volume at the current
frame. We utilize a modified version of CostDCNet [22] for cost volume creation
that does not use a separate geometric feature extractor and uses multi-scale
image features.

The feature volume (Vo,Vr,Vi) is constructed on uniformly spaced hypoth-
esis depth planes [18,66]. The number of depth planes D and the minimum dmin
and maximum dmax depth values of these planes are hyperparameters. When
the image spatial resolution is H×W and the feature dimension is C, we have a
feature volume V ∈ RD×C×H×W . Note that the spatial coverage of the feature
volume in 3D Euclidean space corresponds to the viewing frustum at the current
frame. More details are described in the supplementary document.
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4.2 Ray-based Fusion

In this section, we explain our ray-based cost volume fusion scheme that ef-
fectively considers intrinsic attributes of probability distributions within cost
volumes in a memory-efficient manner. Let us assume that we have a cost vol-
ume Vt from the current frame (Section 4.1) and a cost volume V′

t−1 updated
until the previous frame t− 1, as shown in Figure 3 (b).
Aligning cost volumes. We first align two cost volumes (V′

t−1, Vt) of different
viewpoints for the fusion. We utilize the relative camera pose between t and
t − 1 and employ inverse mapping to obtain an aligned cost volume V′

(t−1)→t.
This inverse mapping makes the coordinates of V′

t−1 to be aligned with the
coordinates at the current viewpoint, and it allows easy ray-wise computation
in the aligned coordinates. More details can be found in the supplementary
document.
Fusion. We now introduce our approach to fuse two volumes Vt and V′

(t−1)→t

using attention mechanism [52]. The naïve approach is to linearize all voxel
features of each cost volume and then compute the cross-attention. However, it
requires D2H2W2 entries for attention weight calculation, which is impractical
due to the huge memory footprint and computation complexity (Figure 2 (d)).

Instead, we propose the ray-wise fusion scheme that calculates attention for
only extracted ray-wise features of the aligned cost volumes Vt and V′

(t−1)→t

(Figures 2 and 4). For an arbitrary pixel position (h,w), we can obtain a ray-
wise feature Ft = V(:, :, h, w) ∈ RD×C from a cost volume, where each row
of the matrix Ft indicates a C-dimensional feature vector for a certain depth
plane hypothesis. We then regard Ft as D tokens, where each token is a C-
dimensional feature, and apply the attention mechanism to fuse two ray-wise
features Ft = Vt(:, :, h, w) and Ft−1 = V′

(t−1)→t(:, :, h, w).
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Fig. 4: Our ray fusion module.

A straightforward option for the fusion is
to compute cross-attention between Ft and
Ft−1. However, the cross-attention does not
consider the intrinsic properties of individ-
ual ray-wise features. Inspired by the stereo
matching approach [57] that utilizes entropy
of a probability distribution as an uncertainty
prior, we expect the network to consider the
intrinsic characteristics of each ray-wise fea-
ture. In addition, this independent fusion does
not consider spatially adjacent features within
cost volumes.

To compensate for such deficiency, we ap-
ply two 3D convolutional layers to the volumes
before applying our fusion scheme, as shown in
Figure 4. We then compute the self-attention SAt = Attn(Ft,Ft,Ft)

3 and com-

3 denoted as Attn(Q,K,V) =
(
softmax(

QWQ(KWK)T√
d

)VWV

)
WO, where {WQ,

WK , WV , WO} are learnable linear projection parameters.
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pute SAt−1 similarly. Finally, the fused feature is calculated using cross-attention
CAt = Attn(SAt, SAt−1, SAt−1). To inject information about relative posi-
tions among D tokens in F, we add the sinusoidal positional encodings [52] of
depth plane indices before the fusion.

We repeat the process for all ray-wise feature pairs to make the fused cost
volume (V′

t) as depicted in Figure 4). Note that the proposed method needs only
D2HW entries for constructing attention maps, and it is much more memory-
efficient than naïve approach consuming D2H2W2 entries.

4.3 Depth Regression

To regress a completed depth map from the fused cost volume V′
t ∈ RD×C×H×W ,

we firstly convert the fused cost volume to an unnormalized probability volume
P′

t (D×H×W) via a single 3D convolutional layer and per-plane pixel shuffle [22].
Then, we apply the softmax operator σ(·) [23] to regress a completed depth Dt

as follows [12,18]:

Dt(h,w) =

D∑
i=1

di × pi
h,w, ph,w = Pt(:, h, w) = σ(P′

t(:, h, w)), (3)

where di is the pre-defined depth value of the i-th hypothesis depth plane, (h,w)
is an image pixel position, D is the number of hypothesis depth planes, Pt is
a probability volume, and ph,w is a D-dimensional probability vector for depth
planes at (h,w).

To further refine the regressed depth Dt on the image domain, we adapt
non-local spatial propagation networks (NLSPN) [35] with minor modification.
NLSPN takes as the input an affinity map, a confidence map, and a depth
to be refined. In our case, the regressed depth is accurate enough, so we utilize
shallow 2D convolutional networks for estimating an affinity map, and we directly
compute a confidence map from Pt(d, h, w). For more details, we refer the readers
to the supplementary document.

4.4 Loss Function

Our framework is fully differentiable, and it can be trained in an end-to-end
manner. We use the L1 depth loss and a cross-entropy loss for probability volume
supervision (Figure 3). L1 depth regression loss is defined as follows:

LL1 =
1

|P|
∑

(h,w)∈P

|Dt(h,w)−Dgt(h,w)| , (4)

where P is the set of sparse GT depth pixels, Dt and Dgt are the completed
depth and a ground truth depth. The cross-entropy loss is defined as follows:

LCE =
1

|P|
∑

(h,w)∈P

−pT
gt logp, (5)
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where pgt is a ground truth probability vector over the hypothesis depth plane,
and p is a predicted probability vector obtained from Pt(:, h, w) (Eq. (3)).

We found that using hard labels (one-hot vector) for pgt is not effective for
the performance, similar to observations in [23]. We instead make soft labels
from ground truth depths using the idea of Nuanes et al. [34]. We find two near-
est depth planes for a given ground truth depth and then compute normalized
weights for respective planes. This computation results in a probability distri-
bution vector where all elements are zero except for two elements containing the
respective normalized values.

Finally, our total loss Ltotal is defined as follows:

Ltotal = LL1 + LCE . (6)

5 Experiments

5.1 Implementation Details

We implement our framework using PyTorch [9,36,56]. We train our model with
a batch size of four on three NVIDIA GeForce RTX 3090 GPUs. We employ
the AdamW optimizer [31] with a weight decay of 0.0001 and an initial learning
rate of 0.001. The learning rate is reduced by a factor of 0.5 at a predefined
epoch schedule. The average inference time of our model on the ScanNetv2 test
set is 77ms. The number of hypothesis depth planes is set to 16. A cost volume
as a four-dimensional volume requires a high memory footprint. In practice,
we utilize downscaled images with a factor of 4. The supplementary document
provides additional visual results and detailed information, including network
architecture, error metrics, GPU memory consumption, and inference times.

5.2 Datasets

We use the following indoor/outdoor datasets to demonstrate our approach.
ScanNetV2 [5] dataset is a large-scale RGB-D dataset for indoor scenes,

comprising 1,201 training, 312 validation, and 100 testing scenes (≈211,000
frames) captured with a handheld RGB-D sensor. This dataset includes accurate
camera calibration parameters and ground truth depth images. In this case, we
randomly obtain 300 depth samples from a ground truth depth image to create
input sparse depth images. We set dmin = 10−3m and dmax = 10m. We randomly
cropped images to 512 × 384 pixels during training. The learning rate schedule
is {10, 15, 20, 25} over 30 epochs. We test depths less than 10m for performance
evaluation.

VOID [59] dataset contains synchronized 640× 480 RGB images and sparse
depth maps of indoor (e.g., laboratories and classrooms) and outdoor (gardens)
scenes. The depth maps contain about 150, 500, or 1500 sparse depth samples
(corresponding to 0.05%, 0.15%, and 0.5%) for each scene. Depth samples are
obtained from a set of image features tracked by XIVO [10], a visual-inertial
odometry system. The dense ground-truth depth maps are acquired by active
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Table 1: Quantitative comparison on the ScanNetV2 [5] test set. ‘SPN’ and ‘S’ denote
our depth refinement module and single-view setting. ‘R’ means that GT depths are
obtained by rendering GT meshes. The unit for all metrics, except for iMAE (1/m)
and iRMSE (1/m), is meter.

Method #Param. Depth Error 3D Reconstruction Error
MAE↓ RMSE↓ iMAE↓ iRMSE↓ Acc↓ Compl↓ Chamfer↓ Prec↑ Recall↑ F-score↑

SimpleRecon [41] 49.1M 0.0887 0.1448 0.0315 0.0499 0.0681 0.0557 0.0619 0.6694 0.6494 0.6572
ComplFormer [69] 83.5M 0.0276 0.0868 0.0091 0.0295 0.0442 0.0223 0.0332 0.8596 0.9152 0.8838

NLSPN [35] 25.8M 0.0266 0.0859 0.0086 0.0290 0.0412 0.0223 0.0318 0.8642 0.9147 0.8862
CostDCNet [22] 1.8M 0.0244 0.0759 0.0086 0.0255 0.0339 50.0204 0.0272 50.8778 0.9269 0.8998

Ours w/o SPN+S 51.11M 0.0208 50.0681 50.0068 0.0230 - - - - - -
Ours w/o SPN 51.11M 50.0159 50.0553 50.0053 50.0192 50.0294 50.0181 50.0237 50.8908 50.9467 50.9163

Ours 51.15M 50.0160 50.0554 50.0053 50.0193 50.0295 50.0181 50.0238 50.8908 50.9465 50.9161
DeepSmooth+R 20.4M 0.043 0.142 - - - - - - - -

Ours+S+R 51.15M 50.036 50.114 0.0199 0.0624 - - - - - -

SimpleRecon [41] OursCostDCNet [22]
0

0.2m

Input RGB-D

Fig. 5: Visual comparison of completed depths (top) on the ScanNetV2 test set. Error
maps of completed depths are also presented (bottom).

stereo. The VOID dataset contains 56 sequences with challenging camera mo-
tions. Among the 56 sequences, 48 sequences (≈45,000 frames) are designated
for training, and eight sequences (800 frames) are assigned for testing. We set
dmin = 10−3m and dmax = 6m. During training, randomly cropped images of
512 × 384 pixels are used, and the learning rate schedule is {30, 40, 50, 60, 70}
over 80 epochs. We follow the evaluation protocol of [59] and evaluate depths
within [0.2, 5.0]m.

KITTI [51] depth completion (DC) benchmark dataset contains about 86,000
1242 × 375 RGB-D pairs that capture diverse road scenes. The sparse depth
samples are obtained using a Velodyne LiDAR sensor, and it accounts for ap-
proximately 5% of the image space. As the 1,000 test set frames of KITTI are
not captured sequentially, our temporal fusion module cannot be applied. Thus,
we evaluate our method on scenes in the validation set with sequential frames.
We set dmin = 10−1m and dmax = 90m. During training, we use randomly
cropped images of 1216 × 240 pixels, and the learning rate decay schedule is
{30, 40, 50, 60, 70} over the total 100 epochs.
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Table 2: Quantitative comparison on VOID [59] test set. ‘SPN’ and ‘S’ denote our
depth refinement module and single-view setting.

Method #Param. Density MAE↓ RMSE↓ iMAE↓ iRMSE↓
Training Testing (mm) (mm) (1/km) (1/km)

SS-S2D [32] 27.8M

0.50% 0.50%

178.85 243.84 80.12 107.69
DDP [65] 18.8M 151.86 222.36 74.59 112.36

VOICED [59] 9.7M 85.05 169.79 48.92 104.02
ScaffNet [58] 7.8M 59.53 119.14 35.72 68.36

MSG-CHN [25] 50.36M 43.57 109.94 23.44 52.09
KBNet [60] 6.9M 39.80 95.86 21.16 49.72
PENet [15] 132.0M 34.61 82.01 18.89 40.36
Mondi [30] 5.3M 29.67 79.78 14.84 37.88
NLSPN [35] 25.8M 26.74 79.12 12.70 33.88

ComplFormer [69] 83.5M 49.61 141.40 21.08 51.53
LRRU [55] 21.0M 47.20 118.00 22.00 48.30

CostDCNet [22] 1.8M 25.84 5 76.28 5 12.19 32.13
Ours w/o SPN+S 51.11M

0.50% 0.50%
525.53 568.83 12.37 531.52

Ours w/o SPN 51.11M 524.57 565.46 512.03 530.26
Ours 51.15M 524.51 565.46 511.98 530.20

LRRU [55] 21.0M 0.50% 0.15% 115.30 262.60 44.70 86.30
0.05% 207.80 409.90 78.20 127.30

ComplFormer [69] 83.5M 0.50% 0.15% 228.49 449.51 62.71 119.92
0.05% 395.42 639.05 107.52 174.05

NLSPN [35] 25.8M 0.50% 0.15% 65.91 160.76 27.79 63.26
0.05% 118.19 245.41 52.57 99.36

Mondi [30] 55.3M 0.50% 0.15% 61.37 146.57 27.96 64.36
0.05% 104.97 225.60 48.44 96.79

Ours w/o SPN+S 51.11M 0.50% 0.15% 552.80 5121.65 524.80 556.83
0.05% 584.45 5174.46 541.75 583.64

Ours w/o SPN 51.11M 0.50% 0.15% 548.75 5110.68 523.17 552.43
0.05% 578.65 5162.32 539.22 577.65

Ours 51.15M 0.50% 0.15% 548.67 5110.56 523.10 552.35
0.05% 578.55 5162.17 539.15 577.55

5.3 Comparison

We compare our method with state-of-the-art (SOTA) single-view and video
depth completion models qualitatively and quantitatively. For extensive compar-
ison, we also present a comparison with a recent multiview stereo method [41]
using RGB videos.

In the ScanNetV2 experiment, we choose recent single-view sparse depth
completion approaches (NLSPN [35], CostDCNet [22], CompletionFormer [69]),
a video depth completion method (DeepSmooth [24]), and a multiview stereo
method (SimpleRecon [41]). We used the pretrained model of SimpleRecon pro-
vided by the authors, and we trained other models from scratch using the official
source codes. Since DeepSmooth is a framework designed for semi-dense depth
completion and its official source code is not available, we trained our frame-
work under the same conditions as DeepSmooth for comparison. As a result, our
method shows the best performance in both depth and 3D error metrics (Table 1
and Figure 5). While SimpleRecon often produces visually pleasing depth maps,
its estimated depth values result in inferior quantitative performance because it
does not utilize sparse depth samples, which serve as a strong prior.

We observe similar trends in the VOID test set, even if the depth samples
provided by the VOID dataset are not from range-based sensors. Our model
outperforms the state-of-the-art approaches [15,22,25,30,32,35,58–60,65,69] in
most error metrics in this VOID dataset. Compared to CostDCNet, the second-
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Table 3: Quantitative comparison on the KITTI [51] validation set. ‘SPN’ and ‘S’
denote our depth refinement module and single-view setting.

Method #Param. MAE↓ RMSE↓ iMAE↓ iRMSE↓
(mm) (mm) (1/km) (1/km)

SS-S2D [32] 27.8M 269.20 878.50 1.34 3.25
Depth-normal [63] 29.0M 236.67 811.07 1.11 2.45
MSG-CHN [25] 50.36M 227.94 821.94 0.98 2.47

Mondi [30] 5.3M 218.22 815.16 0.91 2.18
Uber-FuseNet [2] 1.9M 217.00 785.00 1.08 2.36
DeepLidar [38] 53.4M 215.38 5687.00 1.10 2.51
DC-3co [20] 27.0M 215.04 1011.30 0.94 2.50

3DepthNet [62] - 208.96 5693.23 0.98 2.37
PENet [15] 131.5M 208.81 753.75 0.91 2.16
NLSPN [35] 25.8M 198.64 771.80 0.83 2.03

CompletionFormer [69] 83.5M 198.63 748.07 0.85 2.00
TWISE [19] 1.5M 193.40 879.40 0.81 2.19
DySPN [27] 26.3M 192.50 745.80 - -
LRRU [55] 21.0M 5188.80 729.50 0.80 51.90

Ours w/o SPN+S 51.11M 193.05 793.03 50.76 51.74
Ours w/o SPN 51.11M 5182.65 726.95 50.74 51.68

Ours 51.15M 5176.23 5720.63 50.72 51.68

Mondi [30] NLSPN [35] OursComplFormer [68]
0

0.2m

Input RGB-D

Fig. 6: Visual comparison of our method with state-of-the-art depth completion meth-
ods [30,35,69] on the VOID test set (0.5% sparsity) [59]. Completed depths (top) and
error maps (bottom) are presented.

best model, our approach shows better performance with the smaller network
parameters (Table 2 and Figure 6).

We achieved the best score among the baseline approaches [2, 15, 19, 20, 25,
27,30,32,35,38,55,62,63,69] in the validation set of the KITTI depth completion
benchmark in most of the error metrics. Note that modern approaches such as
DySPN [27], NLSPN [35], CompletionFormer [69], and LRRU [55] have much
larger number of network parameters than ours to achieve competitive perfor-
mance (Table 3 and Figure 7). We believe that our ray-based cost fusion scheme
using self-/cross-attention is effective on various datasets.

5.4 Analysis

Effect of ray-based cost volume fusion. Our ray-based fusion improves the
performance in most of the metrics with a small number of additional parameters
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OursInput RGB-D
0

1m

Fig. 7: Our completion result on the KITTI depth completion benchmark. Please refer
to the supplementary document for a comparison with other approaches.

(0.08M) (Table 4 (iii, vii)). To compare the local cost volume fusion and our ray-
based fusion, we adopt a convolutional variant of gated recurrent unit (GRU)
used in [45] to fuse two aligned cost volumes. As a result, while the local fusion
achieves slight performance improvement in the RMSE metric, its MAE metric
rather deteriorates (Table 4 (v)).
Effect of cross entropy loss. We observed that using LCE loss for direct
distribution supervision contributes to stable learning. It also results in a bal-
anced performance between mean absolute difference (MAE) and root mean
square error (RMSE). This is a different observation to existing depth comple-
tion works [27,35,69] that combine L1 and L2 depth loss terms (Table 4 (i) and
(ii)). A combination of three losses (L1 + L2 + CE loss term) does not lead to
performance gain compared to using only the CE loss term (Table 4 (ii), (iv)).
Single RGB-D image as input. To evaluate the performance of our frame-
work given a single RGB-D image as the input, we disable the cross-attention
part of our fusion module and use only the self-attention part. Inevitably, the
performance degrades in this single-view setting as it cannot leverage informa-
tion from previous RGB-D frames. However, it is noteworthy that even in the
single-view scenario, our framework is competitive to state-of-the-art depth com-
pletion methods [22,27,30,35,55,69] on three different types of datasets (VOID,
KITTI, and ScanNet) (Tables 3, 2, 1).
Effect of depth refinement module. Our depth refinement module, which
has small network parameters (0.04M), improves the MAE metric on the KITTI
dataset. However, we observed that the impact of the NLSPN on performance in
the VOID dataset is relatively marginal, and the addition of NLSPN even leads
to a slight decrease in performance on the ScanNetV2 dataset (Tables 3, 2, 1).
Robustness to various depth sparsity. To assess the sparsity-agnostic ca-
pability of our model and other approaches, we train the models on the VOID
dataset with 0.5% depth sparsity and evaluate them on the VOID test set having
0.15% and 0.05% sparsity. As shown in Table 2, our approach is less affected by
the changed depth sparsity compared with other approaches [30,35,69], despite
using smaller network parameters.
Cross-dataset generalization. To evaluate the cross-dataset generalization
ability, we train our model and baseline approaches (NLSPN [35] and Comple-
tionFormer [69]) on the ScanNetv2 training set and evaluate them on the VOID
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Table 4: Ablation study on the KITTI validation set. ‘A’ denotes our framework
without the proposed ray-based fusion ‘B1’ and depth refinement ‘C’. ‘B2’ denotes the
convolutional GRU-based cost volume fusion [45]. ‘L1’, ‘L2’, and ‘LCE ’ denote L1 and
L2 depth losses, and cross entropy loss, respectively. We use 20% of the KITTI training
set for this experiment.

Network / Loss #Param. MAE↓ RMSE↓ iMAE↓ iRMSE↓
i A / L1 1.03M 203.73 855.07 50.79 1.85
ii A / LCE 1.03M 223.59 812.49 0.91 1.98
iii A / LCE+L1 1.03M 203.05 834.09 50.79 1.83
iv A / LCE+L1+L2 1.03M 220.22 817.94 0.89 1.98
v A+B2 / LCE 1.09M 228.85 799.03 1.03 2.04
vi A+B1 / LCE 1.11M 215.18 5774.10 0.88 1.87
vii A+B1 / LCE+L1 1.11M 5198.51 777.37 0.82 51.82
viii A+B1+C / LCE , SPN L1 1.15M 5188.88 5768.11 50.77 51.78

Table 5: Quantitative comparison for cross-dataset generalization ability. All models
are trained on the ScanNetv2 training set and tested on the VOID test set of 0.5%
depth density.

Method Params MAE↓ RMSE↓ iMAE↓ iRMSE↓
NLSPN [35] 25.8M 158.60 571.80 22.00 57.50

CompletionFormer [69] 83.5M 65.90 190.01 20.66 49.83
Ours 51.15M 529.08 578.34 512.79 531.93

test set with 0.5% density. While CompletionFormer performs slightly worse
than NLSPN on the ScanNetV2 test set, it demonstrates better generalization
ability on the VOID test set (see Tables 1 and 5). Our method exhibits better
generalizability than other methods. We speculate that our approach, which di-
rectly works with ray-wise cost slice, is a more generic approach across different
dataset domains.

6 Conclusion

In this paper, we proposed a learning-based depth completion framework that
effectively utilizes temporal information from an RGB-D video. We introduced
the ray-based cost volume fusion scheme that leverages the attention mechanism.
The fusion module effectively fuses cost volume predictions over time to infer a
more accurate cost volume which is used for completed depth regression subse-
quently. We demonstrate that our framework, RayFusion, consistently beats or
rivals state-of-the-art (SOTA) depth completion methods on diverse indoor and
outdoor datasets, despite utilizing significantly fewer network parameters.
Limitation and future work. Our framework, relying on cost volumes with 3D
convolutions and computing attention maps between them, suffers from a high
memory footprint. Additionally, persistent poor depth predictions over time pose
challenges that our method cannot fully resolve. Future work could involve de-
signing a more computationally efficient network architecture [41] that eliminates
fully 3D convolutions.
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