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Abstract. Human hands possess the dexterity to interact with diverse
objects such as grasping specific parts of the objects and/or approaching
them from desired directions. More importantly, humans can grasp ob-
jects of any shape without object-specific skills. Recent works synthesize
grasping motions following single objectives such as a desired approach
heading direction or a grasping area. Moreover, they usually rely on
expensive 3D hand-object data during training and inference, which lim-
its their capability to synthesize grasping motions for unseen objects at
scale. In this paper, we unify the generation of hand-object grasping mo-
tions across multiple motion objectives, diverse object shapes and dex-
terous hand morphologies in a policy learning framework GraspXL. The
objectives are composed of the graspable area, heading direction, wrist
rotation, and hand position. Without requiring any 3D hand-object in-
teraction data, our policy trained with 58 objects can robustly synthesize
diverse grasping motions for more than 500k unseen objects with a suc-
cess rate of 82.2%. At the same time, the policy adheres to objectives,
which enables the generation of diverse grasps per object. Moreover, we
show that our framework can be deployed to different dexterous hands
and work with reconstructed or generated objects. We quantitatively and
qualitatively evaluate our method to show the efficacy of our approach.

Keywords: Motion synthesis · Hand-object interaction · Dexterous ma-
nipulation

1 Introduction

In our daily lives, we constantly engage with a wide variety of objects, from
taking an apple out of a bowl and handling a knife by its grip to lifting a pair of
headphones off the floor. This routine showcases the remarkable dexterity and
adaptability of human hands, which effortlessly achieve complex tasks such as
precisely grasping objects of different shapes in specific areas and from certain
directions. Impressively, humans achieve this without needing object-specific pre-
training, enabling us to manipulate items of any shape with ease. Therefore, the
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Fig. 1: Large-scale Grasping Synthesis. Our method, GraspXL, can be used to
generate large-scale grasps with robotic hands, and the MANO hand model. Here we
show large-scale generated results, better viewed when zoomed in.

Fig. 2: Objective-driven Grasping Motion Synthesis. Given a hand model and
an object, our goal is to synthesize grasp motions that adhere to high-level objectives,
which may consist of one or multiple objectives including graspable areas (indicated by
the shadow), heading directions (indicated by the red arrow), wrist rotations (indicated
by the black arrow), and positions of the hand (indicated by the green dot). For each
sequence, darker hand represents more recent in time.

ability to generate versatile grasping motions that adhere to certain motion
objectives – like precise graspable areas and specific heading directions – holds
significant benefits for fields like animation and robotic grasping [1, 7, 18].

In this paper, we present GraspXL, a policy learning framework capable of
generating motions for a wide variety of objects, motion objectives, and hand
morphologies, which is shown as Fig. 2. Our method does not rely on any 3D
hand-object data to train but can robustly generalize to grasp a broad range
of unseen objects. Consequently, our approach significantly scales hand-object
motion generation, accommodating over half a million unseen objects, and we
show some examples in Fig. 1. Existing methods for generating hand-object mo-
tions struggle with scalability to unseen objects due to their dependence on pose
references [8, 48], their need for time-intensive optimization [7, 42], or their lim-
itation to objects encountered during training [25]. Furthermore, these existing
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approaches cannot, when applied off-the-shelf, generate interacting motions that
fulfill multiple motion objectives.

Scaling objective-driven grasping motion generation to a wide variety of un-
seen objects poses several challenges. First, there is the generalization ability,
where the learning framework should be general enough to handle different ob-
ject shapes, dexterous hand models, and motion objectives. It is necessary to
design a framework that avoids specific assumptions about the object shape and
hand model. Second, the model must establish stable grasping while adher-
ing to multiple objectives. Given the variety of object shapes and objectives,
the model needs to learn stable grasping while satisfying multiple objectives.
However, these high-level goals may negatively affect each other during training
as the exploration of objectives can lead the model into local optima. In such
cases, the objectives are followed initially, but no stable grasp is reached due
to the object movement caused by contact, making the learning difficult and
increasing the requirements for control precision.

We formulate GraspXL in the reinforcement learning paradigm and lever-
age physics simulation. To allow a policy to react to varying object shapes,
we capture the general shape features of diverse objects with the vectors from
each finger joint to the nearest point on the object surface. To handle multi-
ple objectives, we introduce a control scheme, dubbed objective-driven guidance,
that guides the hand towards the desired objective(s). To achieve generaliza-
tion across diverse hands, we propose a general reward function composed of a
grasping reward term and an objective reward term that is agnostic to the hand
morphology. Finally, to tackle the difficulty of learning stable grasping while
satisfying the target objectives, we propose a learning curriculum to decompose
the learning process to objective learning and grasp learning. Specifically, we
first train the policy on stationary objects with a larger objective reward to
learn precise finger motions for the objectives. We then fine-tune the policy on
non-stationary objects with a larger grasping reward to promote stable grasping.

In our experiments, we evaluate methods for multi-objective grasping motion
synthesis on PartNet [27] and ShapeNet [4]. We enhance SynH2R [7], the only
method offering controllability in hand heading direction, by incorporating more
detailed motion objectives. Our approach, unlike SynH2R [7], achieves higher
performance without time-intensive optimization for reference poses, yielding a
30% increase in success rates and reducing objective errors by 30%-50%. Ad-
ditionally, we demonstrate our method’s broad applicability and generalization
across a diverse range of conditions: it effectively handles over half a million
objects from large-scale 3D datasets [11], adapts to objects from text-to-3D gen-
eration methods [28], applies to objects from 3D reconstruction techniques [15],
and operates with various robotic hands, including Shadow [34], Allegro [41], and
Faive [38]. We validate our method’s superiority over others through quantita-
tive and qualitative measures and highlight its broad generalization capabilities.
Additionally, we dissect our framework’s critical elements and investigate the
impact of various objective combinations on performance.
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In summary, our contributions are: 1) GraspXL, a framework that synthesizes
grasping motions on a large scale (500k+) of unseen objects, without relying on
hand-object datasets during training. 2) A learning curriculum and objective-
driven guidance to enable our method to achieve stable grasping while satisfying
multiple objectives. 3) We show that our method is general enough to be deployed
on reconstructed or generated objects and different dexterous hands.

2 Related Work

Table 1: Comparison with existing grasping motion synthesis methods.

Method Multiple Different Data-agnostic Number of Novel
Objectives Hands Inference Test Objects

DexVIP [25] × × × 0
D-Grasp [8] × × × 3
UniDexGrasp [42] × × ✓ 100
UniDexGrasp++ [40] × × ✓ 100
SynH2R [7] × × ✓ 1,174
GraspXL (Ours) ✓ ✓ ✓ 503,409

We categorize related works into hand-object interaction synthesis and dex-
terous robot hand manipulation. Tab. 1 compares different grasping motion syn-
thesis methods with ours regarding the use of objectives, different hand mor-
phologies, whether they require datapoints at inference time, and the number of
reported results on unseen objects.

2.1 Hand-object Interaction Synthesis

In the literature, hand interaction primarily focuses on hand(-object) recon-
struction [3, 13, 14, 16, 17, 24, 37, 43, 50], static grasp synthesis [10, 21, 39, 45] and
temporal hand-object motion synthesis [2, 8, 18, 35, 47, 49]. This work concen-
trates on the latter. In synthesis, some previous methods use pure data-driven
approaches to synthesize human hand manipulation sequences and rely on post-
processing to enhance physical plausibility [47, 49]. Data-driven methods are
supervised by 3D hand-object annotated sequences during training [18, 35, 49],
and some methods rely on references like wrist trajectories [47] during inference.
However, acquiring accurate 3D hand-object data is infeasible to scale because
of expensive capture setups [17, 36]. Due to limited training data, data-driven
methods are constrained by their training distribution, making generalization
challenging, especially for conditional generation tasks with motion objectives.
Moreover, their dependence on data restricts their applicability across different
dexterous hand platforms such as Shadow Hand [34] and Allegro Hand [41].
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Some works leverage physics simulation within reinforcement-learning frame-
works to alleviate the data requirement and ensure physical feasibility. Christen
et al . [8] generate natural grasp sequences from captured or reconstructed static
grasp references. Zhang et al . [48] achieve two-hand grasp and articulation with
a single frame reference grasp. However, both methods lack extensive evaluation
to demonstrate their generalization ability, and their reliance on references re-
stricts them from scaling to more objects. Some methods [7, 42] first generate
grasp reference poses and then synthesize grasping motions accordingly for thou-
sands of objects. However, they either rely on a time-consuming optimization
process [7, 42] or are limited by the diversity in the pre-collected dataset [42].
Furthermore, the pre-defined references may not be physically feasible, which
introduces extra disturbances to the generated motions as the hands should ad-
here strictly to the imperfect references. In contrast to existing approaches, our
method does not require grasping references and offers real-time inference ca-
pabilities for grasping a wide range of objects, while at the same time enabling
the control over multiple motion objectives such as graspable areas, heading
directions, wrist rotations, and hand positions.

2.2 Dexterous Robot Hand Manipulation

Dexterous manipulation plays a crucial role in enhancing robot capabilities
[22, 44, 46]. With the motivation to learn from humans, some approaches use
imitation learning. However, this requires full human demonstrations for both
training and inference [6, 23, 30], which are usually expensive to collect. Some
other methods utilize retargeted human demonstrations during training [44],
use teleoperated sequences as training data [31], or learn a parameterized re-
ward function based on demonstrations [9]. However, the reliance on expensive
full grasping sequences during training still limits their generalization ability for
out-of-distribution settings. Instead of relying on full trajectories, Xu et al . [42]
use static pose references to guide the motion by first predicting the contact map
and then optimizing the poses accordingly, with physics-based heuristics used to
filter out invalid poses. This process is expensive and makes real-time inference
infeasible. In contrast, our method generates motions in real-time while adhering
to fine-grained motion objectives. Furthermore, without reliance on hand-object
interaction data, our method can easily scale to 500k objects.

Another line of research learns grasping with RL without conditioning on
reference grasps [5,12,29]. Wan et al . [40] propose a curriculum learning frame-
work to distill a state-based policy into a vision-based policy. They generalize to
many objects and achieve impressive results on vision-based grasping, whereas
we focus on generalizable grasping with different objectives in the state-based set-
ting. Similar to ours, some recent methods can achieve affordance-aware grasps.
Mandikal et al . [26] train an affordance-aware grasp policy with RL and evalu-
ated with only 24 novel objects, and further introduce a hand pose prior from
YouTube videos for natural hand configuration [25] which is only evaluated with
objects used for training. Agarwal et al . [1] learn a category-level policy that
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grasps the objects by affordance areas, but they are limited to grasp their train-
ing categories and can generalize to only 1 unseen category. Moreover, all of
these methods only generate a single pose per object. In contrast, our method
can generate diverse affordance-aware grasping poses that can be controlled via
motion objectives, and can be deployed for over 500k unseen objects.

Fig. 3: Overview of GraspXL. As shown in the top row, our method can utilize cap-
tured, generated, or reconstructed objects, and different dexterous hand platforms such
as MANO, Shadow, Allegro or Faive. With given object and hand model, the policy
takes different objectives and states as inputs (on the left), and outputs dynamic grasp
motions according to the specific objectives (on the right, accordingly, where darker
hand represents more recent in time). The objectives can be the heading direction,
wrist rotation, hand position or graspable area, and the states contain the hand state,
contact, force and distance of each link with the object, and the object point cloud.

3 GraspXL

Task Definition: As illustrated in Fig. 4, we assume a hand model h with
L links where hi ∈ IR3 is the position of the i-th link. The hand pose consists
of joint angles q ∈ IRL×3 and the global orientation represented by the heading
direction v ∈ IR3 and wrist rotation ω ∈ IR about the directional vector v. As the
hand moves, it has linear and angular velocities uh ∈ IR6. We define m ∈ IR3 as
the midpoint between the thumb tip and the third joint of the middle finger. We
also assume a rigid object o which has a point cloud of 3D vertices {oj}. A user
may partition the point cloud into graspable/non-graspable points, specifically
{oj} = {o+

j } ∪ {o−
j }, where we split the points into two disjoint sets to specify

whether the point should be encouraged to be in contact with the hand or not
when motion is generated. As the object moves, it also has linear and angular
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velocities uo ∈ IR6. The hand links may be in contact c ∈ {0, 1}L with the
object using forces in magnitude f ∈ IRL. In particular, the links may contact
with the graspable/non-graspable area, which are denoted as c+ ∈ {0, 1}L an
c− ∈ {0, 1}L. Similarly, the force magnitude vector f can be decomposed into
f+ ∈ IRL and f− ∈ IRL.

A user may specify motion objectives T to define the target heading direc-
tion v̄, wrist rotation ω̄, midpoint position m̄, the partition of graspable/non-
graspable object point cloud {o+

j } ∪ {o−
j }. Given this specification, our goal is

to generate a motion sequence that approaches and grasps an object without
dropping whilst adhering to the objectives. Note that only the target heading
direction v̄ is mandatory to specify in T . If not specified, {oj} will equal to
{o+

j }, m̄ will be the mean of {oj}, ω̄ will be zero. See SupMat for more details.

Fig. 4: Task definition. (a) The local coordinate system of the hand where the x-axis
is the heading direction v, the origin is the midpoint position m (see text for definition),
the rotation about v is ω. (b) Given an object with user-specified graspable {o+

j } and
non-graspable vertices {o−

j } (labelled in red and blue), the goal of the agent is to
approach and grasp the object while satisfying motion objectives v̄, m̄, ω̄, and contact
with the graspable area {o+

j }.

Overview: Fig. 3 outlines our RL-based method, GraspXL. Given the objectives
T and the state s obtained from the physics simulation, we utilize a feature ex-
traction layer Φ to derive the features. Subsequently, the policy π takes features
as input and generates the actions a, representing the PD-control targets used to
compute the torques τ . These torques are then applied to the joints of the hand
model in the physics simulation to update the state s, which is subsequently fed
back into our feature extraction layer for the next iteration.

Reinforcement Learning Background: The task is formulated as a stan-
dard Markov Decision Process (MDP). The goal is to determine the policy π

that maximizes the expected reward Eξ∼π

[∑T
t=0 γ

trt

]
, where γ ∈ [0, 1] de-

notes the discount factor, rt represents the reward at time step t, and ξ =
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[(s0,a0), · · · , (sT ,aT )] denotes a state-action pair trajectory generated by the
policy π interacting with the physics simulation. The trajectory ξ is determined
by the transition function p(st+1|st,at), which is governed by the physics simula-
tion along with an initial state distribution p(s0). The distribution of a trajectory
ξ is defined as pθ(ξ) = p(s0)

∏T
t=0 p(st+1|st,at)π(at|Φ(st, T )). Here, π is repre-

sented by a neural network.

Feature Extraction: Given a hand-object state s and the motion objectives
T , we extract the following features with a conversion function Φ(s, T ):

Φ(s, T ) = (q,d,uh,uo, c, f, ṽ, m̃, ω̃, l), (1)

which includes finger joint angles q, the finger joint tracking error (compared
with the target angles for PD controller) d, the hand and object velocities uh

and uo, the contact vector c, the force magnitude vector f. Finally, ṽ, m̃, ω̃ rep-
resent the differences between current and target heading directions, midpoint
positions, and wrist rotation angles. To represent shape features of an object
and help the hand get aware of the graspable/non-graspable areas, we construct
distance features l+ ∈ IRL×3 where each row is the difference vector between a
link position hi to the closet object vertex in the graspable part {o+

j }. Similarly,
we construct l− ∈ IRL×3 for the non-graspable part {o−

j }. We ablate this com-
ponent in Sec. 4.4.

Reward Function: The reward function should guide our policy to learn a
solution that can grasp the objects with the desired objectives while at the same
time achieving successful grasps. Furthermore, it should be formulated without
specific assumptions about the hand morphology so as to be applied on different
hand models. As a result, we define our reward function as follows:

r = rgoal + rgrasp, (2)

where rgoal is for motion objectives and rgrasp is for successful grasping.
In particular, the motion objective reward rgoal is formulated as:

rgoal = rdis + rv + rω + rm (3)

where rdis promotes approaching the target while avoiding non-graspable ar-
eas, and rv, rω, and rm reward aligning heading direction, wrist rotation, and
midpoint, respectively. Concretely, the term rdis is defined as

rdis = −
∑L

i=1

[
w+

d (i)||hi − o+
i ||2 − w−

d (i)||hi − o−
i ||2

]
, (4)

with the weights w+
d (i) ∈ IR and w−

d (i) ∈ IR, the i-th link position (hi), the
closest graspable/non-graspable object points to the i-th link (o+

i and o−
i ). The

rewards rv, rω, and rm penalize discrepancies in the heading direction v, the
wrist rotation angle ω, and midpoint position m from the targets:

rv = −wv||v − v||2, rω = −wω||ω − ω||2, rm = −wm||m − m||2. (5)
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The grasp reward rgrasp promotes proper contact and natural poses by com-
bining multiple factors:

rgrasp = rc + rf + ranatomy + rreg (6)

where rc assesses the contact between fingers and the object, considering both
the target and non-target areas (rc = w+

c ∥c+∥2 − w−
c ∥c−∥2). The force term,

rf , encourages the contact forces with the graspable area and punishes the con-
tact forces with the non-graspable area, capped by a factor proportional to the
object’s weight wo: (rf = w+

f c+ · min(f+, λwo) − w−
f c− · min(f−, λwo)). rreg

penalizes excessive velocities to ensure stability (rreg = −wh||uh||2 − wo||uo||2).
If the hand model is MANO [32], we additionally apply the anatomy reward
ranatomy [43] on joint angles q for natural poses.

Curriculum: Generating grasping motion with objectives requires a policy that
establishes stable grasps while achieving specific goals. This is complicated be-
cause of the potential for adverse outcomes like object flipping caused by contact
when trying to accomplish the objectives. To mitigate this, we introduce a learn-
ing curriculum: we start by training the policy on static objects with increased
rgoal to hone precise finger movements for objectives. Training progresses to mov-
ing objects with a higher rgrasp, enhancing wrist movements for secure, non-slip
grasps. The effectiveness of this approach is discussed in Sec. 4.4.

Objective-driven hand guidance: Diverse objectives complicate policy ex-
ploration due to the need for varied wrist movements. To address this, we present
a simple-yet-effective method to guide the hand during training and inference,
improving exploration and control precision. Essentially, we compute the dif-
ferences between the target and the current values for the heading direction v,
the wrist rotation angle ω, and the midpoint position m. These differences are
then applied directly as bias terms for the wrist’s 6 degrees of freedom (DoF)
PD-controller to guide the wrist toward motion objectives. This simple trick
promotes quicker convergence and boosts performance, as detailed in Sec. 4.4.

4 Experiments

This section involves several experiments to evaluate our method’s effectiveness
and generalization capabilities. We detail the experimental setups in Sec. 4.1,
compare our method’s performance against others in Sec. 4.2, and examine its
generalization across various unseen objects and hand models in Sec. 4.3. Lastly,
we ablate our method’s components and analyze the influence of different objec-
tive combinations in Sec. 4.4.

4.1 Experimental Setup

Datasets: To construct the training set, we randomly select 26 objects and 32
objects from ShapeNet [4] and PartNet [27] respectively. To demonstrate our
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method’s generalization to large-scale object datasets, we use Objaverse [11].
Since not all objects in the three datasets are suitable for rigid-body grasping
(e.g . a piece of paper), we filter out objects with such shapes. After filtering and
preprocessing, we have 48, 3993 and 503k objects in PartNet, ShapeNet, and
Objaverse for testing, respectively. The PartNet test set contains unseen objects
from seen categories, while the objects of the other two test sets are completely
novel. Please see SupMat for details on dataset filtering and preprocessing.

Training Details: We use PPO [33] for RL training with the RaiSim [20]
physics simulator. Experiments are conducted using a single Nvidia RTX 6000
GPU with 128 CPU cores. To improve data diversity for better generalization,
we sample objectives during training with the following heuristics: we randomly
sample the target heading direction v̄ ∈ IR3 and wrist rotation angle ω̄ ∈ [0, 2π)
while ensuring that the graspable part {o+

j } of the object is narrower than 12
cm between the thumb and the other fingers (along the y axis of the hand local
coordinate in Fig. 4a). As a result, the object will not be too large to be grasped.
To find a midpoint, we randomly sample a point on the graspable surface {o+

j }.

Evaluation Protocol: We measure the stability of the grasps with a success
metric metric. To assess the adherence to the objectives, we compute several
metrics and utilize the ShapeNet and PartNet (which contains part-based ob-
jects) datasets. Midpoint Error (Mid. Error): The mean Euclidean distance
between the final midpoint position m and the target m̄ measured in centime-
ters. Heading Error (Head. Error): The mean geodesic distance between the
final heading direction v and the target v̄ measured in radian. Wrist Rotation
Error (Rot. Error): The mean absolute error between the final wrist rotation
ω and the target ω̄ measured in radian. Contact Ratio: The ratio between the
number of links contacted with the graspable part {o+

j } and the entire object
{oj}. Grasping Success Rate (Suc. Rate): A grasp is determined as a suc-
cess if the object is lifted higher than 10cm and remains stable without falling
until the sequence terminates.

Baselines: We choose SynH2R as the main baseline, because it offers some
degree of controllability in the motion generation, (in terms of heading direc-
tion v). We adapt it with more fine-grained motion objectives. In particular, we
have the following baselines. SynH2R: The original method generates grasping
motion by first generating static grasping reference poses with an optimization
procedure. Then it uses an RL-based policy to approach and follow the grasp-
ing reference pose. To adapt this method for objective-driven synthesis beyond
heading direction v, we add additional optimization terms to include the wrist
rotation error ω and the midpoint error m. We also encourage the contacts with
the graspable part while punishing the contacts with the non-graspable part dur-
ing the optimization. The RL-based policy stays the same as the original one in
SynH2R, which is trained with the generated grasping references. SynH2R-PD:
The grasping references are generated the same way as in SynH2R above. We
then set the reference poses as targets for the PD controller following [8].
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Table 2: Method Comparison on PartNet and ShapeNet.

PartNet Test Set ShapeNet Test Set

Method Suc. Rate Mid. Error Head. Error Rot. Error Contact Ratio Suc. Rate Mid. Error Head. Error Rot. Error
[%] ↑ [cm] ↓ [rad] ↓ [rad] ↓ [%] ↑ [%] ↑ [cm] ↓ [rad] ↓ [rad] ↓

PD 26.5 4.30 0.767 0.857 13.0 21.9 4.60 0.850 0.964
SynH2R 82.3 4.06 0.522 0.568 53.4 65.8 4.49 0.642 0.688
Ours 95.0 2.85 0.270 0.306 86.7 81.0 3.22 0.292 0.338

4.2 Method Comparison

Following our evaluation protocol in Sec. 4, we compare with SynH2R and
SynH2R-PD for objective-driven motion synthesis. All methods use the MANO
hand model and the same pre-sampled objectives. We initialize the hand state in
the same way for all methods. In particular, the starting hand pose is set to the
mean pose of MANO with an open thumb (see Fig. 4a), and the wrist is posi-
tioned 30cm away from the target midpoint position m̄ along the target heading
direction v̄. For each sequence, we control the hand to grasp the object, and then
apply torques to the wrist to lift the object. It’s noteworthy that our method
can directly infer in simulation whereas the baselines rely on pre-generated hand
pose references through a time-consuming optimization procedure.

PartNet Evaluation: We use the PartNet test set to evaluate all methods
with the given objectives. For each object, we calculate the average performance
among 25 randomly sampled heading directions v̄, wrist rotations ω̄ and mid-
points m̄. Tab. 2 shows that our method significantly outperforms the baselines
across all metrics. In particular, our method more closely follows the objectives
in terms of hand grasping position (Midpoint Error), heading direction (Head-
ing Error), wrist rotation (Wrist Rotation Error), and contact points with the
graspable/non-graspable parts (Contact Ratio). At the same time, we achieve
the most stable grasps (Grasping Success Rate).

ShapeNet Evaluation: While PartNet specializes in part-based objects at a
smaller scale, we extend our evaluation to ShapeNet to test on more diverse and
unseen objects. We measure average performance across 5 randomly sampled
heading directions v̄, wrist rotations ω̄ and midpoints m̄ per object. As shown
in Tab. 2, our method outperforms all baselines, demonstrating less decrease in
performance when comparing PartNet and ShapeNet, thereby proving superior
generalization. The Grasping Success Rate has a drop for all the methods (even
for the non-learning-based SynH2R-PD baseline), which we claim is caused by
some objects that are too large or too heavy to be grasped. It is worth noting that
generating grasp pose references for the ShapeNet test set using the baselines
requires approximately a week, whereas our method can directly perform real-
time inference in simulation, showcasing its efficiency. Please refer to SupMat
for further qualitative comparisons.
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Table 3: Generalization to the Large-scale Objaverse Dataset.

Objects Suc. Rate [%] ↑ Mid. Error [cm] ↓ Head. Error [rad] ↓ Rot. Error [rad] ↓

Small 85.9 3.20 0.311 0.362
Medium 84.5 3.16 0.274 0.315
Large 79.0 3.50 0.271 0.306

Average 82.2 3.32 0.279 0.319

Table 4: Generalization to Generated and Reconstructed Objects.

Objects Suc. Rate [%] ↑ Mid. Error [cm] ↓ Head. Error [rad] ↓ Rot. Error [rad] ↓

Generated Obj. (DreamFusion) 88.4 2.85 0.310 0.361
Reconstructed in-the-wild Obj. (HOLD) 77.5 3.68 0.222 0.281
Reconstructed HO3D Obj. (HOLD) 74.0 3.84 0.207 0.247
Ground-truth HO3D Obj. (HOLD) 73.7 3.63 0.259 0.301

4.3 Generalization

Generalization to Large-scale Object Dataset: Our method’s scalability
was tested using the large Objaverse [11] dataset, resulting in a test set of over
half a million objects of three different sizes: small, medium and large (refer
to SupMat for preprocessing details). Performance on this set, as detailed in
Tab. 3, is comparable to our ShapeNet results, underscoring our method’s abil-
ity to scale. Specifically, medium-sized objects offer optimal grasping success.
Smaller objects enable higher success rates and more accurate grasp positioning
but suffer from larger heading direction and wrist rotation errors, as smaller
objects are easier to grasp but also easier to rotate in hand. Overall, our method
consistently shows excellent performance across different object sizes, confirming
its effectiveness for varying scales. The generated grasping motions of different
hands are released for further research.
Generalization to Reconstructed and Generated Objects: Our method
not only synthesizes grasping motions for standard 3D assets [4, 11,27] but also
effectively handles reconstructed and generated objects, expanding its usability.
We evaluated its performance on objects reconstructed via HOLD [15] and ob-
jects generated by DreamFusion [28]. We analyzed the average performance for
each object across 25 random sets of motion objectives, with findings detailed
in Tab. 4. Despite the objects being novel and containing severe artifacts (see
the Rubik’s Cube in Fig. 2), our method maintains similar performance across
all metrics compared to other experiments. Notably, the performance of objects
reconstructed from HO3D [19] is similar with the performance of ground-truth
objects. This shows our method’s robustness towards reconstruction noise in ob-
ject meshes. Please refer to the SupMat for a more detailed setting explanation.
Generalization on Different Robotic Hands: We assess our framework’s
generalization capabilities on various dexterous robotic hands, including Shadow
Hand [34], Allegro Hand [41], and Faive Hand [38], each differing in size and joint
structure (Faive Hand has 30, Shadow Hand 22, Allegro Hand 16, and MANO
45 finger joints). Our method adapts seamlessly to different models by adjusting
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Table 5: Generalization to Different Hand Models.

PartNet Test Set ShapeNet Test Set

Hand Suc. Rate Mid. Error Head. Error Rot. Error Contact Ratio Suc. Rate Mid. Error Head. Error Rot. Error
Model [%] ↑ [cm] ↓ [rad] ↓ [rad] ↓ [%] ↑ [%] ↑ [cm] ↓ [rad] ↓ [rad] ↓

Allegro 95.3 4.38 0.291 0.300 81.1 83.4 4.45 0.271 0.292
Shadow 94.0 3.57 0.317 0.320 83.4 83.2 3.67 0.363 0.381
Faive 95.8 2.85 0.228 0.243 88.7 82.4 3.44 0.250 0.262

MANO 95.0 2.85 0.270 0.306 86.7 81.0 3.22 0.292 0.338

Fig. 5: Generated Motions of Different Hands with the Same Objectives. We
require the hands to approach from the right and grasp the upper part of the glass.

hand state and action space dimensions. According to Tab. 5, all tested hands
showed similar success rates. However, the Allegro Hand has greater Mid. Errors
and lower Contact Ratios due to its larger size, which makes it difficult to achieve
precise position control. The Shadow Hand shows marginally higher objective
errors due to its broad, flat palm which limits its dexterity. Despite these struc-
tural differences affecting performance metrics, all hands achieved commendable
results, highlighting our method’s ability to generalize. This suggests our frame-
work’s capacity to deal with hand models with different morphologies. Fig. 5
illustrates the variety of grasping motions generated for different hands under
the same motion objectives.

4.4 Ablation and Analysis

Ablation: We conduct an ablation study to evaluate the impact of different
components in our method. Specifically, we assessed variations without the hand
guidance technique (w/o Guidance), the joint distance features (w/o Distance),
and the learning curriculum (w/o Curriculum). Results are detailed in Tab. 6.
The version without the curriculum slightly outperforms in contact ratio on the
PartNet set and maintains similar success rates across tests but suffers signifi-
cantly in objective-related metrics. We also notice the absence of the curriculum
makes the results more sensitive to the exact reward coefficients, leading to
more grasp failure with slightly higher objective rewards or poor objective pre-
cision with higher grasping rewards. These underscore the curriculum’s role in
decoupling the learning of stable grasping and objective fulfillment, which can
help the policy avoid getting stuck in local optima caused by their influence on
each other during training. The model without the joint distance features gets
a slightly larger midpoint error and significantly underperforms in all other as-
pects, highlighting the distance features’ value in understanding object shapes
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Table 6: Effects of Different Components in GraspXL.

PartNet Test Set ShapeNet Test Set

Model Suc. Rate Mid. Error Head. Error Rot. Error Contact Ratio Suc. Rate Mid. Error Head. Error Rot. Error
[%] ↑ [cm] ↓ [rad] ↓ [rad] ↓ [%] ↑ [%] ↑ [cm] ↓ [rad] ↓ [rad] ↓

w/o Guidance 90.0 3.22 0.394 0.425 82.2 68.5 3.74 0.455 0.528
w/o Distance 81.6 2.90 0.419 0.475 84.2 70.7 3.34 0.467 0.510
w/o Curriculum 96.2 4.12 0.381 0.462 88.8 79.6 4.60 0.396 0.461

Ours 95.0 2.85 0.270 0.306 86.7 81.0 3.22 0.292 0.338

Table 7: Generation Performance with Different Objective Combinations.

PartNet Test Set ShapeNet Test Set

Combination Suc. Rate Mid. Error Head. Error Rot. Error Contact Ratio Suc. Rate Mid. Error Head. Error Rot. Error
[%] ↑ [cm] ↓ [rad] ↓ [rad] ↓ [%] ↑ [%] ↑ [cm] ↓ [rad] ↓ [rad] ↓

Direction 96.1 - 0.256 - 90.2 82.5 - 0.268 -
Direction+Rotation 95.1 - 0.263 0.303 87.9 81.8 - 0.276 0.320
Direction+Midpoint 95.2 2.84 0.268 - 88.7 81.4 3.15 0.284 -

Dir.+Rot.+Mid. 95.0 2.85 0.270 0.306 86.7 81.0 3.22 0.292 0.338

and adjusting to contact-induced movements. Lastly, excluding hand guidance
worsens all performance metrics, proving its efficacy in directing the hand to
achieve the desired grasp.
Evaluation on Different Objective Combinations: Our method’s adapt-
ability was tested across various objective combinations to gauge performance
impacts. Evaluations were conducted for different scenarios: solely controlling
heading direction (m̄), adding wrist rotation to heading direction (v̄+ ω̄), com-
bining heading direction with midpoint position (v̄ + m̄), and integrating all
three objectives (v̄ + ω̄ + m̄). This variety helps to understand our approach’s
efficacy in handling multiple, concurrent objectives and understanding the com-
plexity levels our method can effectively manage. For each objective set, we
sample 25 sets of motion objectives for PartNet objects and 5 for ShapeNet
objects. Results in Tab. 7 show slightly better performance with fewer motion
objectives, highlighting the increased control challenge with multiple objectives.
This demonstrates our method’s capability to handle varying difficulty levels
and its robustness, as indicated by the minimal performance decline.

5 Conclusion

We presented GraspXL, an RL-based method that learns to synthesize grasping
motions on large-scale while satisfying one or multiple motion objectives. We
introduced a learning curriculum to deal with the control complexity and an
objective-driven guidance technique to accelerate exploration during training.
To improve the generalization ability, we adopted a joint distance sensor to
capture object local shape features. Notably, we demonstrated that our method
exhibits a high success rate of 82.2% on a test set with more than 500k unseen
objects. Moreover, we showed that our approach works well even when applied to
different dexterous hand platforms and with reconstructed or generated objects.
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