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Abstract. Text-driven diffusion models have significantly advanced the
image editing performance by using text prompts as inputs. One cru-
cial step in text-driven image editing is to invert the original image into
a latent noise code conditioned on the source prompt. While previous
methods have achieved promising results by refactoring the image syn-
thesizing process, the inverted latent noise code is tightly coupled with
the source prompt, limiting the image editability by target text prompts.
To address this issue, we propose a novel method called Source Prompt
Disentangled Inversion (SPDInv), which aims at reducing the impact of
source prompt, thereby enhancing the text-driven image editing perfor-
mance by employing diffusion models. To make the inverted noise code be
independent of the given source prompt as much as possible, we indicate
that the iterative inversion process should satisfy a fixed-point constraint.
Consequently, we transform the inversion problem into a searching prob-
lem to find the fixed-point solution, and utilize the pre-trained diffusion
models to facilitate the searching process. The experimental results show
that our proposed SPDInv method can effectively mitigate the conflicts
between the target editing prompt and the source prompt, leading to a
significant decrease in editing artifacts. In addition to text-driven image
editing, with SPDInv we can easily adapt customized image generation
models to localized editing tasks and produce promising performance.
The source code are available at https://github.com/leeruibin/SPDInv.
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1 Introduction

The emergence of diffusion models [15,47], especially the Latent Diffusion Mod-
els (LDMs) [42], has revolutionized the field of image generation. Leveraging
the exceptional semantic understanding ability of pre-trained LDMs, researchers
have successfully applied them to numerous downstream tasks, such as text-to-
image [37, 38, 41, 60], style transfer [54, 57, 62], text-to-video [2, 6, 12], text-to-
3D [27,28,39], as well as text-driven image editing [1,3,22,34]. It has been demon-
strated [4, 14, 50] that by delicately controlling the attention layer in LDMs, we
can achieve complex image editing by modifying only the text prompts.
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Fig. 1: Illustration of text-driven image editing pipeline.

Originally, the scope of text-driven image editing was limited to images gen-
erated by the LDM. However, it was soon found that we can first convert the
real image into latent noise through slight modification of the DDIM [46] in-
ference pipeline along with the source prompt so that high-quality reconstruc-
tion of the original image can be obtained. The inverted latent noise can then
be used to perform sophisticated image editing by interacting with the target
prompts, as illustrated in Fig. 1. The inversion process (please refer to Fig. 2(a)),
which is crucial for achieving real-image editing, significantly impacts the edit-
ing results. Since the advanced LDMs are mostly driven by the Classifier-Free
Guidance (CFG) technology [16], reconstruction failures often occur when the
CFG parameter needs to be set higher. To address this issue, Mokady et al . [32]
proposed the Null-Text Inversion (NTI) to optimize the null-text embedding
during the reconstruction process without cumbersome tuning of model weights.
The Negative-Prompt Inversion (NPI) was further developed to reduce the op-
timization time [13, 31]. Both NTI and NPI narrow the gap of reconstruction
in inversion-based editing, as depicted in Fig. 2(b). Ju et al . [21] challenged the
optimization-based inversion methods and proposed Direct Inversion (DirectInv)
by recording the differences between the inverted and the reconstructed features.
The differences are then merged into the inference process to ensure high-quality
reconstruction, as shown in Fig. 2(c).

In addition to NTI, NPI and DirectInv, there are many other image inver-
sion methods [7, 10, 13, 20, 49, 56, 61] that have been proposed in recent years.
While they can successfully reconstruct the source image by refactoring the im-
age synthesis process, they all rely on DDIM inversion to provide the latent noise
code. However, DDIM inversion assumes that the Ordinary Differential Equation
(ODE) derived from the DDIM sampling process can be reversed with infinites-
imally small steps. This assumption and the corresponding inversion equation
exhibit instability during the inversion process. Consequently, conditioned on
the given source prompt, the inverted latent noise code ẑT of the source image
will be closely coupled with the source prompt (please refer to Sec. 3.1 for our
detail analysis), leading to a significant divergence Dnoi with the ideal latent
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Fig. 2: Pipelines of different inversion methods in text-driven editing. (a) DDIM inver-
sion inverts a real image to a latent noise code, but the inverted noise code often results
in large gap of reconstruction DRec with higher CFG parameters. (b) NTI optimizes
the null-text embedding to narrow the gap of reconstruction DRec, while NPI further
optimizes the speed of NTI. (c) DirectInv records the differences between the inversion
feature and the reconstruction feature, and merges them back to achieve high-quality
reconstruction. (d) Our SPDInv aims to minimize the gap of noise DNoi, instead of
DRec, which can reduce the impact of source prompt on the editing process and thus
reduce the artifacts and inconsistent details encountered by the previous methods.

noise code z∗T (as depicted in Fig. 2(a)), which is supposed to be independent to
the source prompt. The dependency on the source prompt brings obstacles for
editing ẑT with the target prompt, resulting in artifacts and inconsistent details
in the edited image.

To address the above problem and disentangle the inverted latent noise code
ẑT from the source prompt, we revisit the DDIM sampling process, which it-
eratively denoises latent feature zt to zt−1 with latent noise z∗T as the starting
point. By reversing the order of zt−1 and zt in the ODE formula of DDIM, we
can derive the inversion formula to obtain the ideal latent noise z∗T , which does
not have an analytical solution but can be solved as a fixed-point problem, as
discussed in the work of accelerated iterative diffusion inversion (AIDI) [35].
This finding implies that the inversion process should adhere to a fixed-point
constraint in order to disentangle the inverted noise code from the given source
prompt. Unfortunately, as shown in Fig. 2(a-c), previous efforts [21, 31, 32, 46]
have mostly focused on designing elaborate manipulations to reduce the gap of
reconstruction, denoted by DRec, in the synthesizing process, without consider-
ing the adverse impact of the source prompt on the inverted noise code and how
to reduce the gap of noise, denoted by DNoi.

Based on the above analysis, we propose a Source Prompt Disentangled
Inversion method, termed as SPDInv. As illustrated in Fig. 2(d), SPDInv
aims to minimize DNoi, instead of DRec, so that the inverted noise code ẑT
can be independent to the source prompt as much as possible, reducing its po-
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tential conflicts with the target prompt during the editing process. To achieve
this goal, we transform each inversion step into a search problem with a fixed-
point constraint. Different from AIDI [35] which searches the solution by direct
iteration, we reformulate the fixed-point constraint to a loss function and lever-
age the powerful pre-trained diffusion models to perform the searching, largely
narrowing the gap between the inverted noise code and the ideal noise without
any source prompt prior. Our proposed SPDInv can be easily integrated into
the inversion-based text-driven editing pipelines, such as P2P [14], MasaCtrl [4]
and PNP [50], with just 10 lines of codes, significantly alleviating the artifacts
and inconsistencies in the edited images. Furthermore, SPDInv can be easily ap-
plied to those customized text-to-image generation methods such as ELITE [55],
adapting them to text-driven localized editing tasks with minor modifications.
The main contributions of this paper are summarized as follows:
– We present SPDInv, a plug-and-play inversion method designed for text-

driven image editing. It harnesses the power of pre-trained diffusion models
to perform fixed-point searching in the inversion process, disentangling the
inverted noise code from the source prompt as much as possible.

– We show that SPDInv can also be integrated with existing customized im-
age generation methods, expanding their applications from customized T2I
generation to text-driven localized editing.

– Our experimental results demonstrate that SPDInv effectively mitigates the
dependency of inverted noise code on source prompt, significantly reducing
the artifacts and inconsistent details in the editing outputs.

2 Related Work

2.1 Generative Models for Image Editing

The rapid advancement of diffusion-based generative models has significantly im-
pacted the field of image and video generation. Large-scale pre-trained models
such as Stable Diffusion (SD) [42], GLIDE [34], Imagen [44], and DALL·E2 [41]
have demonstrated powerful image synthesis capability, and have been serving as
foundational models for many downstream tasks. Prompt-to-Prompt (P2P) [14]
is among the first to utilize SD for complex image editing through text inter-
action, achieving remarkable localized editing results by controlling attention
maps. Subsequent works like pix2pix-zero [36] and plug-and-play (PNP) [50] of-
fer fine-grained control over textual embedding and spatial features. MasaCtrl [4]
manipulates self-attention features for consistent image generation and non-rigid
editing simultaneously. By coupling with DDIM inversion, these methods can be
used to edit real images, yet they often encounter editing failures due to the
instability of DDIM inversion process.

In addition to localized editing, customized image generation has recently
garnered much attention, which aim to generate images with the identity of
user-provided object (e.g ., dog) unchanged. This can be achieved by fine-tuning
parts of a pre-trained diffusion model (e.g ., the entire diffusion model [18, 43],
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cross-attention [17, 23] module, or text embedding space [11]) or training an
auxiliary module to translate visual content into the text embedding space [25,
33,53,55,58]. While these methods have shown promising results in customized
image generation, achieving fine-grained localized editing over customized images
remains challenging. Our proposed SPDInv can be integrated into the existing
customized generation methods to empower them with localized editing capacity.

2.2 Inversion for Real Image Editing

Inversion is a crucial step for editing real images in order to achieve recon-
struction fidelity and editability. There are mainly four categories of inversions
methods. The first category is DDPM [15] based methods, which directly use
the DDPM forward equation to obtain the noise code [20, 30, 49]. However, the
obtained noise code by these methods cannot guarantee the reconstruction of the
original image. The second category is DDIM [46] optimization-based methods.
While DDIM inversion [9] can be directly used to obtain the latent noise code,
it may fail to reconstruct the image when the CFG parameters are set higher.
To enhance reconstruction consistency, methods such as NTI [32], NPI [31] and
ProxEdit [13] have been proposed to optimize the text embedding space. Some
other methods have also been proposed to optimize the image latent space [7,10]
or the final noise space [61]. The third category is DDIM optimization-free meth-
ods, which aim to address the time-consuming issue of optimization-based meth-
ods. EDICT [52] and its variants [59] employ auxiliary invertible neural network
to compute the inversion path. DirectInv [21,56] records the differences between
inversion and reconstruction, and then merges the differences into the inference
process to ensure high-quality reconstruction. The last category is fine-tuning-
based methods, which improve the reconstruction by overfitting the neural net-
work to the given image [11,24,45] or training auxiliary networks [19,55].

While the above methods can reconstruct well the source image using the
inverted noise code, they may generate artifacts and inconsistent details when
using the target prompt to edit the image. Some works such as AIDI [35] and
FPI [29] have shown the effectiveness of fixed-point constraint in the inversion
process. However, they employ the fixed-point iteration to search the solution,
which is unstable and sub-optimal. In this work, we reformulate the fixed-point
constraint as a loss function and leverage the pre-trained diffusion model to
minimize it. Our method significantly reduces the editing artifacts and improves
the detail consistency.

3 Our Method

3.1 Analysis on DDIM Inversion

The editing pipeline of most text-driven image editing methods has been depicted
in Fig. 1. The given image z0 is first inverted into latent noise zT , which serves
as the initial point for reconstruction and editing. DDIM inversion is commonly
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Fig. 3: An example of image editing with ideal noise code (left) and inverted noise
code (right). Source prompt: A spiderman in the city. Target prompt: A spiderman in
the city with his left hand up.

employed in the existing methods to obtain zT . While DDIM inversion and its
subsequent methods [13, 21, 31, 32] have shown promising results in editing real
images, their editing fidelity and flexibility are far from the case if the ideal
noise code can be used as the starting point. An example is illustrated in Fig. 3.
From a random noise code without any prior knowledge, which can be regarded
as an ideal noise, we generate a Spiderman image I∗S with source prompt "A
spiderman in the city". With the same ideal noise and by using the MasaCtrl
editing engine [4], we can successfully change the pose of Spiderman with target
prompt "A spiderman in the city with his left hand up". However, if we take
the inverted noise code of I∗S as the initial point, the edited result, denoted
by IE , will fail in editing Spiderman’s pose (the left hand disappears). This is
because during the inversion process, the prior information of source prompt is
remained in the inverted noise code. While this prior information facilitates the
reconstruction process, it impedes the editing fidelity and flexibility based on
the target prompt, resulting in unintended artifacts or content inconsistency.

Let’s make more analyses on the DDIM inversion process. Starting from the
pure Gaussian noise zT ∼ N(0, 1), DDIM employs a deterministic sampling pro-

cess [46] zt−1 =
√
αt−1√
αt

zt+
√
αt−1

(√
1

αt−1
− 1−

√
1
αt

− 1

)
ϵθ(zt, t, c) to generate

the image latent code z0. From this sampling equation, we can obtain the ideal
inversion equation by using zt and zt−1 with the following equation:

zt = Ct,1 ∗ zt−1 + Ct,2 ∗ ϵθ(zt, t, c), (1)

where Ct,1 =
√
αt√

αt−1
, Ct,2 =

√
αt

(√
1
αt

− 1−
√

1
αt−1

− 1
)
. The detailed derivation

of Eq. (1) can be found in the supplementary materials. The inputs of the
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neural network are supposed to be zt and t. However, based on the assumption
that the ODE formula can be reversed within infinitesimally small steps and
due to the practical constraint that zt is unavailable during one-step inversion
at timestep t− 1, DDIM inversion uses (zt−1, t− 1, c), instead of (zt, t, c), as the
input of the neural network, resulting in the following formula:

zt = Ct,1 ∗ zt−1 + Ct,2 ∗ ϵθ(zt−1, t− 1, c). (2)

The coupling of DDIM inversion with source prompt is rooted in the use
of Eq. (2). In the ideal inversion (i.e., Eq. (1)), the input should be zt and
t, whereas previous methods have utilized zt−1 and t − 1 as the input (i.e.,
Eq. (2)). However, zt−1 is obtained by denoising zt conditioned with source
prompt. Therefore, Eq. (2) actually introduces source prompt prior into the
update. Taking the last inversion step as an example, the neural network should
receive a latent zT a pure noise without any prior information as the input
to obtain the ideal inversion code as zT = CT,1 ∗ zT−1 + CT,2 ∗ ϵθ(zT , T, c),
while most previous methods utilize the latent feature zT−1, which is obtained
through one-step denoising conditioned on the source prompt, as the input, i.e.,
ẑT = CT,1 ∗ zT−1 + CT,2 ∗ ϵθ(zT−1, T − 1, c). The coupling of the inverted noise
code and source prompt is not limited to the final inversion step, as the multi-
step generation nature of LDM accumulates the divergence between the inverted
noise and the ideal noise. This eventually results in the inclusion of source prompt
prior in the inverted noise, causing a notable deviation from the ideal noise, i.e.,
gap of noise DNoi as illustrated in Fig. 2(a). This deviation ultimately affects
the editing stability and fidelity of the given real image.

3.2 Source Prompt Disentangled Inversion (SPDInv)

The aforementioned analysis highlights the significance of an ideal noise code,
which should be disentangled with the source prompt, in editing a real image with
target prompts. In practical applications, however, the corresponding ideal noise
for a given image and source prompt is unknown, making it difficult to minimize
the divergence between the ideal noise and the inverted noise. Nevertheless,
Eq. (1) sheds light on the potential solution since it provides a constraint that
zt and zt−1 should satisfy at each inversion step. Consequently, narrowing the
gap between the inverted and ideal noise codes can be achieved by optimizing
zt and zt−1 to meet the constraint of Eq. (1), thereby circumventing the issue of
the unavailability of an ideal noise.

The ideal inversion equation in Eq. (1) is actually a fixed-point problem,
which has been discussed in AIDI [35]. At the beginning of the inversion step,
we have zt−1 available. Subsequently, by taking zt as the variable, we can convert
Eq. (1) into:

x = fθ(x) where x = zt, fθ(x) = Ct,2 ∗ ϵθ(zt, t, c) + Ct,1 ∗ zt−1. (3)

Ct,2 and Ct,1zt−1 can be regarded as constants. By optimizing Eq. (3), the
obtained zt will approach to the ideal latent z∗t in each inversion step. Eventually,
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the inverted noise code zT will approach to the ideal noise code z∗T . AIDI [35]
performs fixed-round iterations by assigning fθ(zt) to zt to solve a similar fixed-
point problem to Eq. (3). However, as LDM utilizes a neural network to map
zt, t, c to noise ϵ, the exact mathematical form of ϵθ(zt, t, c) cannot be obtained.
As a result, the fixed-round iteration may not converge to a good fixed-point.

Algorithm 1 Source Prompt Disentangled Inversion (SPDInv)
Input: Source image latent z0, DDIM steps T , source prompt ps, maximal optimization round K,

threshold δ, learning rate η.
Output: Inversion noise zT
1: for t← 1 to T do
2: Get zt from zt−1 based on Eq. (2)
3: for i← 0 to K do
4: Calculate L = ||fθ(zt)− zt||2 based on Eq. (3)
5: Update zt := zt − η∇L
6: if L < δ then Break end if
7: end for
8: end for

We thereby propose a Source Prompt Disentangled Inversion (SPDInv) method
to mitigate the influence of source prompt on the inverted noise code. We con-
vert each inversion step into a search problem to identify the fixed point. Con-
sequently, we reformulate the search problem into a loss function and leverage a
pre-trained diffusion model to facilitate the optimization process. Our approach
is straightforward yet effective, requiring only 10 lines of modifications to the
existing inversion technique but improving the current state-of-the-arts signifi-
cantly. Our algorithm is summarized in Algorithm 1.

Specifically, we utilize Eq. (2) to perform a single-step inversion from zt−1 to
obtain an initial approximation to zt. At this moment, zt−1 and zt do not satisfy
the constraint in Eq. (1). We employ a powerful pre-trained network ϵθ(zt, t, c)
(i.e., the Stable Diffusion 1.4 [42]), which is trained on a vast image-text dataset,
and leverage its image-text comprehension capability to guide the optimization
of Eq. (1). By incorporating zt into Eq. (3), we transform the searching of zt
into the optimization of the following loss function:

argmin
zt

L =∥ fθ(zt)− zt ∥2 . (4)

Eq. (4) can be minimized by the gradient descent techniques through zt :=
zt − η∇L, where η is the learning rate. The pre-trained diffusion model is fixed
throughout the optimization process, with only the latent feature zt being up-
dated. Our experiments demonstrate that our SPDInv method exhibits superior
performance compared to AIDI.

Furthermore, we observed that the loss function in Eq. (4) converges at vary-
ing speeds for different inversion steps t. In the early stages of the inversion
process, more rounds of optimization are required to meet the fixed-point con-
straint in Eq. (3). When t > T

2 , the loss quickly converges within a few rounds.
Therefore, in addition to setting a maximal number of rounds K for all inversion
steps, we introduce a threshold δ to control the termination of the optimization
process to improve the efficiency of inversion process.
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Fig. 4: (a) The pipeline of existing customized image generation methods. (b) The new
image generation pipeline by integrating our proposed SPDInv method to generate the
latent noise code, which can preserve the background of the input image.

3.3 Application to Customized Image Generation

Customized image generation [8, 48, 51] aims to generate new images by using
the text concept (denoted by "S*") extracted from the given image together
with other input text prompt. This can be achieved by fine-tuning parts of
a pre-trained diffusion model (e.g ., the entire U-Net [18, 43], cross-attention
modules [17,23], text embedding space [11,32]) or training an auxiliary module to
translate visual contents into the text embedding space [33,55,58,60]. Especially,
recent methods like ELITE [55], PhotoMaker [25], InstantID [53] can achieve
quick customized generation of animals, portraits and other items. However,
one of the limitations of customized image generation is that the generated
image usually exhibits poor background and layout preservation. One example
is depicted in Fig. 4(a). When we use the state-of-the-art customized image
generation method ELITE to change the color of the cat in the given image, a
cat with different pose and background can be returned.

To address the above mentioned issue of established customized image gen-
eration methods, we can easily integrate our proposed SPDInv into them to
augment their localized editing capabilities. As shown in Fig. 4, with the ex-
isting methods (e.g ., ELITE), we can first transform the given image into the
text embedding space aligned with text "S*" (i.e., step 1 in Fig. 4(b)). Then,
instead of performing synthesis with a random noise code, we uses SPDInv to
invert the image into a noise code (step 2 in Fig. 4(b)), which works as the key
to maintain the layout and background of the input image. Finally, with the
inverted noise code and the new text prompt such as "a white S*", we can use
pre-trained diffusion models (e.g ., stable diffusion v1.4 for ELITE) to generate
an image with only the color changed, as depicted in the upper right of Fig.
4(b). The new pipeline in Fig. 4(b) extends the capability of existing customized
image generation methods to perform high quality localized editing.
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4 Experiment

4.1 Experiment Setting

Dataset. We use two datasets to evaluate our proposed SPDInv method. The
first is the PIE-Bench [21] provided by DirectINV [21], which comprises 700
images with different editing types, including changing object, pose, color, ma-
terial, background, style, adding and deleting object. In addition, following the
setting of NTI [32], we randomly choose 100 images from the COCO2017 [26]
evaluation dataset without cherry-picking to build another test set. We construct
the target prompt for each image with the same editing types as PIE-Bench. We
call this test set as TDE-Bench (Text-Driven Editing Benchmark).

Evaluation Metrics. Multiple metrics are employed to evaluate the perfor-
mance of SPDInv from different aspects, including overall structure distance (as-
sessed by DINO score [5]), background preservation (assessed by PSNR, LPIPS,
MSE, SSIM), and prompt-image consistency (assessed by CLIP score [40]). As
in previous methods, DINO score and CLIP score are calculated based on the
entire image, while PSNR, LPIPS, MSE, and SSIM are calculated based on the
region outside the annotated editing mask.

Comparison Methods. In Sec. 4.2, we compare SPDInv with seven repre-
sentative and state-of-the-art inversion based editing methods, including DDIM
inversion [46], Null-text inversion (NTI) [32], Negative prompt inversion (NPI)
[31], Direct Inversion (DirectINV) [21], ProxEdit [13], Noise Map Guidance
(NMG) [7], and AIDI [35]. When the P2P editing engine is used, all these com-
parison methods can be evaluated. However, many of these methods are inap-
plicable to the MasaCtrl and PNP editing engine due to the lack of source code.
So we can only compare with DirectINV, NMG and AIDI under the MasaCtrl
engine, and compare with DirectINV and AIDI under the PNP engine.

In Sec. 4.3, we choose the state-of-the-art customized image generation meth-
ods ELITE [55] as the baselines to demonstrate the improvement on localized
editing brought by our SPDInv. We further compare our improved editing meth-
ods with two strong non-inversion based editing methods BlendDM [1] and In-
structP2P [3] to demonstrate the effectiveness of SPDInv.

Other Settings. In our experiments, we set the DDIM sampling step as 50,
the Classifer Free Guidance (CFG) as 7.5, and other parameters as their default
values. The base model utilized is Stable Diffusion v1.4. The experiments and
time consumption are tested on RTX3090.

4.2 Results on Text-Driven Image Editing

Tab. 1 presents the quantitative results of the competing inversion-based meth-
ods on PIE-Bench. We set the maximal optimization round K = 25 in SPDInv.
One can see that SPDInv shows significant improvement over previous methods.
When using the P2P editing engine, compared with the second-best methods
(DirectINV or ProxEdit), SPDInv achieves visible improvements in DINO score
(24% ↑), PSNR (5% ↑), LPIPS (21% ↓), MSE (13% ↓), SSIM (1.43 ↑), and CLIP
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Table 1: Performance comparison of different inversion methods under the Prompt-to-
Prompt (P2P) [14], Mutual self control (MasaCtrl) [4] and Plug-and-Play (PNP) [50]
editing engines on PIE-Bench. Best and second best metrics are highlighted in red and
blue colors, respectively.

Inversion Editing Engine DINO↓
×103 PSNR↑ LPIPS↓

×103
MSE↓
×104

SSIM↑
×102 CLIP↑ Inversion

times(s)

DDIM P2P 69.43 17.87 208.80 219.88 71.14 25.01 11.55
NTI P2P 13.44 27.03 60.67 35.86 84.11 24.75 137.54
NPI P2P 16.17 26.21 69.01 39.73 83.40 24.61 11.75
AIDI P2P 12.16 27.01 56.39 36.90 84.27 24.92 87.21
NMG P2P 23.50 25.83 81.58 107.95 82.31 24.05 16.71
DirectINV P2P 11.65 27.22 54.55 32.86 84.76 25.02 19.94
ProxEdit P2P 11.87 27.12 45.70 32.16 84.80 24.28 11.75

SPDInv P2P 8.81 28.60 36.01 24.54 86.23 25.26 27.04

DDIM MasaCtrl 28.38 22.17 106.62 86.97 79.67 23.96 11.55
NMG MasaCtrl 40.54 20.35 127.85 135.17 77.52 24.56 16.71
DirectINV MasaCtrl 24.70 22.64 87.94 81.09 81.33 24.38 19.94
AIDI MasaCtrl 55.93 19.25 177.57 178.13 75.58 24.01 87.21

SPDInv MasaCtrl 20.48 24.12 71.74 64.77 82.54 24.61 27.04

DDIM PNP 28.22 22.28 113.33 83.51 79.00 24.95 11.55
DirectINV PNP 24.29 22.43 106.09 80.52 79.62 25.02 19.94
AIDI PNP 25.36 23.11 98.10 78.19 80.57 25.03 87.21

SPDInv PNP 15.58 26.72 91.55 34.69 82.04 25.14 27.04

(0.24 ↑). The inversion time of SPDInv is longer than DDIM, NPI and ProxEdit,
similar to NMG and DirectINV, and much shorter than NTI and AIDI (which
also solves a fixed-point problem). With the MasaCtrl and PNP editing engines,
SPDInv still shows great improvement over previous methods on most metrics,
demonstrating the flexibility and effectiveness of SPDInv.

The visual comparison results are illustrated in Fig. 5 using the P2P engine.
We can see that DDIM inversion always exhibits poor content consistency to the
input target prompts. While the other competing methods show good editing
performance on image cake (row 1), NTI, NPI, AIDI and ProxEdit suffer from
artifacts in editing the image cat (row 2), detail inconsistency in editing the
images statue (row 3), and fail in editing lipstick (row 5) and lightning (row 6).
NMG and DirectInv fail to follow the editing instruction on image lipstick (row
4), lightning (row 5) and mountain (row 6). On the contrary, our SPDInv achieves
successful editing in all these cases. More visual comparisons using MasaCtrl and
PNP editing engines can be found in the supplementary material.

Due to the limited space, we put the experimental results on TDE-Bench in
the supplementary material. Similar conclusions can be made.

4.3 Results on Localized Editing with Customized Generation

As described in Sec. 3.3, SPDInv can be integrated into the existing customized
image editing methods such as ELITE [55] to endow them the localized edit-
ing capability. In this section, we integrate SPDInv into ELITE and name the



12 R. Li et al.

DDIM NTI NPI AIDI DirectInv ProxEdit SPDInvSource Image

A round cake with orange … a wooden plate → A square cake with orange … a wooden plate

A cat sitting next to a mirror → A silver cat sculpture sitting next to a mirror

A red lipstick is being splashed … → A green lipstick is being splashed …

A house with lightning and rain on it → A house with rain on it

A view of the mountains covered in snow → A view of the mountains covered in leaves

Gold buddha statue in the temple → Stone buddha statue in the temple

NMG

Fig. 5: Visual comparison of different editing methods with P2P on PIEBench.

resulted method as SPDInv-ELITE. We then verify the performance of SPDInv-
ELITE on localized and customized image editing by using the test dataset
provided by ELITE, which includes 20 subjects and the corresponding masks.

Tab. 2 presents the quantitative results. In addition to ELITE, we also pro-
vide the results of another two popular non-inversion editing methods BlendDM
[1] and InstructP2P [3]. The results of P2P, PNP and MasaCtrl coupled with
SPDInv are also listed. We see that the original ELITE performs worse than
BlendDM and InstructP2P because it has poor background preservation capa-
bility. However, upon integration with SPDInv, significant improvements are
achieved in all metrics, including DINO score (85% ↑), PSNR (62% ↑), LPIPS
(63% ↓), MSE (86% ↓), SSIM (21.28 ↑), and CLIP (3.46 ↑). Furthermore,
SPDInv-ELITE shows superior performance to SPDInv-PNP and SPDInv-MasaCtrl
and comparable performance to SPDInv-P2P across the evaluation metrics.

The visual comparisons are depicted in Fig. 6. We see that the original ELITE
can preserve the identity of object in the image, but suffers from the preservation
of background and layout. Non-inversion editing method BlendDM achieves good
background preservation but compromises the identities of flower (row 1) and
teddy bear (row 3). InstructP2P shows good editing results in some cases (rows
2 and 3) but tends to change the identity and background in other cases (row
1). In contrast, SPDInv-ELITE enables localized and customized editing with
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Source Image

Yellow flower

SPDInv-P2p SPDInv-MasaCtrlSPDInv-PNP SPDInv-ELITE

Red flower A red S*

brown cat A photo of a white cat

Teddy bear Pink teddy bear A pink S*

BlendDM InstructP2P ELITE

Dog

→

→

→

Dog on the snow S* on the snow

Dog on the land→ Dog on the snow S* on the snow

Fig. 6: Visual comparisons of localized image editing by different methods.

Table 2: Evaluation on localized and customized image editing.

Edit Engine DINO×103 ↓ PSNR↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ CLIP↑

BlendDM 59.21 15.51 244.07 306.75 67.45 20.21
InstructP2P 155.49 18.19 161.20 362.01 78.05 20.06
ELITE 148.37 14.83 201.94 359.58 67.62 15.72

SPDInv-P2P 14.77 26.59 56.30 42.58 91.20 18.63
SPDInv-MasaCtrl 31.78 22.04 91.59 71.79 87.34 16.04
SPDInv-PNP 31.33 23.23 83.63 69.79 86.90 18.83

SPDInv-ELITE 21.23 24.14 74.36 48.73 88.90 19.18

improved identity and background preservation. Additionally, SPDInv-ELITE
outperforms MasaCtrl in identity and background preservation, and exhibits
competitive visual results with P2P and PNP but superior performance in back-
ground preservation (row 2).

4.4 Ablation Study on Hyper-parameter Selection

There are four hyper-parameters in our SPDInv algorithm, i.e., δ, η,K, T . Via
extensive experiments, we empirically set them to δ = 5e−6, η = 0.001,K =
25, T = 50. Based on these default settings, in this section we conduct ab-
lation experiments to investigate their effects on the final results by altering
only one parameter while keeping the others fixed. Specifically, we select K ∈
{5, 25, 50}, δ ∈ {5e−4, 5e−5, 5e−6, 5e−7}, η ∈ {0.005, 0.001, 0.01, 0.1} and T ∈
{10, 50, 75, 100}. The first subset of PIE-Bench is employed in the ablation study.

The results are shown in Tab. 3. First, it is not a surprise that a higher value
of K leads to improvements in PSNR, LPIPS, MSE, SSIM and DINO metrics
because more iterations are used to solve the fixed-point problem. Nonetheless,
there is a slight decline in the CLIP metric, and it requires more computational
cost. Therefore, we choose K = 25 as the default value. Second, for the threshold
δ, SPDInv achieves the best performance at δ = 5e−6. Further decrease of δ
yields marginal improvements but results in increased inversion time. Third, for
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Table 3: Ablation study on the hyper-parameters of SPDInv with PIE-Bench.

Hyper parameter DINO×103 ↓ PSNR↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ CLIP↑

K = 5 8.52 31.49 22.31 10.42 90.21 26.70
K = 25 8.43 31.61 21.70 10.12 90.28 26.67
K = 50 7.41 32.12 20.55 9.23 90.56 26.32

δ = 5e−5 9.00 29.61 29.24 16.02 89.83 26.85
δ = 5e−6 8.43 31.61 21.70 10.12 90.28 26.67
δ = 5e−7 8.59 31.65 22.30 10.23 90.22 26.67

η = 0.005 10.39 31.08 23.60 11.33 90.00 26.87
η = 0.001 8.43 31.55 22.13 10.28 90.10 26.67
η = 0.01 12.65 30.52 30.20 14.63 89.42 26.72
η = 0.1 48.91 22.82 130.98 149.87 80.89 23.26

T = 10 7.20 31.78 20.65 10.02 90.40 25.88
T = 50 8.43 31.61 21.70 10.12 90.28 26.67
T = 75 11.26 31.27 22.55 10.74 90.11 27.05

Default 8.43 31.61 21.70 10.12 90.28 26.67

the learning rate η, SPDInv performs the best when η = 0.001. Though slight
enhancements in CLIP metrics can be achieved with η = 0.005 or η = 0.01, this
comes at the price of deterioration of other metrics. Thus η = 0.001 is selected as
our default setting. Finally, for the DDIM sampling steps T , we select T = 50 as
the default value due to its balanced performance across all metrics. In addition,
T = 50 is also the default setting in all the baselines mentioned in Sec. 4.2.

5 Conclusion

We proposed SPDInv, a novel inversion method designed to enhance the editabil-
ity of text-driven image editing. To make the inverted noise code as independent
as possible to the source prompt so that the image can be better edited with the
target prompt, we incorporated a fixed-point constraint to the the inversion pro-
cess, and showed that this fixed-point constraint could be effectively transformed
into a loss function. Consequently, we utilized a pre-trained diffusion model to
minimize this loss, and successfully disentangled the inverted noise code with
source prompt, significantly improving the editing fidelity and flexibility. Addi-
tionally, by integrating SPDInv into customized image generation methods, we
enhanced their localized editing capabilities. Experimental results demonstrated
the superior performance of SPDInv on benchmark datasets.

SPDInv has some limitations. First, it relies on the existing editing engines
(i.e., P2P, PND, MasaCtrl) to edit images and thus inherits the limitations of
them, such as low successful rate in adding and drop contents. Second, while
SPDInv yields promising results in editing animals, foods and routine items, it
still faces difficulties in editing portraits. Finally, SPDInv indeed narrows the
gap between the inverted noise code and the ideal noise code, but it does not
completely eliminate it. In the future, we will on one hand further improve the
inversion process of SPDInv, and on the other hand design new editing pipelines
to improve the stability and robustness of image editing results.
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