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Abstract. Concept Bottleneck Models (CBMs) ground image classifica-
tion on human-understandable concepts to allow for interpretable model
decisions as well as human interventions, in which expert users can mod-
ify misaligned concept choices to interpretably influence the decision of
the model. However, existing approaches often require numerous human
interventions per image to achieve strong performances, posing practical
challenges in scenarios where obtaining human feedback is expensive. In
this paper, we find that this is driven by an independent treatment of con-
cepts during intervention, wherein a change of one concept does not influ-
ence the use of other ones. To address this issue, we introduce a trainable
concept intervention realignment module, which leverages concept rela-
tions to realign concept assignments post-intervention. Across standard
benchmarks, we find that concept realignment significantly improves in-
tervention efficacy and reduces the number of interventions needed to
reach a target classification performance or concept prediction accuracy.
Moreover, it easily integrates into existing concept-based architectures
without requiring changes to the models themselves. This reduced cost
of human-model collaboration is crucial to enhance the feasibility of
CBMs in resource-constrained environments. Our code is available at
https://github.com/ExplainableML/concept_realignment.
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1 Introduction

Despite tremendous progress of Deep Learning (DL) techniques in research and
applications, their adoption to high-stakes scenarios has been limited [9, 27,29].
This is in large part due to unpredictable failure cases of deep models when
transferring to unseen data or complex & ambiguous cases. The black-box na-
ture of typical DL models further exacerbates this problem, as it makes under-
standing and debugging the decision-making process of these models difficult.
Consequently, it becomes hard for human practitioners to trustworthily operate
these models in scenarios with significant legal [5,21] or ethical [4,17] constraints.
To foster trust, transparency in the decision-making process, and the ability to
operate alongside expert feedback are required. In order to incorporate these
desiderata into the design space of deep models, Koh et al. [9] introduced Con-
cept Bottleneck Models (CBMs). These models break the decision process into
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Fig. 1: Concept-based classification models allow for human intervention, where a hu-
man expert can correct specifically assigned concepts. However, to achieve satisfactory
performance, concept-based classification models often require a large number of inter-
ventions, where each additional intervention requires costly human interaction.

the extraction of human-interpretable concepts (such as "white wings" and "or-
ange beak" when classifying a seagull) from a given input, and a subsequent
concept-grounded classifier operating on top of these concept predictions. While
this allows users to peek into the model decision process - maybe even more
importantly, it also uniquely allows for human-guided intervention and feedback
integration at test time. This is done through concept interventions, wherein
an expert user analyses predicted concepts and optionally replaces those they
deem incorrect with ground-truth information (Fig. 1). Such interventions can
significantly raise the performance and reliability of these models [9, 20, 27, 29],
while offering a natural interface for human-AI collaboration. However, human
annotation is expensive, especially when resources and access to expert knowl-
edge are limited. Ideally, such concept models should operate well with minimal
human input. This becomes particularly prevalent as CBMs (as well as follow-up
extensions such as Concept Embedding Models (CEMs, [27])) often require nu-
merous interventions in order to significantly boost model performance [9,27,29],
as the set of concepts these models operate on can often be rather extensive. For
example, on the widely used CUB benchmark (bird classification, [22]), it takes
13 interventions per image on overage to raise the accuracy of a baseline CBM
model from around 68% to 90% (Fig. 4). In this work, we posit that a large part
of this limited intervention efficacy can be traced back to the independent na-
ture of how concept interventions are treated. This means that correcting for one
concept (or a set of concepts) does not affect which other concepts are predicted
for the same image. However, the occurrence of concepts in real life is often
correlated, and informing the model about one concept should consequently in-
fluence the use of related ones. Not doing so means that we do not leverage
human feedback to its full extent - intervening on one specific concept naturally
gives additional context about the potential occurrence of other concepts, which
should be taken into account in the final classification process. In particular,
we study the extent of this crucial aspect when operating with concept-based
models. Our study highlights how the use of a simple concept intervention
realignment module, which learns from statistical concept relations, can effec-
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tively and automatically realign concept values after an intervention (or multi-
ple) have been performed. Our experiments reveal how our concept realignment
seamlessly integrates into and improves existing CBM approaches (e.g. default
CBMs [9], CEMs [27] or intervention-aware CEMs [29]), and can be deployed
both jointly during the initial training of the concept model, and as a post-hoc
trained realignment mechanism. Across three standard, real-world benchmarks
(CUB [22], CelebA [11] and AwA2 [23]), we showcase consistent, in parts very
significant improvements in intervention efficacy. Across concept prediction and
overall classification accuracy, performance increases more rapidly with inter-
ventions as compared to baselines without realignment (reducing the number of
interventions needed to reach a target performance by over 70%). Combined with
its versatile usage and minimal additional resource requirements, we believe our
insights into concept intervention realignment to be of high practical relevance,
helping to drive down the cost of human-model collaboration and facilitate the
corresponding practical deployment of concept-based models.

2 Related Works

Concept Bottleneck Models (CBMs) have been extensively studied since
their introduction by [9]. [27] proposed Concept Embedding Models as a gen-
eralization, utilizing embedding vectors for concepts rather than scalar prob-
abilities, thus enhancing task performance while maintaining interpretability.
Recent efforts have explored methods to enhance CBMs without requiring ex-
plicit concept supervision during training, leveraging pre-trained vision back-
bones and language guidance [15, 25, 26]. [2] introduced Self-explaining Neural
Networks (SENNs) for unsupervised concept learning, while [18] proposed CBM-
AUC combining SENNs with CBMs. Probabilistic CBMs [8] were proposed to
model uncertainty in concepts and final predictions. [12, 14] addressed concept
leakage, while [6,13] aimed to alleviate it. Our work complements these efforts by
enabling CBMs to update predictions of all concepts after human intervention.
Interventions on CBMs. [9] showed that intervening on random concepts en-
hances classification in CBMs. [3] and [19] proposed uncertainty-based strategies
for interventions. [20] extensively studied concept selection strategies, focusing on
task performance and execution cost. [29] introduced interventions during train-
ing to enhance model receptiveness to test-time interventions. We complement
existing methods by updating predictions of all concepts following expert inter-
ventions. Concurrently, [24] proposed Energy-based CBMs to automate concept
prediction updates. In comparison, our method benefits from higher simplicity,
improved performance, and seamless integration with existing CBMs.

3 Methods

3.1 Background and Preliminaries

Concept Bottleneck Models. A Concept-Bottleneck Model (CBM) can be
viewed as a composition of two models, h = f(g(x)) : X → Y, with concept en-
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coder g : X → C, and concept-based classification head f : C → Y. X ,Y, where
C denote input, class label, and concept sets, respectively. CBMs get their name
from an inherently bifurcated optimization process: While the concept encoder
g(x) is trained to predict concepts ĉ ∈ Rk from the concept set with ∥C∥ = k con-
cepts given an image x ∈ Rd, the classification head f(·) is optimized to predict
final target labels y ∈ Y ∈ RM solely based on concept assignments produces by
g. CBM training data is thus given as D := {x(i), c(i), y(i)}Ni=1, where x(i), c(i), y(i)

are the inputs, ground-truth concepts, and ground-truth labels, respectively.
Following existing works [9, 27–29], the concept encoder g is trained using a
(weighted) binary cross-entropy loss (Lconcept(ĉ, c)), while the classification head
f utilizes a cross-entropy classification objective (Ltask(ŷ, y) = LCE(ŷ, y)). Over-
all, there are three established schemes [9] for training CBMs: (1) Independent
training: the concept encoder and classification head are trained entirely inde-
pendently, with ground-truth concepts c provided as inputs to the classification
head during training. (2) Sequential training: the concept encoder g is trained
first, followed by the classification head f trained using the concepts predicted
by g. (3) Joint training: both the concept encoder g and the classification head
f are trained together using a combination of Lconcept and Ltask, respectively. In
all cases, this means that the classification head leverages only information on
concept (co-)occurences to predict final class labels, making it easy to ground
the final classification decision on interpretable concept assignments.

Concept Embedding Models. The flow of information in a CBM is bottle-
necked by the set of user-defined concepts. This can potentially limit the pro-
cessing capacity of the model, especially when the concepts do not contain all
the information that is needed to perform the downstream task. To overcome
this issue, [27] proposed Concept Embedding Models (CEMs) as a generalization
of CBMs wherein every concept i is represented by a pair of high-dimensional
vectors, ĉ+i and ĉ−i (as opposed to scalar concepts in CBMs). These embeddings
are generated by passing x through concept-specific networks ϕ+

i and ϕ−
i , and

represent the concept being present and absent, respectively. The probability p̂i
of the concept i being in x is then simply computed by passing ĉ+i and ĉ−i to
a scoring function s as p̂i = s([ĉ+i , ĉ

−
i ]). Similarly, both embeddings can also

be combined as ĉi = p̂iĉ+i + (1 − p̂i)ĉ−i to parameterize a joint embedding for
concept i. The final concept embedding which represents the full image x and is
passed to the classification head is then given as ĉ := [ĉ1, ĉ2, ..., ĉk]. Notice the
higher dimensionality, as we concatenate k concept-specific embeddings.

Concept Interventions. Both CBMs and CEMs allow users to intervene on
concepts at test time. Concretely, starting from the concept predictions of the
model, ĉ, the user sequentially intervenes on T ≤ k concepts. As a human expert
has to both investigate concept predictions and compare against input data,
interventions are difficult to parallelize, effectively equating concept intervention
into a trajectory of T concept intervention steps [20] (see also Fig. 1 for intuition).
Let St represent the set of concepts that have been intervened on up to time
t ≤ T . The corresponding concept embedding at time t is then given as c̃t =
{cSt

, ĉ\St
}, where cSt

denotes the ground truth values of the intervened concepts,
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and ĉ\St
are the model’s predictions of non-intervened concepts. Intervening on

concepts in this way updates the final prediction of the model from ŷ to ỹ = f(c̃).
In the case of a CEM, intervening on concept i to update its value from p̂i to pi
changes its embedding from ĉi to c̃i = piĉ+i +(1−pi)ĉ−i . After each intervention
t, we use a concept intervention policy π(c̃t) to decide which concept to intervene
on next. While π can simply suggest random concepts for intervention, it is often
much better to leverage heuristics that rank concepts in the order of importance
(by some measure). A commonly deployed policy is UCP [10,20], which uses the
uncertainty of concepts; selecting concepts with the highest uncertainty (concept
predictions closest to 0.5).
Intervention-aware CEMs. While test-time interventions typically improve
performance, this is not always guaranteed. In fact, recent works have shown
that concept interventions can in some cases even hurt the model’s perfor-
mance [20, 28]. [29] noted that this stems from the lack of training incentive
for the model to perform well under intervention. To address this, they proposed
Intervention-aware CEMs (IntCEMs), which introduce interventions during the
training process to improve the model’s receptiveness to interventions at test
time, outperforming all existing methods in the intervention setting. In particu-
lar, they train a CEM to minimize the following objective:

LIntCEM(x, c, y, T ) = Lpred(x, c, y, ĉ, c̃t) + λconcLconc(ĉ, c) + λrollLroll(x, c, y, T )
(1)

Lpred(x, c, y, c̃0, κt) =
CE(f(ĉ, y) + γTCE(f(c̃t), y)

1 + γT

Lpred is the prediction loss for y, Lconc the concept prediction loss, Lroll the
rollout loss incentivizing the model to predict the most informative concept for
intervention. λconc and λroll are user-defined weights corresponding to Lconc and
Lpred respectively, while T denotes the intervention trajectory. Lpred penalizes
the model for incorrect predictions both before and after the intervention, and
γ ≥ 1 is a scaling term that prioritizes correct predictions after intervention.

3.2 Concept Intervention Realignment

Previous works incrementally improve on predecessor methods by better param-
eterizing concept representations or introducing an intervention-aware training
objective. However, all these works still treat concept interventions indepen-
dently. This means that an intervention on one specific concept has no effect
on the assignment of other concepts. This disregards relationships between con-
cepts, which in practice do not occur independently (e.g., "white wing" and
"white belly" are more likely to co-occur). As a result, the existing intervention
process does not utilize human feedback optimally, as information about the
verified existence of one concept should naturally guide the prediction of other
concepts. While this aspect is naturally important to ensure that an accurate
concept representation is passed to the label classifier, it is also crucial when uti-
lizing concept-selection criteria such as UCP because intervening on one concept
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Fig. 2: Illustration of the concept intervention realignment module. Given the
concept encoding g(x), we intervene on the concept i selected by a concept selection
policy π. This concept is replaced with a ground-truth (GT) value (∈ {0, 1} depending
on whether it is present in a given image or not) to obtain c̃t (representing intervention
step t ∈ {1, ..., T}). This intervened concept representation is then passed into the
concept realignment module (leveraging e.g. an MLP or LSTM reweighting mode),
which outputs the realigned u(c̃t). To ensure that the ground-truth values provided by
the user are not overwritten during realignment, u(c̃t) retains ground-truth corrections.
The final concept vector is then based into a concept-based classifier f .

should consequently reduce the chances of intervening on other closely related,
likely co-occurring concepts, while also raising the probability that uncertain
and unrelated concepts get intervened on.

Intervention Realignment Module. To address this, we propose a concept
intervention realignment module (CIRM), which consists of two interde-
pendent components: (a) a concept realignment model (CRM), u : C → C.
After a user intervenes on a subset of concepts S, the remaining concepts (\S)
are updated by a realigner network; and (b) an intervention policy π. The
concepts predicted by the realignment model are fed to the policy to suggest
which concept to intervene on next. Both components are interdependent, and
together form the overall concept intervention realignment module, as also vi-
sualized in Figure 2. The training of the full CIRM comprising both selection
policy and concept realignment model aims to simulate the complete interven-
tion process. It thus starts from the concept predictions of the base model, ĉ,
where we sequentially intervene on concepts for T ≤ k time steps by following
a policy of choice, π (in our case UCP by default, which we experimentally find
to outperform random intervention significantly; See supp. §B).

As in §3.1, let St denote the set of intervened concepts and c̃t = {cSt
, ĉ\St

}
denote the concepts at time t, respectively. At every intervention time step,
we feed c̃t to the realignment model to obtain updated concept predictions as
κt = u(c̃t), which in turn are utilized by π(κt) to produce intervention recom-
mendations for t+1. Finally, we train u with the ground-truth labels as targets
using the loss L(u) = (

∑T
t=0 CE(u(c̃t), c))/T .

Using this simple objective, the concept realignment model u learns to take
concept representations and leverage intervened concepts St to predict an up-
dated concept distribution, i.e., p(i; ĉ,St). Note that this training objective uti-
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lizes standard CBM training information (i.e., concept annotations, [9, 20, 27–
29]); so no additional information beyond the standard CBM pipeline is required.

The overall training pipeline can still follow the standard CBM training
paradigms (see previous section), with the intervention realignment module be-
ing trained independently on top of a pre-trained frozen CBM/CEM as a posthoc
realignment method, or jointly with the CBM/CEM to introduce an explicit re-
alignment objective during training. For posthoc realignment, we first train the
backbone f and the classification head g. Subsequently, we freeze those compo-
nents and train the realignment model u.

Realignment Models. As shown in Fig. 2, we parameterize our concept re-
alignment model with a neural network v. To ensure that u does not overwrite
the ground-truth concepts provided by the user, we also keep track of the al-
ready intervened concepts St. Using this information, we replace the output of
the realigned concept embedding with the user-provided values for concepts in
St. Hence, the final output of u for the ith concept is given as

u(c̃t,St)
(i) = v(c̃t)

(i) if i /∈ St else c̃
(i)
t (2)

Depending on the assumptions made on the realignment process, v is either a
simple MLP or a recurrent model (such as an LSTM [7]). The former parametrizes
our default concept intervention realignment model, which only passes the set
of intervened and un-intervened concepts at intervention step t to the concept
realignment model consisting of a simple MLP. The set of concepts fed into the
MLP may either be the original concept embedding c̃0, where all intervened con-
cepts up to and including step t have been replaced with ground-truth values,
or the previously realigned κt−1 with similarly updated intervened concepts (c.f.
Fig. 2, "GT"). Note that in either case, κt−1 informs the selection process of
the subsequent concept to intervene on. After all interventions, the final concept
embedding fed into the classifier is always u(c̃T ). Practically, we found using
c̃t to work slightly better than κt−1. Both cases above however only pass the
final set of concepts at time t to the realignment model. Given the sequential
nature of interventions, however, it may also be beneficial to account for the
entire intervention history to inform future concept realignment. As a result, we
also introduce a recurrent realignment variant, urec, which employs an LSTM
model to retain the entire history of interventions until time t. An algorithmic
summary is provided in supplementary §A.

End-to-End Realignment. In order to jointly train the CIR module and the
base model f◦g, we will perform interventions while also training the base model.
This naturally combines with the IntCEM framework [29], which incorporates
train-time interventions, and as such is our default choice for joint model and
realignment module training.

Concretely, we modify IntCEMs such that after t interventions, concepts c̃t
are corrected post-intervention to obtain κt = u(c̃t), which is then fed to the
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classifier f . The new training objective, then, is:

LIntCEM-ReA(x, c, y, T ) = Lpred(x, c, y, c̃0, κt)+λconcLconc-ReA(ĉ, c, κ0, κt)+λrollLroll
(3)

Lconc-ReA(ĉ, c, κ0, κt) =
1

2

(
Lconc(ĉ, c) +

CE(κ0, c) + γTCE(κT , c)

1 + γT

)
(4)

where Lconc-ReA is the modified concept prediction loss which trains both the
backbone g of the base model (first term) as well as the CRM (second term).
We use the same γ as in Lpred to prioritize correct predictions by the CRM after
intervention, and the same λconc and λroll as in Eq. 1.

4 Experiments

4.1 Preliminaries

Datasets & Implementation. We perform experiments on three datasets:
(1) Caltech-UCSD Birds-200-2011 (CUB) [22] containing n = 11, 788 bird
images over 200 classes. Following the original CBM paper [9], we use 112 con-
cepts grouped into 28 concept groups with the same splits. (2) Large-scale
CelebFaces Attributes (CelebA) [11] contains over 200,000 celebrity im-
ages annotated with 40 attribute labels, including noisy characteristics such
as gender and age. Following [27, 29], we use only the most balanced 8 con-
cepts in our experiments, resulting in 28 = 256 classes. (3) Animals with
Attributes 2 (AwA2) [23] is a collection of n = 37, 322 animal images over
50 classes annotated with 85 attributes such as species, color, and behavior.
We perform experiments on CEMs, IntCEMs, and three types of CBMs (se-
quential, independent, and joint). For all models and datasets, we follow the
hyperparameters used in [29]. During CIRM training, we sequentially intervene
on concepts T = k times. By default, we use UCP both during training and
inference, and if not stated otherwise, use a multi-layered perceptron (MLP) for
concept realignment. We use the predictions of the base CBM (c̃t) as its input
for un-intervened concept representations. We perform a small, standard hyper-
parameter using Optuna [1] with 50 trials to search over the number of hidden
layers ∈ {1, 2, 3} and units ∈ {k, 2k, k/2}, the learning rate ∈ [10−5, 10−1] and
weight decay ∈ [10−6, 5 × 10−5], and use the same batch size as used to train
the base model. We employ early stopping and learning rate decay on the vali-
dation loss. For joint training, we instantiate the realigner MLP 2 hidden layers
containing k neurons each. Experiments are conducted using PyTorch [16].

4.2 Concept Realignment Improves Intervention Efficacy

To probe the efficacy of our concept intervention realignment module, we eval-
uate both the change in concept prediction loss as well as overall classification
accuracy as a function of intervened concept counts. These are visualized in Fig. 3
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Fig. 3: Concept prediction loss vs. the number of intervened concepts with and without
concept realignment. Concept realignment consistently improves concept predictions.
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Fig. 4: Classification accuracy vs. the number of intervened concepts with and without
concept realignment. Realignment consistently improves classification accuracy.

and Fig. 4 for sequentially trained CBMs (see §3.1), respectively, for all bench-
mark test sets - CUB, CelebA and AwA2. Note that for AwA2, we only show
the first 50 interventions for visual clarity, as performance beyond that heavily
plateaus since sufficient concepts have been intervened on to perfectly solve the
test data. Table 1 numerically summarizes these results via AUC scores and pro-
vides additional scores for independently trained CBMs, jointly trained CBMs
as well as Concept Embedding Models (CEMs). Runs in Tab. 1 & Figs. 3, 4
all utilize the stronger UCP selection policy as opposed to the weaker random
selection policy (§B) to measure intervention efficacy at the highest level, and
train the concept realignment module on top of already trained concept models.

Improved concept attribution through intervention. Across all datasets,
we can observe a consistent, in parts vast reduction in concept prediction loss,
which measures the correct assignment of concepts for each input (using the
concept loss described in §3.1). For example on CUB, a tenfold reduction of
the original unintervened concept loss (∼ 0.6 to ∼ 0.06) can be achieved with
half the number of interventions (11 with concept realignment, 23 without).
This effect becomes even more prevalent on AwA2, where a tenfold reduction
(∼ 0.17 →∼ 0.017) is achieved after around 16 interventions with realignment
versus more than 60 without; marking a more than 70% reduction in intervention
efforts. This is also reflected in Tab. 1, where concept loss AUC drops by in parts
more than half for CUB and from 4.26 to 1.13 on AwA2. We find this significant
improvement in concept attribution persists across all CBMs and CEMs, as well
as random seed initializations (see Supp. Tab. 2 and 3)



10 Singhi et al., 2024

Table 1: Area Under Curve (AUC) of Concept Prediction Loss and Classification Accu-
racy with/without CIRM (non-averaged sum). We use the same backbone throughout.
CIRM improves performance across all models and datasets. Intervention curves share
long saturation plateaus for high intervention counts. Accuracy AUC scores are thus
saturated, and best combined with performance graphs in Figs. 3, 4.

Base Model Realigned Concept Loss AUC ↓ Accuracy AUC ↑

CUB CelebA AwA2 CUB CelebA AwA2

Sequential CBM × 6.71 1.59 4.26 2460.8 280.7 8364.0
✓ 3.15 1.52 1.13 2510.9 284.3 8397.6

Independent CBM × 6.71 1.59 4.26 2653.4 280.2 8403.4
✓ 3.15 1.52 1.13 2678.3 282.1 8437.0

Joint CBM × 5.93 3.06 4.77 2580.3 273.1 8276.4
✓ 3.67 1.76 1.48 2609.0 273.9 8327.4

CEM × 5.99 1.61 4.90 2521.4 396.3 8429.3
✓ 3.20 1.46 1.69 2558.4 400.1 8433.9

We do find that for CelebA with a much more restrictive concept bottle-
neck than e.g. CUB and AwA2, due to significantly fewer (note that in CUB
concepts are already grouped, see §4.1) and noisier concepts, that the overall
gain in concept accuracy is smaller. This is also reflected in the notably weaker
performance of the base CBM (c.f. Fig. 4, middle - less than 38% accuracy when
intervening on all concepts), which strongly points towards overall insufficient
concept information provided in the CelebA training data. Overall, however, we
find very clear evidence that the concept intervention realignment module allows
practitioners to leverage human intervention feedback to a much larger extent
to attribute the correct concepts to respective inputs. This means that the sub-
sequent classifier will operate on a much more accurate set of concepts, thereby
improving the overall interpretability of the final classification decision.

Improved overall classification through intervention. On top of that, we
also find that the significant gain in intervention efficacy on a concept attribution
level also translates to subsequent gains in intervention efficacy for the overall
classification performance (Fig. 4). For example on CUB, the final classification
accuracy after intervening on all concepts is 93.9%, which is achieved already
after ∼ 16 intervention steps. A comparable performance without concept inter-
vention realignment requires nearly complete, ∼ 24 intervention steps, marking
a 50% increase. The same can be seen on CelebA and AwA2 as well, where
the upper-bound performance can be achieved with much fewer interventions
(particularly without the need to intervene on all concepts). Even intermediate
performance targets are achieved much earlier; a classification accuracy target
of e.g. 98% on AwA2 requires only 12 concept interventions with realignment,
while the non-aligned baseline needs 19 interventions on average. We find these
results to be also reflected numerically in Tab 1, where accuracy AUC increases
from e.g. 2460.8 to 2510.9 on CUB. We do point towards high numerical satu-
ration given the larger performance plateaus at higher intervention counts, and
high starting accuracies (e.g. ∼ 90% on AwA2). Numerical results are thus best
considered alongside the intervention trajectories in Figs. 3 and 4.
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Fig. 5: Concept Intervention Realignment in intervention-aware CEMs. (a) Concept
prediction loss and (b) classification accuracy with jointly and post-hoc trained CIRMs.
In both cases, significant benefits can be seen, especially for correct concept attribution
after intervention - both for jointly and posthoc trained realignment modules.

Together, our experiments provide strong evidence that concept intervention
realignment is crucial to best leverage human feedback in concept-based decision
systems; allowing to significantly reduce intervention budgets by in parts over
70% to achieve a desired target performance. These gains can also be achieved
after concept models have been trained, allowing for versatile applicability.

4.3 Intervention Realignment for Intervention-aware CEMs

In this section, we investigate training the CIRM during the training process
of an already intervention-regularized concept model; namely the recently pro-
posed, state-of-the-art intervention-aware CEM [29] (see also §3.1). Following
the objective described in Eq. 3, we operate and train the concept intervention
module in conjunction with the intervention objective proposed by [29].

Our results are shown in Fig. 5. First, we find that explicit concept inter-
vention realignment can significantly improve correct concept attribution, even
in intervention-aware training setups (c.f. Fig. 5a). While not as significant as
improvements over standard CBM models, for specific target concept prediction
losses (such as a fivefold reduction from 0.5 to 0.1), half the number of interven-
tion steps are needed (11 versus 20). The improved concept attribution is also re-
flected in higher intervention accuracies as seen in Fig. 5b, albeit the overall (still
notable!) improvement is less reflective of the significant gains on a concept level
(additional results can be found in supp. §C). Overall, however, our experiments
highlight that even when applied to state-of-the-art approaches that specifically
simulate the intervention process during training, improved intervention efficacy
can be found. Importantly, the consistently significant improvements on a con-
cept attribution level mean that classification decisions are much better grounded
on correct concept attributions, which is crucial for interpretability [9,27] of clas-
sification results. Finally, we find that concept intervention realignment can be
applied both as a regularization mechanism during training, as well as adapted
entirely posthoc, while still offering consistent benefits. This supports the high
versatility of CIRMs as a general-purpose tool to increase intervention efficacy.
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Fig. 6: (a) Concept prediction loss and (b) classification accuracy for various realigner
architectures alongside UCP policy. Using an MLP with concept predictions of the base
model works better than compounding refinements and accounting for intervention
trajectories using LSTMs.

4.4 Realignment Module Ablations

Realignment Model Architectures. In this section, we study the effect of
various design choices for the realignment module along two dimensions: (1)
Recurrent vs. Feedforward Networks: Since we intervene on concepts se-
quentially, it is possible that the realignment module can benefit from the overall
order and history of interventions to make more accurate concept predictions.
To do this, we instantiate the concept realignment network using an LSTM [7].
We compare this against our default MLP. (2) Previous Output vs. Original
Concepts: By default, the realignment module takes as input a combination of
ground-truth concepts provided by the user and values predicted by the base
model at t = 0 for the concepts that have not been intervened on (see also
§3.2). Due to the sequential nature of interventions, one may also directly feed
the output of the realignment module at time t − 1 as input to it at time t in
order to compound the refinements over multiple time steps. Combining both
axes results in four recombinations, which we compare in Fig. 6. As can be seen,
there is limited gain when accounting for the complete intervention history using
an LSTM realigner network. Similarly, we find that applying the MLP primarily
for concept selection alongside UCP and as final input to the classification head
works better than compounding refinements over intervention steps.

Intervention Policy Transfer. In this section, we study the importance of
aligning intervention policies used during training with those deployed at test
time. In particular, we operate on the base setup, which deploys the CBM and the
concept intervention realignment module using only the much weaker random
intervention policy at test time. However, we change the policy used to train the
concept intervention realignment module. Our results are visualized in Fig. 7. As
can be seen, while a realignment module trained with UCP can still be effective
when deployed with a random intervention policy, it is notably outperformed by
the weaker random policy at test-time when the realignment module has been
trained on the same random policy as well. This means that the realignment
module adapts to the selection policy used during training. Thus to get the
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Fig. 7: Concept prediction loss and classification accuracy under random interventions
for realignment modules trained with random and UCP policy, respectively. Results
indicate that alignment of policy used during training and deployment is important.

most benefits out of concept intervention realignment, selection policies should
align during training and deployment.
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Fig. 8: Classification accuracy vs
concept interv. counts, showing
our updated selection policies im-
proving over the static one.

Alignment b/w Realignment Module
Components. Finally, we study how impor-
tant the alignment between the concept re-
alignment model and intervention policy (i.e.,
UCP) is to form the overall concept interven-
tion realigment module. To accomplish this,
we employ two module variations: (a) an origi-
nal policy denoted as π(ĉ0), which only applies
the UCP criterion to the original concept pre-
dictions generated by the base model without
any concept realignment (i.e., the policy does
not change over time), and (b) our default
setup (updated policy), which informs the in-
tervention policy using realigned concept val-
ues (π(κt)). Note that in both cases, the clas-
sification head still receives realigned concept embeddings, as we only want to
study the importance of alignment between the concept realignment model and
the intervention policy. Results in Fig. 8 clearly reveal that while simple re-
alignment on its own can already help improve intervention efficacy, much larger
efficacy gains are unlocked when both policy and the realignment model are
utilized in conjunction.

A Closer Look at Concept Realignment. To understand the impact of the
realignment process qualitatively, we also provide examples in Fig. 9. In this
figure, we showcase the impact of interventions on the top 10 concepts with
the highest prediction errors, and the specific number of interventions required
to predict the correct label. For both examples, we find that intervention on a
single concept is insufficient to flip incorrect class predictions. However, as we
intervene on more concepts, we can clearly see that concept realignment jointly
allows concept prediction error - even on the initially worst predicted concepts -
to be significantly reduced, while also reaching correct image classification with
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Fig. 9: Examples for the improved intervention efficiency of CIRM. We show the change
in concept prediction errors of the ten worst predicted concepts, as a function of con-
cept intervention steps t: concept realignment allows concept error even for strongly
mispredicted concepts to be significantly reduced with interventions, achieving correct
label classification after much fewer interventions compared to non-realigned baselines.

in parts less than half the number of interventions (for Crested Auklet). These
results conceptually support the quantitative benefits of concept realignment
seen in previous benchmark experiments.

5 Conclusion

In this work, we identify the independent treatment of concepts during test-time
interventions in CBMs as a cause for reduced intervention efficacy. To remedy
this problem, we propose a concept intervention realignment module - a simple
and lightweight technique to automatically update concept assignments after
human intervention on one or multiple concepts. Our experiments demonstrate
significant gains in concept attribution as well as overall classification accuracy
of concept-based models under intervention. We show that our approach is ver-
satile and can be applied to a wide range of concept-based models, intervention
policies, and training schemes. We believe that the reduction in required human
interventions to reach performance targets facilitates the practical deployment
of concept-based models even in resource-constrained environments.
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