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This supplementary material consists of five parts, including technical details
of the experimental setup (Sec. A), the derivation of Joint Score Distillation
(JSD) (Sec. B), additional ablation analysis (Sec. C), additional experimental
results (Sec. D) and the Janus prompt list (Sec. E).

A Experimental Setup

A.1 Details of JointDreamer Pipeline.

In our main text, we adopt MVDream MMVS as the energy function for the over-
all JointDreamer pipeline. Since MVDream fine-tunes on SD-V2.1, we retain SD-
V2.1 as a diffusion model. The whole training procedure includes 6k iterations,
taking around 1.5 h with batch size 4 on 1 Nvidia Tesla A800 GPU. Specifi-
cally, we warm up NeRF for the initial 600 training iterations with SDS and
adopt JSD for the remaining iterations. We adopt the common time-annealing
and resolution-increasing tricks from the open-source implementation, together
with the two proposed mechanisms including the Geometry Fading scheme and
Classifier-Free Guidance (CFG) Scale switching strategy. We set t = 0.98 with
resolution 64 for the first 3k iterations and then anneal into t ∼ U(0.02, 0.50)
with resolution 256 for the extra 2k iterations. Starting from iteration 5k, we
scale up the resolution to 512 and conduct the two proposed mechanisms, where
the learning rate of the density network is reduced from 1e − 2 to 1e − 6 and
the CFG scale is switched from 30 to 50. The Geometry Fading scheme and
Classifier-Free Guidance (CFG) Scale switching strategy allow greater influence
from coherence guidance in JSD on geometry optimization in the early training
stages and enhance the fidelity of textures in later stages.

A.2 Details of Binary Classification Model.

In this part, we will elaborate on the model architecture and training procedure
of the binary classification model that is discussed in Sec.4.2 in the main paper.
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Model Architecture. We build the model based on the DINO framework.
Specifically, we employ ViT-s16 as the backbone for extracting image features.
The backbone is initially pre-trained following the DINO method, and during
training, the first 9 blocks of the backbone are frozen. Besides, we use a 4-
layer MLP with 256 hidden layer channels to extract the relative camera em-
bedding of the transformation matrix between input images, which captures the
camera-specific information. Next, we calculate the cross-attention between cam-
era embedding and the concatenated image features of input image pairs. This
cross-attention mechanism generates a residual feature input, combined with the
concatenated image features as the final feature. Finally, the combined features
are fed into the classification head consisting of a 3-layer MLP, which produces
the classification logit prediction for input image pairs.

Training Procedure. For training data, we use rendered images from
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Fig.A1: Training loss and validation accu-
racy curves of the proposed Binary Classi-
fication Model.

Objaverse [1] following Zero-1-to-3 [3].
For the binary classification training
objective, we adopt the pairs of im-
ages from the same object equipped
with the correct camera pose as the
positive samples and assign the image
pairs from different objects or incor-
rect relative camera poses as negative
samples. Before training, we prepare
the index list of positive and nega-
tive pairs for efficient training. During
training, we randomly sample 1 mil-
lion positive pairs and 1 million nega-
tive pairs from the index list as train-
ing sets. The design of the training set
ensures that the classification model
can identify the 3D consistency between rendered images conditioned on rela-
tive camera pose. We adopt adamW optimizer with 5e−4 learning rate and 0.04
weight decay. We also adopt random color jitter, gaussian blur, and polarization
following DINO as data augmentation. We use an image size of 224 × 224 and
a total batch size of 640 and train the model for 10 epochs. The training takes
about 1 day on 2 Nvidia Tesla A800 GPUs. To validate the classification accu-
racy, We random sample 5000 pairs as the validation set. The training loss and
validation accuracy curve can be found in Fig. A1.

A.3 Details of Text-to-3D Generation Comparison

Baseline Setup. We implement the experiments in an open-source three-
studio project and reproduce DreamFuion-IF, Magic3D-IF-SD, and Prolific-
Dreamer as baselines following the comparisons in the main paper of MVDream.
Our MVDream baseline is reproduced by its officially released code. We adopt
DeepFloyd-IF [7] as the 2D diffusion model for baseline DreamFuion-IF and
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a DSLR photo of a cat lying on its side batting at a ball of yarn

A crocodile playing a drum set

a confused beagle sitting at a desk working on homework

A bald eagle carved out of wood, more detail

a wide angle zoomed out DSLR photo of a skiing penguin wearing a puffy jacket

SDS JSD w/𝓒𝐂𝐋𝐒

a panda rowing a boat in a pond

Fig.A2: More quality results of JSD with Classification Model.

the first stage of Magic3D-IF-SD following MVDream. To make a fair compari-
son with our JointDreamer, we equip the same batch size, resolution, and time
annealing strategy with JointDreamer for DreamFuion-IF.

Evaluation Details. We conducted a user study from 100 users on the 153
generated models from the object-centric MS-COCO subset. Each user is given 4
rendered videos with their corresponding text input from generations of different
methods. We ask the users to select a preferred 3D model from four options,
and then calculate the mean proportion of each method selected over all 153
prompts as the score. The higher score indicates the greater user preference. For
the Clip Score and Clip R-Precision, we adopt the CLIP ViT-B/32 as the feature
extractor.
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A.4 Details of Computational Resource Comparison

We analyze the geometry consistency and computation efficiency of various view-
aware models in main paper Table ??, using 16 complex multi-Janus prompts in
Sec. E from the DreamFusion [5] library. We maintain consistent experimental
parameters, including a batch size of 4, training 5k iterations and a resolution of
64, as well as the same optimizer and time annealing hyperparameters. The only
variation is in the camera parameters, which align with each view-aware model’s
settings. For the baseline SDS model, we adopt the DreamFusion camera param-
eters. We present some examples showcasing these results incorporating CCLS in
Figure A2. And the results incorporating CMVS can be found in Section D.

B Theory of Joint Score Distillation

Given a well-trained text-to-image diffusion model, like Stable Diffusion, the ob-
jective is to distill its knowledge into a 3D representation network parameterized
by θ, such as NeRF and ensures coherent 3D generations. To achieve this, we
aim to model the joint rendering distribution across multiple views of θ.

For ease of notation, we define x̃ as the joint random variable comprising
x1, . . . ,xV , which are rendered images sampled from the 3D representation θ. It
is important to note that these views are not independent. In a 3D model, the
views are inherently connected as they originate from the same underlying 3D
object. This means that the rendered images, x1, . . . ,xV , exhibit dependencies
and correlation.

Denote the joint rendering distribution of x̃ as q̃θ. We can still define the
marginal distributions as

qθ(xi) =

∫
q̃θ(x̃)dx̃−i,

where x̃−i = x1, . . . ,xi−1,xi+1, . . . ,xV . This marginal distribution is the same
as if only a single view is considered, i.e., V = 1.

We can further define the log density ratio as

R(x̃) = log
q̃θ(x̃)∏V

i=1 q
θ(xi)

to capture the inter-relationship among different views. Equivalently, we can
write

q̃θ(x̃) = exp(R(x̃))

V∏
i=1

qθ(xi).

To get the evaluations of x̃ from the 2D diffusion model, we have

p̃(x̃) ∝ exp(C(x̃))
V∏
i=1

p(xi)
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since the diffusion model only takes a single image as input and different views
are weighted by the introduced joint energy function C.

Now we consider learning q̃θ(x̃) such that the following Integral Kullback–Leibler
(IKL) divergence is minimized along the forward diffusion process xt = αtx0 +
σtϵ where ϵ follows standard Gaussian distribution.

min
θ

DIKL(q̃
θ(x̃)||p̃(x̃)) = min

θ

∫ T

0

w(t)
σt

αt
DKL(q̃

θ
t (x̃)||p̃t(x̃))dt

= min
θ

∫ T

0

w(t)
σt

αt
Ex̃t∼q̃θt

(
log

q̃θt (x̃t)

p̃t(x̃t)

)
dt.

Taking gradient with respect to θ gives

∂

∂θ
DIKL(q̃

θ(x)||p̃(x))

=

∫ T

0

w(t)
σt

αt

∂

∂θ
Ex̃t∼q̃θt

(
log

q̃θt (x̃t)

p̃t(x̃t)

)
dt

=

∫ T

0

w(t)
σt

αt
Ex̃t∼q̃θt

[
∂

∂x̃t

(
log

q̃θt (x̃t)

p̃t(x̃t)

)
∂x̃t

∂θ
+

∂

∂θ
log q̃θt (x)|x=x̃t

]
dt

:= A+B.

The term B vanishes since

B =

∫ T

0

w(t)
σt

αt
Ex̃t∼q̃θt

∂

∂θ
log q̃θt (x)|x=x̃t

dt

=

∫ T

0

w(t)
σt

αt
Ex̃t∼q̃θt

∂
∂θ q̃

θ
t (x)|x=x̃t

q̃θt (x̃t)
dt

=

∫ T

0

w(t)
σt

αt

∫
∂

∂θ
q̃θt (x)|x=x̃t

dt

=

∫ T

0

w(t)
σt

αt

∂

∂θ

∫
q̃θt (x)dt

= 0

The term A is the score distillation loss

A =

∫ T

0

w(t)
σt

αt
Ex̃0∼q̃θ0 ,ϵ̃

(
∇ log q̃θt (x̃t)−∇ log p̃t(x̃t)

) ∂x̃t

∂θ
dt,

where ϵ̃ = (ϵ1, . . . , ϵV ) are the noises along the forward diffusion process. Putting
things together we have

∂

∂θ
DIKL(q̃

θ(x)||p̃(x)) = Ex̃0∼q̃θ0 ,ϵ̃,t

[
w(t)

σt

αt

(
∇ log q̃θt (x̃t)−∇ log p̃t(x̃t)

) ∂x̃t

∂θ

]
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Image of Michael Jackson, showcasing his signature 
dance moves, fedora hat, and stylish wardrobe

Mushroom boss, cute, arms and legs, big eyes, game, 
character, render, best quality, super detailed, 4K, HD
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Fig.A3: Comparison with SweetDreamer. SweetDreamer suffers from multi-faces
(left) and missing components such as "legs" and "eyes" (right).

Notice that the NeRF rendering is a deterministic process given the view infor-
mation. Therefore, the conditional distribution and marginal distribution coin-
cide, i.e.,

q̃θt (x̃t) ∼ N(αtx̃0, σ
2
t ), ∇ log q̃θt (x̃t) = −ϵ̃/σt.

On the other hand, direct score matching tells us that

∇ log pt(x
i
t) =

∂C(x̃)
∂xi

t

− ϵ̂Φ(x
i
t, t)/σt.

Finally, combining ∂xi
t

∂θ = αt
∂xi

0

∂θ , we have

∂

∂θ
DIKL(q̃

θ(x)||p̃(x)) = Ex̃0∼q̃θ0 ,ϵ̃,t

[
w(t)

V∑
i=1

(
ϵ̂Φ(x

i
t, t)−

∂C(x̃)
∂xi

t

− ϵi
)

∂xi
0

∂θ

]
.

(1)

Now we have finished extending SDS to multiple views. As it turns out, the joint
energy term R(x̃) does not show up in the gradient formula.

C Additional Ablation Study

C.1 Comparison with SweetDreamer

We also conduct a comparison with SweetDreamer [2]. SweetDreamer aligns geo-
metric priors (AGP) in a finetuned diffusion model and combines AGP with SDS
to address the Janus issue. In contrast, JSD improves the optimization objective
of SDS with various energy functions, and AGP can be one of them. For 3D gen-
eration, Fig. ?? shows that a simple combination, like SweetDreamer’s, uses more
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memory and complicates balancing components. Compared to SweetDreamer’s
demos from its website, our JointDreamer achieves better shape and text con-
gruence without multi-faces and missing components ("arms", "big eyes") in
Fig. A5.
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“A DSLR photo of a squirrel playing guitar”

Fig.A4: Comparison with Image-to-3D methods. Compared with two alter-
native methods, all employing the Zero-1-to-3 XL model, our proposed JSD exhibits
superior generative quality in novel view synthesis as evidenced by its geometric con-
sistency.

C.2 Discussions on Image-to-3D Methods

Since the view-aware models can engage in 3D generation through SDS besides
JSD, we make comparisons to showcase the superiority of JSD. Section 5.2 details
the comparative use of MVDream, and herein, we extend this comparison to
different applications of the image-to-image translation model, Zero-1-to-3 XL,
which excels in image-to-3D tasks. Unlike text-to-3D approaches that generate
3D models from textual descriptions, the image-to-3D method uses a reference
image to fix the reference view and generate the remaining views. As shown in
Fig. A4, we input a reference image, exemplified by the front-view rendered image
of the case of “A DSLR photo of a squirrel playing guitar” in Fig. A6 and compare
with two alternative utilizations of Zero-1-to-3 XL. (i)Zero-1-to-3 XL [3], which
directly utilizes Zero-1-to-3 XL to calculate SDS loss for novel rendered views
according to reference view. The overfitting generalizability of Zero-1-to-3 XL
reduces the generative quality, especially for the views distant from the reference
view. (ii)Magic123 [6], which merges the SDS loss of SD-V2.1 and Zero-1-to-3
XL as objective function. By combining the generalizability from the original
diffusion model, it can eliminate the distortion in novel views, but the effect is
not satisfactory. By contrast, our JSD achieves better generation quality in novel
views, where the overall geometric structure is more reasonable. Notably, when
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applying JSD in image-to-3D generation, we calculate the inter-view coherence
between the reference view and random novel views to fix the reference view,
differing from the two random novel views used in text-to-3D generation. The
comparisons further illustrate that JSD provides the optimal solution to combine
generalizability from 2D models and geometric understanding from 3D-aware
models.

C.3 Discussion on Failure Cases

Despite JointDreamer’s impressive performance in handling detailed descrip-
tions and multi-object combinations in long texts (as depicted in Fig. 1 of the
main paper), it faces difficulties in comprehending complex relationships among
objects. Specifically, it struggles to grasp relative spatial arrangements and hi-
erarchical dependencies, as evidenced in Fig. A5. Exploring the use of larger
diffusion models, such as SDXL [4], may offer a potential solution to overcome
these limitations.

the painting is of a zebra in a cagea yellow frisbee next to a box with nike cleats

MS-COCO GT Image MVDream JointDreamer MS-COCO GT Image MVDream JointDreamer

Fig.A5: Failure Cases on MS-COCO Subset.

D Additional Results of JointDreamer

We present more comparisons of text-to-3D generation as shown in Fig. A6, A7
and A8. The results indicate that JointDreamer outperforms current text-to-
3D generation methods regarding generation fidelity, geometric consistency, and
text congruence. This further validates the effectiveness and generalization of the
proposed JSD. We also provide more images and normal maps from additional
generated results in Fig. A9, demonstrating the generalizability of JointDreamer
with arbitrary textual descriptions.

E Janus Prompts.

Our list of 16 Janus prompts is shown below:
"a blue jay standing on a large basket of rainbow macarons",
"a confused beagle sitting at a desk working on homework",
"Albert Einstein with grey suit is riding a moto",
"a panda rowing a boat in a pond",
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"a wide angle zoomed out DSLR photo of a skiing penguin wearing a puffy
jacket",

"a zoomed out DSLR photo of a baby monkey riding on a pig",
"a zoomed out DSLR photo of a fox working on a jigsaw puzzle",
"a DSLR photo of a pigeon reading a book",
"a DSLR photo of a cat lying on its side
batting at a ball of yarn"
"A crocodile playing a drum set"
"a rabbit cutting grass with a lawnmower",
"A red dragon dressed in a tuxedo and playing chess",
"a zoomed out DSLR photo of a bear playing electric bass",
"A bald eagle carved out of wood, more detail",
"A pig wearing back pack".
"a lemur drinking boba".
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Corgi riding a rocket

Fig.A6: More comparison of text-to-3D generation.
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a rabbit cutting grass with a lawnmower
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a zoomed out DSLR photo of a bear playing electric bass

a dog is sleeping on a pile of pillows a DSLR photo of a skiing penguin wearing a puffy jacket

Fig.A7: More comparison of text-to-3D generation.



12 C. Jiang et al.

M
ag
ic
3D
-I
F-
SD

M
V
D
re
am

Pr
ol
ifi
cD
re
am
er

D
re
am
Fu
si
on
-I
F

Jo
in
tD
re
am
er

M
ag
ic
3D
-I
F-
SD

M
V
D
re
am

Pr
ol
ifi
cD
re
am
er

D
re
am
Fu
si
on
-I
F

Jo
in
tD
re
am
er

Woodies talking with each other, Toy Story, 
Anime style, more details, 8K, HD

A wide angle zoomed out DSLR photo of A red dragon 
dressed in a tuxedo and playing chess, 8K, HD, photorealistica white cat curled up on a wooden chair

A DSLR photo of A pink Spiderman dancing ballet, Marvel 
character HD, highly detailed 3D model

Fig.A8: More comparison of text-to-3D generation.
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A DSLR photo of Kungfu panda eating a dumpling, movie 
style, 8K, HD, photorealistic

Young son Goku riding a piece of cloud, Anime 
style, more details, 8K, HD

Cinderella standing next to pumpkin carriage, 
more details, 8K, HD

a DSLR photo of a corgi drinking boba

A DSLR photo of Queen Elizabeth riding a 
motorcycle, 8K, HD, photorealistic

A DSLR photo of a Maid with doll makeup 
holding an ax, full body

A DSLR photo of The girl in a yellow dress dancing under 
the moonlight, La La Land movie, 8K, HD, photorealistic

A DSLR photo of Harley Quinn grips a baseball bat 
with both hands, the clown girl, movie style

Fig.A9: More results of JointDreamer.
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