SLAck: Semantic, Location, and Appearance
Aware Open-Vocabulary Tracking
—— Supplementary Material —

Siyuan Li', Lei Ke!, Yung-Hsu Yang!, Luigi Piccinelli', Mattia Segii!, Martin
Danelljan', and Luc Van Gool'-?

L Computer Vision Lab, ETH Zurich
2 INSAIT

In this supplementary material, we provide additional ablation studies and
results of SLAck. We also elaborate on our experimental setup, method details,
and training and inference hyper-parameters. All ablations are validated in the
novel split of open-vocabulary MOT benchmark |7].

1 Compare Object Motions on Different Datasets

In the main paper, we discuss the differences between pedestrian tracking and
open-vocabulary tracking, which are also visually presented in Fig. [Il Instances
in pedestrian tracking datasets like MOT20 |3| generally move in a linear path
with minimal deformation. This simplicity allows many top-performing trackers
to rely on the Kalman Filter. However, open-vocabulary tracking introduces
significant challenges due to the complex, non-linear movements and substantial
deformation of objects.

We also quantitatively showcase these differences in Fig. [2] by plotting kernel
density estimation (KDE) based on two aspects: object displacement between
consecutive frames in a video and the average Aspect Ratio Changes (ARC) of
instances throughout the video. We analyze and visualize the KDE distribution
by examining all instance trajectories in the MOT20 |3] and TAO |2| datasets.

To calculate object motion, we measure the displacement between two con-
secutive frames for each instance by computing the Euclidean distance between
the centroids of their bounding boxes. For ARC, we determine the aspect ratio
(width divided by height) of each bounding box per frame and then calculate
the changes in aspect ratio between consecutive frames for each instance.

Fig. 2] further supports our qualitative observation from Fig. [I] that, com-
pared to the traditional pedestrian tracking dataset MOT20, objects in open-
vocabulary settings move with higher dynamism in both motion and shape. This
is indicated by the broader KDE curve and the significantly larger average values
for instance displacement and ARC changes.

2 Semantics and Motion Patterns

In the main paper, we explain the effectiveness of SLAck over previous state-
of-the-art open-vocabulary trackers that rely solely on appearance information.

2

(a) Pedestrian MOT (b) Open-Vocabulary MOT

Fig. 1: Unlike conventionally pedestrian tracking such as MOT20 , open-world ob-
jects show high dynamicity on shape and motion, which poses significant challenges for
motion-based trackers. We demonstrate this quantitatively on Fig. El

KDE of Average Motion by Dataset KDE of Average ARC Change by Dataset
0.30
A Datasets Datasets
030 Al =3 o 1 TAO
1 MOT20 0.25 1 MOT20
0.25
0.20
2020 2
]]
g o015 g o1s /
[a] a /
0.10 010 /
/
0.05 Y, 0.05 /
/
0.00 0.00 -
-4 - o 2 4 6 -8 -6 -4 -2 o 2
Average Displacement (log-scale) Average ARC Change (log-scale)

Fig. 2: Kernel density estimation (KDE) serves as a tool for comparing motion patterns
between the open-vocabulary tracking dataset TAO and the conventional pedestrian
tracking dataset MOT20. Given the substantial differences, we apply a logarithmic
scale on the x-axis for both figures to facilitate a clearer comparison. Left-KDE illus-
trates the average motion disparities between objects in TAO and MOT20 datasets.
For each instance, we compute the displacement between two consecutive frames. The
open-vocabulary tracking dataset TAO showcases a broader variety of movements, as
indicated by the width of the plot, and the average displacement is considerably larger
than that observed in pedestrian tracking within MOT20. Right KDE focuses on the
average Aspect Ratio Change (ARC) across the two datasets. This plot further confirms
that, in open-vocabulary scenarios, objects undergo more pronounced deformation and
occlusion, underscoring the complexities inherent in open-vocabulary tracking com-
pared to traditional pedestrian tracking.

Our approach, which integrates semantic and location information, is based on
the understanding that objects from different classes exhibit unique motion pat-
terns. We now provide a quantitative demonstration using two descriptors for
object motion defined earlier: average displacement and average aspect ratio
changes. While this simplification doesn’t capture all motion nuances, it offers
a straightforward method for analyzing and visualizing motion patterns across
different classes.

SLAck 3

KDE of Object Motion KDE of Aspect Ratio Change
1.0
[Four-legged Animals [Four-legged Animals
Other Animals 0.8 Other Animals
087 1 Road Vehicles 1 Road Vehicles
[Watercraft [Watercraft
2064 1 Air Vehicles 2967 = Air Vehicles
0 04 [Tl
0.24 0.2
0.0 0.0

-2 -8

0 2 4 6 -6 -4 -2 0 2
Average Displacement (log-scale) Average ARC Change (log-scale)
Fig. 3: Kernel density estimation (KDE) for comparing motion patterns for open-
vocabulary tracking dataset TAO.

We calculate the average displacement and aspect ratio change (ARC) for

each instance, then aggregate these metrics by class to uncover general motion
characteristics and offer insights into the frequency and severity of deformation
or occlusion for each class.
Semantic and Motion Relations for Parent Classes We categorize TAO
classes into three main groups: Transport, Animal, and Static objects, focus-
ing only on Transport and Animals—objects capable of autonomous movement.
Static objects, which include items that must be carried or transported by others
(e.g., personal items, sports equipment, household items, and work tools), are
not analyzed due to their inherent lack of independent motion.

— Transport encompasses all means of transportation, organized by similarity
in motion patterns. This includes road vehicles with similar motion patterns,
air vehicles like airplanes and drones, and watercraft such as boats.

— Animals are grouped based on their locomotion methods or habitats, em-
phasizing similar motion patterns (e.g., four-legged land animals, birds, and
fish).

Results for parent classes are shown in Fig. [3] with one figure illustrating
the motion displacement density estimation and the other showing the average
ARC for different categories. These figures should be considered together to fully
understand the motion patterns and specific characteristics of each category. As
illustrated, the distribution of motion patterns varies significantly across par-
ent classes, confirming our assumption that objects from different classes move
differently.

Semantic and Motion Relations for Child Classes Delving deeper, we ex-
amine the child categories within each parent group to analyze more specific mo-
tion patterns. Through KDE analysis, we present detailed findings for subclasses,
such as road vehicles (Fig. , air vehicles (Fig. , four-legged animals (Fig. @,
and other animals (Fig. . Our observations reveal that even within semanti-
cally similar classes, distinct motion pattern variations exist. SLAck leverages
these differences by learning the relationships between semantic categories and

4 S. Li et al.

Table 1: Sampling interval. .
Table 2: Concat vs Add. Table 3: img vs text.

| Novel Base

| Novel Base

Time|AssocA AssocA | Novel Base

1s 33.4 36.7 Model ‘AssocA AssocA Model ‘ASSOCA AssocA
3s 37.8 37.6 - img 35.9 358
55 35.7 365 g‘égmt ;;5; 2;67 img + text| 37.8 36.5
10s 35.7 35.5 . . text 37.8 37.6

20s 34.2 33.8

Table 4: Comparison with SOT method on TAO novel split.

|TETA LocA AssocA ClsA Inference Time

MixFormer 20.6 31.2 28.4 2.4 36h
SlAck (Ours)| 31.1 54.3 37.8 1.3 1.2h

their associated motion patterns directly from the data, enhancing its tracking
accuracy.

3 More Ablations

We provide more ablation studies in this section.

3.1 Temporal Sampling Intervals

We further perform ablation for temporal sampling interval, as shown in Table
Longer intervals risk objects disappearing, while shorter intervals fail to capture
valuable cases such as occlusion.

3.2 Add vs. Concat for Feature Fusion

We compare addition against concatenation to fuse different cues in Table[2] Re-
sults show that addition yields better performance on novel classes compared to
concatenation. Addition maintains fixed-size dimensionality, whereas concatena-
tion increases dimensionality, leading to higher memory consumption and slower
processing.

3.3 Distilled CLIP Features

We integrate the distilled CLIP text head features as semantic cues in the main
paper. We here evaluated the integration of both distilled CLIP image and text
head features in [5]. Results in Table [3| show that using only the distilled CLIP
text head features as semantic cues yields the best performance.

SLAck 5

Table 5: Inference with or without dynamic thresholding (DT).

Dynamic Thresholding‘TETA LocA AssocA ClsA

OVTrack w/o DT 27.8 483 336 15
Slack w/o0 DT 29.5 50.5 36.8 1.0

OVTrack w/ DT 28.8 51.2 338 1.5
Slack w/ DT 31.1 543 378 1.3

Table 6: With or without temporal encoding.

Method |TETA LocA AssocA ClsA

30.6 54.4 36.8 0.7
31.1 543 37.8 1.3

SLAck w/o temporal encoding
SLAck w/ temporal encoding

3.4 Dynamic Thresholding

We build SLAck with the same open-vocabulary detector used by OVTrack as
a base. Our findings indicate that employing a fixed score threshold for open-
vocabulary detection inference is suboptimal. This issue stems from the inherent
design of FasterRCNN-based open-vocabulary detectors, which substitute the
original classification head with a CLIP-distilled classification head. This setup
calculates feature similarities among class text embeddings produced by the
CLIP text encoder, followed by the softmax function to determine classification
confidence for each class. Due to the introduction of novel classes during infer-
ence, the number of categories alters from the training phase, affecting the value
distribution post-softmax. While OVTrack initially sets the score threshold dur-
ing testing at 0.0001, our approach of utilizing a dynamic threshold, adjusted
based on the number of target classes, yields improved detection outcomes. The
test score threshold is determined by the following equation:

1
number of classes

score_thr = < > x 1.001 (1)

We report these findings in Table [5] demonstrating that this modification
leads to a +2.9 LocA enhancement for OVTrack and a +3.1 LocA increase for
SLAck. In Table 4 of the main paper, we referenced the OVTrack performance on
the standard benchmark without incorporating our insights. Herein, we also ap-
ply dynamic thresholding (DT) to OVTrack and juxtapose it with SLAck under
both with and without DT scenarios. Table [5] illustrates that SLAck surpasses
OVTrack in both conditions, achieving at least a 3.2 improvement in association
(AssocA).

3.5 Temporal Encoding

SLAck innovatively combines three crucial cues for the association: semantics,
location, and appearances. Due to space constraints, the detailed explanation

6 S. Li et al.

of temporal encoding was previously omitted. In this section, we elucidate tem-
poral encoding and assess its efficacy. Temporal encoding aims to capture the
differences between pairs of frames to be matched. For each frame, a unique en-
coding is generated for the entire frame. This is accomplished by downsampling
the smallest feature maps in the Feature Pyramid Network (FPN) of the detec-
tor into a two-dimensional vector. Prior to matching objects across two frames,
we compute the difference between the encodings of these frames, which con-
stitutes the temporal encoding. This encoding reflects the changes between the
two frames; if no movement occurs and the scene remains static, the difference
approaches zero.

We replicate the temporal encoding for the same number of objects in the
current frame and combine it with each object’s fused embedding:

% _ i 7
Efuscd_updatc - Efusc + Etcmporah (2)

where Ef _; denotes the fused embedding for the i-th object in the frame, and
EY emporal Te€Presents the temporal encoding. Table [6| demonstrates the temporal
encoding’s effectiveness, contributing to a +1 increase in AssocA for SLAck.

3.6 Compare with Single Object Tracking (SOT)

The significance of OV-MOT is its ability to support both open-vocabulary and
multiple objects, whereas SOT focuses solely on tracking a single object. In
OV-MOT, objects frequently appear and disappear, and new objects continually
enter the scene, necessitating automatic handling of these scenarios, which SOT
trackers cannot achieve. Additionally, OV-MOT often involves multiple objects
with similar appearances appearing together, necessitating the use of motion or
location cues. Moreover, OV-MOT tracks all objects at once without repeated
runs as needed in SOT. Also, SOT fails to explicitly consider other objects in
the scene, such as their semantics, relative location, and appearance that play a
critical role in associating multiple objects. We test a strong SOT tracker Mix-
Former (GOT-10k) for the OV-MOT task on TAO in Table 4| Our approach
significantly outperforms MixFormer. We use the same detector as ours to pro-
vide initial object boxes for MixFormer in the first frame of each video and run
it repeatedly to track every object.

4 Model Details

Semantic Head The semantic head is a five-layer MLP with the GroupNorm
and ReLU after each but the last layer.

Location Head The semantic head is a five-layer MLP with the GroupNorm
and ReLU after each but the last layer.

Appearance Head The appearance head is a four-layer convolution with one
additional MLP. After each conv layer follows a GroupNorm and ReLU.
Spatial and Temporal Object Graph (STOG) STOG is designed to pro-
cess and refine fused features through a series of attentional propagation layers.

SLAck 7

It employs a descriptor dimension of 256. The network’s architecture consists
of alternating layers of self-attention and cross-attention mechanisms, compris-
ing four layers in total. Each layer leverages multi-head attention with 4 heads.
This is followed by feature fusion, where the attention-derived features are con-
catenated with the original input features and subsequently refined through an
MLP with layers configured as [512, 512, 256]. This MLP serves to project
the enhanced feature vectors back to the original feature dimension, ensuring
consistency across layers.

5 Training Detail

For SLAck-OV, we train our model using the same FasterRCNN-based open-
vocabulary detector as OVTrack [7]. We conduct an inference of the pre-trained
detector on pairs of sampled images using a dynamic score threshold described
in Sec. The maximum number of detection predictions per image is set to 50.
Instead of the default intra-class non-maximum suppression (NMS), we apply
class-agnostic NMS with an IoU threshold of 0.5. Following inference, we match
the detection boxes with the sparse TAO ground truth using an IoU threshold
of 0.7 for match determination. The matched detection boxes are then assigned
instance IDs for association learning. It is possible for one ground truth box
to match multiple detection boxes. During our differentiable optimal transport
optimization using the Sinkhorn algorithm, we adjust the marginal distributions
based on the sum of matches with ground truth. The number of Sinkhorn iter-
ations is set to 100 during training.

Training images are randomly resized, keeping the aspect ratio, with the
shorter side between 640 and 800 pixels. Pairs of adjacent frames, within a
maximum interval of 3 seconds, are selected for training. Models are trained for
12 epochs using a batch size of 16, applying an SGD optimizer with an initial
learning rate of 0.008 and weight decay of 0.0001. For SLAck-T and SLAck-L, all
the hyper-parameters described above are the same as SLAck-OV except that
we use a fixed score threshold of 0.0001 for the detection inference in detection-
aware training.

6 Inference Detalil

During inference, the shorter side of images is resized to 800 pixels. We set all
detection-related hyper-parameters such as test score threshold and NMS set-
tings, the same as during the training. We set the Sinkhorn iteration of exit
to 100 and use a matching threshold of 0.2 (match _score thr). A memory
queue lasting 10 seconds (memo_length) retains semantic, location, and ap-
pearance encodings of all objects in the tracklets, with objects expiring after a
10-second inactivity period. We provide a detailed tracking algorithm pseudo-
code in Algo.

8 S. Li et al.

Compared to previous tracking algorithms [1,4},/6-9], we significantly reduce
the number of hyper-parameters during inference. We only need to set two hyper-
parameters which are the match _score_thr and memo_length to decide when
to match and how long the objects are stored in the tracklets.

7 Qualitative results

The qualitative results of SLAck are shown in Fig. [§]] We choose all the novel
classes to test our tracker’s ability in real-world testing scenarios.

8 Limitations

SLAck is sensitive to video frame rate changes. SLAck joint considers location,
object shape changes both spatially and temporally, and the frame rate changes
between training and inference can introduce a huge domain gap. For example,
if the model is trained on 1 FPS video and test on 30 FPS videos, the motion
or shape changes can be very different.

Also, SLAck requires training with video labels. Despite the introduction of
detection-aware training, which allows for end-to-end association training with
sparse ground truth labels, the need for video annotations persists. This is partic-
ularly challenging in open-vocabulary tracking scenarios, where obtaining com-
prehensive video annotations is both difficult and costly. The scarcity of such
annotations restricts the model’s scalability and its applicability to a wider range
of tracking tasks.

SLAck 9

Algorithm 1 Simplified Tracking Algorithm

1:

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:

Initialization:
Initialize tracker parameters: match _score thr, memo_length, etc.
Initialize tracker state: tracklets, fid_tracklets
procedure UPDATEMEMO(ids, bboxes, labels, appembeds, cls_embeds,
frame_id)
for each id, bbox, app.mbed, cls _embed, label in new or updated tracklets do
Update or add to tracklets
end for
Remove outdated tracklets based on frame id and memo_length
end procedure

: procedure MaTcH(bbozes, labels, appembeds, cls embeds, frame_id,

img_metas)
Match detections to existing objects in tracklets using the joint similarity matrix
with match _score thr
Assign ids to matched and newly detected tracklets
return updated bbozes, labels, and ids
end procedure
Main tracking loop:
for each frame do
Detect objects and extract features
Match detections to tracklets
Update memories with current frame data
end for

10 S. Li et al.
KDE of Object Motion KDE of Aspect Ratio Change
J 0.7
= bicycle /‘"\ [bicycle
0.74 [0 bus_(vehicle) \ 0.6 1 1 bus_(vehicle)
061 1 cab_(taxi) [cab_(taxi)
[car_(automobile) 05 [car_(automobile)
2051 1 motorcycle .‘?g_a [motorcycle
2 0.44 1 pickup_truck 2 [pickup_truck
8 03] 3 truck g 031 I truck
0.2
0.24
0.14 0.1
0.04 0.04 I —

-2 0 2 4 6
Average Displacement (log-scale)

8

-8 -6 -4 -2 0 2
Average ARC Change (log-scale)

Fig. 4: The KDE of motion displacement and ARC for different classes in road vehicles.

KDE of Object Motion

KDE of Aspect Ratio Change

[airplane
[drone

[airplane
drone

0.0 T T T T T T T
3.8 4.0 4.2 4.4 4.6 4.8 5.0
Average Displacement (log-scale)

5.2

-175 -150 -1.25 -1.00 -0.75 -0.50 -0.25 0.00

Average ARC Change (log-scale)

Fig. 5: The KDE of motion displacement and ARC for different classes in air vehicles.

KDE of Object Motion

KDE of Aspect Ratio Change

[cat
084 [dog
[horse
[lion
E‘O-G’ [zebra
2 1 cow
8 044 1 sheep
[deer
[elephant 4
- j

0.0-
[2

4 6
Average Displacement (log-scale)

cat

dog
horse
lion
zebra
cow
sheep
deer
elephant

gooooooca

=5

—4 -3 -2 -1 Y
Average ARC Change (log-scale)

Fig.6: The KDE of motion displacement and ARC for different classes in four-leg

animals.
KDE of Object Motion

KDE of Aspect Ratio Change

1 2 3 4 5 6
Average Displacement (log-scale)

Fig. 7: The KDE of motion displacement

mals.

-6 -4 -3 -2 -1

5 0
Average ARC Change (log-scale)

and ARC for different classes in other ani-

SLAck 11

t t+1 t+2 t+3

Fig. 8: Qualitative results of Open-Vocabulary Tracking. We condition SLAck
on text prompts unseen during testing and successfully track the corresponding objects
in the videos. The bounding box colour depicts the object’s identity. We choose ran-
dom internet videos to test our algorithm on diverse real-world scenarios. Best viewed
digitally.

12

S. Li et al.

References

. Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric sort:

Rethinking sort for robust multi-object tracking. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 9686-9696 (2023)
Dave, A., Khurana, T., Tokmakov, P., Schmid, C., Ramanan, D.: TAO: A large-scale
benchmark for tracking any object. In: ECCV (2020)

Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, 1., Roth, S.,
Schindler, K., Leal-Taixé, L.: Mot20: A benchmark for multi object tracking in
crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T., Meng, H.: Strongsort: Make
deepsort great again. IEEE Transactions on Multimedia (2023)

Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision
and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)

Li, S., Danelljan, M., Ding, H., Huang, T.E., Yu, F.: Tracking every thing in the
wild. In: ECCV. Springer (2022)

Li, S., Fischer, T., Ke, L., Ding, H., Danelljan, M., Yu, F.: Ovtrack: Open-vocabulary
multiple object tracking. In: CVPR (2023)

Pang, J., Qiu, L., Li, X., Chen, H., Li, Q., Darrell, T., Yu, F.: Quasi-dense similarity
learning for multiple object tracking. In: CVPR (2021)

. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W., Wang, X.: Byte-

track: Multi-object tracking by associating every detection box. In: ECCV (2022)

	SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking—– Supplementary Material —–

