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A Policy Search Cost

Tab. 1 summarizes the policy search cost for different DAS methods. While
achieving better or comparable performance with all of those, FreeAugment finds
augmentation policies with a relatively small cost, especially considering that the
cost is reported for a single search, while some other methods have to repeatedly
apply it for several policy depth values. Some other methods are limited to
searching merely two consecutive transformations due to the exponential growth
of the cost with the policy depth. FreeAugment is the only one to eliminate that
entirely, requiring a single search to obtain all degrees of freedom, including
policy depth, without resulting in iterative solutions.

Table 1: Policy search cost in GPU hours on CIFAR10/100 with WRN40-2. Each
method is reported with its corresponding hardware and time. -: missing information.
*Reported in DDAS. **Exponential complexity in policy depth and hence limited to 2
transformations only. ***Requires additional search on policy depth.

Method GPU hours Hardware Architecture

AA [1] ** 5000 Tesla P100 WRN-40-2
PBA [8] ** 5 Titan XP WRN-40-2
FastAA [10] ** 3.5 Tesla V100 WRN-40-2
DADA [9] ** 0.1/0.2 Titan XP WRN-28-10
RA [2] * ** 33 RTX 2080Ti WRN-28-10
FasterAA [5] ** 0.23 Tesla V100 WRN-40-2
DeepAA [16] 9 - WRN-28-10
DRA [15] *** 0.4 Tesla P100 WRN-28-10
DDAS [11] *** 0.15 RTX 2080Ti WRN-28-10
SLACK [12] *** 4 - WRN-40-2
MADAO [6] *** 1.7 - WRN-28-2
FreeAugment 1.2 RTX A6000 WRN-40-2

* Equal contribution.
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B Found Augmentation Policies

Fig. 1 visualizes the data augmentation policies found by FreeAugment.
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Fig. 1: Found augmentation policies on CIFAR10/100, ImageNet-100, and DomainNet.
Transformations that are not associated with a learnable magnitude are depicted with
a magnitude range of [0.4, 0.6]
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C Hyper-Parameters and Training Configurations

The configurations for policy search and evaluation of each dataset can be found
in Tab. 2 and Tab. 3, respectively. Following previous work, both in search
and evaluation, the classifier’s learning rate is decayed according to a cosine
annealing scheduler. Following TA [13], for CIFAR10/100 images we apply pad-
and-crop to a resolution of 32× 32 with a reflection mode and a pad length of 4,
random horizontal flipping with a probability of 0.5, then our generated policy
is applied, followed by cutout [4] with a length of 16. For ImageNet-100 and
DomainNet we use random resized crops and scales between 0.08 and 1.0 to a
resolution of 224 × 244 using bicubic interpolation, random horizontal flipping
with a probability of 0.5, then our generated policy is applied, followed by cutout
with a length of 75, which is about 1/3 of the image size, as done in [14].

Table 2: Policy search hyper-parameters. Classifier hyper-parameters are identical to
those in the policy evaluation.

CIFAR10/100 ImageNet-100 DomainNet

Architecture WRN-40-2, WRN-28-10 ResNet-18 ResNet-18
Epochs 300 300 300

Batch size 128 64 64

Classifier Hyper-Parameters − Same as in Tab. 3 −

Policy optimizer Adam Adam Adam
µ learning rate 0.02 0.02 0.02
Π learning rate 0.01 0.01 0.01
δ learning rate 1.0 1.0 1.0

Table 3: Policy evaluation hyper-parameters.

CIFAR10/100 ImageNet-100 DomainNet

Architecture WRN-40-2, WRN-28-10 ResNet-18 ResNet-18
Epochs 200 270 200

Batch size 128 256 128

Optimizer SGD SGD SGD
Learning rate 0.1 0.1 0.1
Weight decay 0.0005 0.0001 0.0001

Momentum parameter 0.9 0.9 0.9
Nesterov Momentum True True True
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(a) Found policy distribution over transfor-
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(b) Policy depth dynamics
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(c) Layer 1
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(d) Contrast across layers
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(e) Contrast magnitude
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(f) Layer 2
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(g) Sharpness across layers
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(h) Sharpness magnitude
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(i) Layer 3
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(j) TranslateY across layers
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(k) TranslateY magnitude

Fig. 2: Policy dynamics during the search phase of CIFAR10 (Part 1/2)
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(a) Layer 4
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(b) Solarize across layers
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(c) Solarize magnitude
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(d) Layer 5
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(e) Posterize across layers
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(f) Posterize magnitude

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

(g) Layer 6

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

(h) Invert across layers

0 100 200 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

(i) Invert
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(j) Layer 7
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(k) Equalize across layers
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(l) Equalize

Fig. 3: Policy dynamics during the search phase of CIFAR10 (Part 2/2)
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D Search Space Details

Tab. 4 lists the transformations in the search space of FreeAugment with their
corresponding magnitude ranges. All magnitude parameters correspond to Kor-
nia’s image transformations1.

Table 4: List of transformations in the search space and their corresponding mag-
nitude range. Note that AutoContrast, Invert, and Equalize do not have magnitude
parameters.

Transformation Magnitude Range

ShearX [-0.6, 0.6]
ShearY [-0.6, 0.6]
TranslateX [-0.5, 0.5]
TranslateY [-0.5, 0.5]
Rotate [-30, 30]
Solarize [0.6, 1]
Posterize [2, 8]
Contrast [0.4, 2.0]
Color [0.0, 1.0]
Brightness [-0.4, 0.4]
Sharpness [0.0, 2.0]
AutoContrast -
Invert -
Equalize -

E Additional Ablations

E.1 Sample single augmentation per-batch vs. per-image

FreeAugment samples distinct augmentation sequences for every image in the
batch rather than sampling once for the entire batch. Fig. 4 outlines a simple
and efficient PyTorch per-image sampling implementation of Algorithm 1 in the
main text. Tab. 5 compares the performance of FreeAugment when it samples
the same augmentation policy for the entire batch versus per-image. As can be
inferred from the table, the per-image sampling helps to reduce the variance of
the gradient estimates with respect to ϕ during the search and thus leads to
better results.

E.2 No Warm-up For ϕ

Tab. 6 compares the results of a search phase that begins with a warm-up for
the learnable policy parameters ϕ and a search phase that starts learning those
1 https://kornia.readthedocs.io

https://kornia.readthedocs.io
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Table 5: Top-1 test accuracy (%) on CIFAR100 for WRN-40-2 with different variants
of FreeAugment’s, one that samples different augmentations per-image in the batch,
and one that samples the same augmentations for the whole batch. The results are
averaged over 5 random seeds, with the 95% confidence interval denoted by ±.

FreeAugment variant Top-1 Accuracy

Sample augmentation per-batch 79.43 ± .23
Sample augmentation per-image 80.04 ± .23

at the very beginning. At the former, ϕ are not updated until the classifier
is sufficiently learned so that the gradients of ϕ backpropagating through it are
meaningful. Such strategy aims to avoid noise in the learning process of ϕ caused
by a premature classifier, yielding a bad approximation of the lower problem of
the bilevel optimization. As can be seen from the results, warm-up improves the
performance.

Table 6: Top-1 test accuracy (%) on CIFAR100 for WRN-40-2 where FreeAug-
mentlearns with and without warm-up. The results are averaged over 5 random seeds,
with the 95% confidence interval denoted by ±.

FreeAugment variant Top-1 Accuracy

Without warm-up 79.53 ± .13
With warm-up 80.04 ± .23

E.3 Magnitude Distribution

Tab. 7 compares the results of FreeAugment variant that learns the a uniform
distribution over each magnitude m, versus a Gaussian distribution, such that,

m = σ̂ · ϵ+ µ̂ ; ϵ ∼ N (0, 1)

with µ̂, σ̂ being the learnable magnitude parameters and N (0, 1) is the normal
distribution.

The uniform distribution is initialized to 75% of the normalized range as
(0.125, 0.875), and the normal distribution is initialized with a mean µ̂ of 0.5 and
a standard deviation σ̂ of 0.1875. This results in samples falling in the interval
of (0.125, 0.875) with a probability of 0.95. As can be seen from the table, the
results using both sampling methods are fairly close, with slightly better results
using uniform magnitude sampling.

E.4 Depth Search by Probability of Application

Additional depth-searching strategy treats augmentation application as sampling
from a learnable Bernoulli distribution, similar to the methods in [5, 7, 10, 15]
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Table 7: Top-1 test accuracy (%) on CIFAR100 for WRN-40-2 with different variants
of FreeAugment’s, one that learns a uniform magnitude distribution, and another that
learns a normal magnitude distribution. The results are averaged over 5 random seeds,
with the 95% confidence interval denoted by ±.

FreeAugment variant Top-1 Accuracy

Gaussian Magnitudes 79.9 ± 0.19
Uniform Magnitudes 80.04 ± .23

Tab. 8 compares the results of FreeAugment variants using different depth-
searching strategies. Learnable application probabilities for each augmentation
were initialized to 0.75. As shown in the table, FreeAugment with a learnable
Gumbel-Softmax distribution over policy depths achieves better performance.
Compared to FreeAugment with a single representation for each policy depth d
out of D transformations, learning the application probability for each transfor-
mation effectively yields

(
D
d

)
representations for the same policy depth d. The

resulting redundancy makes the DAS operate within a much larger representa-
tion of the search space without effectively adding more policies.

Table 8: Comparing strategies of depth search. Top-1 test accuracy (%) on CIFAR100
for WRN-40-2. The results are averaged over 5 random seeds, with the 95% confidence
interval denoted by ±.

Variant Top-1 Accuracy

Application Prob. + Gumbel-Softmax 78.36 ± .51
Application Prob. + Gumbel-Sinkhorn 79.11 ± .30
FreeAugment 80.04 ± .23

E.5 Continue Evaluation with End-of-Search Classifier

Tab. 9 compares the results of the evaluation phase where the classifier is be-
ing initialized with the end-of-search model weights, with a linear warm-up of 5
epochs for its learning rate, versus training the classifier from scratch. As can be
seen from the table, training the classifier from scratch achieves better perfor-
mance, as it is effectively trained with an optimized augmentation policy from
the beginning of its training.
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Table 9: Top-1 test accuracy (%) on CIFAR100 for WRN-40-2 where the evaluation
phase continues with the same classifier from the end of the search versus a classifier
that was trained from scratch. The results are averaged over 5 random seeds, with the
95% confidence interval denoted by ±.

FreeAugment variant Top-1 Accuracy

End-of-search 79.85 ± .1
Scratch 80.04 ± .23

F Additional Experiments

Tab. 10 shows the performance of FreeAugment on the complete ImageNet [3]
dataset. While evaluating with ResNet-50, we used the found augmentation
policy on ImageNet-100 for ResNet-18. FreeAugment surpasses the baseline by
+1.33% and achieves competitive performance when compared to more recent
methods.

Table 10: Top-1 test accuracy (%) on ImageNet for ResNet-50 using the found aug-
mentation policy on ImageNet-100. Results are obtained following TA training recipe
and averaged across 4 random seeds, with the 95% confidence interval denoted by ±.

Baseline AA FastAA FasterAA DADA TA(Wide) DDAS DRA FreeAugment

ResNet-50 76.3 77.6 77.6 76.5 77.5 78.07 77.7 78.19 77.63 ± .15

Tab. 11 and 12 present the same experiments as of Tab. 3 and 2 in the main
paper, respectively, with the only change of replacing the more general train-
ing scheme proposed by TA [13] by a tailored one for SLACK [12]. FreeAug-
ment shows competitive results even when adopting SLACK’s designated train-
ing scheme.

Table 11: Top-1 test accuracy (%) on DomainNet for ResNet-18. The left value in each
cell is obtained using SLACK’s training recipe, while the right value is a reproduced
result using TA’s training recipe. All results are averaged across 4 random seeds.

DomainBed TA (Wide) SLACK FreeAugment

Real 62.54, 61.91 71.56, 70.27 71.00, 68.94 71.14, 71.47
Quickdraw 66.54, 64.55 68.60, 67.01 68.14, 66.39 68.58, 68.62
Infograph 26.76, 25.64 35.44, 33.73 34.78, 30.92 34.72, 34.88
Sketch 59.54, 58.57 66.21, 65.38 65.41, 63.75 66.48, 66.74
Painting 58.31, 57.70 65.15, 64.13 64.83, 62.26 64.30, 64.65
Clipart 66.23, 64.07 71.19, 69.77 72.65, 70.92 71.06, 71.26

Average 57.23, 55.40 63.03, 61.71 62.80, 60.53 62.71, 62.93
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Table 12: Top-1 test accuracy (%) on ImageNet-100 for ResNet-18. The left value in
each cell is obtained using SLACK’s training recipe, while the right value is a repro-
duced result using TA’s training recipe. All results are averaged across 4 random seeds.

Baseline TA(Wide) SLACK FreeAugment

ResNet-18 -, 84.84 86.39, 85.68 86.06, 86.19 86.26, 86.62

G Learning Magnitudes of Non-Differentiable
Transformations

It is important to note that some transformations are associated with a learn-
able magnitude but are not differentiable with respect to it (e.g., posterize and
solarize). To get gradients for such transformations’ magnitudes, we use the
straight-trough estimator as:

∂Xk+1

∂Mik
=

∂τi(X
k)

∂Mik
= 1 (1)

where Xk, is the input image of the kth policy layer, Xk+1 is the output image
of the same layer, τi is a non-differentiable elementary transformation, Mik is
the sampled magnitude at the kth policy layer for τi, and 1 is a matrix from the
same size as Xk filled with ones. Namely, Eq. (1) means that the gradient of
each pixel in the output image Xk+1 w.r.t. the sampled magnitude Xk+1 equals
1.

In practice, this trick can be easily implemented via:

X̂k+1 = Xk+1 +Mik − StopGrad(Mik), (2)

where StopGrad(·) is the analog to PyTorch’s detach function, which returns the
input value without passing its gradient. Note that ∂Xk+1/∂Mik = 0, where 0
is a matrix with the same size of Xk+1 filled with zeros. Thus, the use of the
trick in Eq. (2) eventually makes Eq. (1) holding.
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1 import torch
2 from torch.nn.functional import gumbel_softmax
3 from ops import gumbel_sinkhorn , uniform
4 from torch.distributions.uniform import
5

6 def FreeAugment(x, trans , phi):
7

8 delta , Pi, mu = phi
9

10 N, K = Pi.shape
11

12 assert len(trans) == N
13 assert len(delta) == K+1
14 assert mu.shape [:-1] == Pi.shape
15

16 bs = x.shape [0]
17

18 delta = delta.repeat(bs , 1) # shape: (bs, K+1)
19 Pi = Pi.repeat(bs, 1, 1) # shape: (bs, N, K)
20 mu = mu.repeat(bs, 1, 1, 1) # shape: (bs , N, K, 2)
21

22 d_hard = gumbel_softmax(delta) # shape: (bs, K+1)
23 P_hard = gumbel_sinkhorn(Pi) # shape: (bs, N, K)
24 M = uniform(mu) # shape: (bs, N, K)
25

26 d_hard = d_hard.permute (1,0) # shape: (K+1, bs)
27 P_hard = P_hard.permute (2,1,0) # shape: (K, N, bs)
28 M = M.permute (2,1,0) # shape: (K, N, bs)
29

30 out = d_hard [0] * x
31 for k, (dh, Ph) in enumerate(zip(d_hard [1:], P_hard)):
32 for i, (t_oh , t) in enumerate(zip(Ph, trans)):
33 out += dh.view(-1, 1, 1, 1) * \
34 t_oh.view(-1, 1, 1, 1) * t(x, M[k,i])
35

36 return out

Fig. 4: PyTorch per-image policy sampling code
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