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A Datasets details

We report properties of the used datasets in Tab. S1, including number of train
and test samples, number of classes, image resolution, GSD range, location extent
and the sensors comprising each dataset.

Table S1: Details of classification datasets used in experiments.

Dataset Num. train
samples

Num. test
samples

Num.
classes

Resolution
(px)

GSD
(m)

Location
extent

Sensor(s)

fMoW [7] 363,572 53,043 62 224×224 0.06–23 207 countries /
400 UTM

zones

WorldView-2,
WorldView-3,
QuickBird-2,
GeoEye-1

RESISC45 [6] 18,900 6,300 45 256×256 0.2–30+ global various
(Google Earth)

Optimal31 [21] 930 930 31 256×256 0.5–8 global various
(Google Earth)

UC Merced [23] 1260 840 21 256×256 0.3 Contiguous
USA

NAIP

FGSC-23 [24] 3256 824 23 variable (40–800) 0.4–2 Unknown various
(Google
Earth),
GaoFen-1

EuroSAT [13] 16,200 5,400 10 64×64 10 34 European
countries

Sentinel-2

So2Sat [26] 352,366 48,307 17 32×32 10 42 cities
distributed

globally

Sentinel-2

Spectral bands. We perform all experiments on three-bands RGB images. For
EuroSAT and So2Sat which provide additional spectral bands, we retain only
the RGB bands.
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Data splits. We use one train and one test split for all datasets. For fMoW, we
use the official train and validation splits as our train and test splits respectively,
following [1,8,18]. For RESISC45, UC Merced, EuroSAT and So2Sat, we use the
train and test splits available in TorchGeo [19], which are taken from [16]. For
UC Merced, we use the combined test and val splits as our test set, to inflate its
size. For So2Sat, we use the “Culture-10” version of the dataset. For Optimal31,
we randomly split the full dataset (1,860 samples) between train and test with
a 50/50 ratio.

fMoW preprocessing. Our preprocessing of fMoW aligns with previous works [1,
7,8]. We use the fMoW-RGB dataset product composed pansharpened color im-
ages converted to 8-bit JPEGs files, and JSON metadata files. We preprocess
the dataset using the standard method: each image is cropped around an area
of interest (AOI) and resized to 224×224 pixels. Resized cropping affects the as-
sociated GSD and location. We transform the GSD height and width according
to the size ratio of the cropped image to the resized cropped image. We replace
the location polygon with the one encompassing the AOI. Other metadata fields
are not affected.

Resizing and normalization. For the evaluation of fMoW-pretrained models,
we follow [9] for resizing and normalizing of images. We resize to the resolution
used for pretraining (224×224 pixels) or keep the original size if it is higher.
Doing so tends to give optimal performance for all the compared models on all
datasets, except for Scale-MAE, which we evaluate using a resolution of 128×128
pixels on all datasets as it gives better performance3. For pretraining and evalua-
tion, we perform channel-wise standardisation with mean and standard deviation
statistics computed on the training set of each dataset [9].

B Pretraining details

Visual encoders. We follow [15] for the configurations of the ViT backbones.
We use the ViT-S variant from MoCoV3 [5] with 12 heads per attention layer
(vs. 6 in original ViT-S [20]). We use a patch size of 16, and learnable positional
embeddings. The output representation that is passed to the projection head for
pretraining, and used for downstream tasks, is the CLS token of the last layer.

Textual metadata encoders. For our experiments with a textual represen-
tation of metadata, we apply the following processing. Following [25], we for-
mat different fields as key-value pairs of strings, and concatenate each key-value
pair together to form a composite string using the syntax "key1: value1, . . .,
keyn: valuen". Afterwards, we tokenize the text using the CLIP’s Byte Pair

3 this is consistent with the results of [18]
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Encoding (BPE) tokenizer. We then feed the sequence of tokens to a BERT-
style [10] Transformer encoder with 3 layers, width 512, 8 attention heads per
layer, and a FFN size factor of 4. We use learnable positional embeddings. We use
the “pre-norm” variant of Transformer following [17]. The output representation
that is passed to the projection head for pretraining, and used for downstream
tasks, is the CLS token of the last layer.

Tabular metadata encoders. For our experiments with metadata as tabu-
lar features, we decompose the metadata into atomic numerical or categorical
fields; the only field for which this is not straightforward is timestamp, which
we convert into year, month, day, hour, and weekday. The numerical features
are further standardized by removing the mean and scaling to unit variance.
We concatenate both numerical and categorical vectors and pass as input to a
FT-Transformer [11] composed of a feature tokenizer (see [11] for details) and a
Transformer with 3 layers, a width of 192, 8 attention heads per layer and a FFN
size factor of 4/3. We use the “pre-norm” variant of Transformer, and remove the
first normalization from the first layer following [11]. The output representation
that is passed to the projection head for pretraining, and used for downstream
tasks, is the CLS token of the last layer.

Projection heads. We follow [15] for the configuration of projection heads.
The projection head for the metadata-image loss in SatMIP(s) is a linear layer
specific to each modality that map each representation to a 512-dim embedding.
The projection head for the image-image loss in SimCLR and SatMIPS is a MLP
composed of 3 4096-dim hidden layers, interposed with BatchNorm and ReLU,
and outputs 256-dim embeddings.

Temporature scaling in contrastive loss. Following [15], the temperature
τ is set to 0.1 for the image-image loss in SimCLR and SatMIPS, while it is set
to a learnable parameter in the metadata-image loss in SatMIP(S).

Augmentation. We use the same augmentation policy across image inputs
in SimCLR/SatMIP(S). Borrowing from [2], we opt for a modified version of
the standard SimCLR policy for satellite images, composed of: random resized
cropping with a scale ratio sampled uniformly in [0.2, 1.0] and target size 224
px, color jittering with p = 0.8, grayscaling with p = 0.2, Gaussian blurring
with p = 0.5, horizontal flipping with p = 0.5; vertical flipping with p = 0.5,
and rotation with p = 0.75 by an angle sampled uniformly in {90, 180, 270}. In
the ablation of Tab. 6 in the main paper, the “crop” policy is random resized
cropping with a scale ratio sampled between [0.5, 1.0] [15].

Training. Most of our training hyperparameters are reused from [15], and we
translate their recipes of CLIP and SLIP to our SatMIP and SatMIPS, respec-
tively. We perform stochastic gradient descent with the AdamW [14] optimizer
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(with (β1, β2) = (0.9, 0.98) and ϵ = 1e− 8). We use a global batch size of 1024,
and a cosine learning rate decay, with 1 epoch of linear warmup [4]. We apply
the linear scaling rule [12] to set the initial learning rate: lr = lrbase ·bs/256, with
bs the batch size and lrbase a base learning rate. We train the models with mixed
precision. Base learning rate and weight decay have different values depending
on the model, given in the following table:

Model SimCLR SatMIP SatMIPS

base learning rate 2e-4 1.875e-4 3.75e-4
weight decay 0.1 0.5 0.5

In SatMIPS loss, we set the value of λ to 1. We show the impact of λ in
Tab. S4.

Code and compute environment. Our implementation of SimCLR, SatMIP
and SatMIPS is based on the official code of SLIP4. We use PyTorch 2.1. Train-
ings are performed on compute nodes with 4 Nvidia V100-32GB or 8 Nvidia
A100-40GB. kNN evaluations are performed on one V100-32GB.

C kNN classification details

After pretraining, the representation we evaluate is the CLS token output of
ViT backbones. We use a weighted kNN classifier following standard practice
[3,18,22]. We freeze the pretrained model and extract the representations of the
training and testing set examples. We classify each test sample by performing
a weighted vote among the top k training samples sorted by decreasing cosine
similarity. We do not use any data augmentation. We sweep the number of
neighbors k in the set {1, 5, 20, 100} for each model and dataset combination,
and report optimal results. For all contrastive-based models, we select k = 100
on fMoW and k = 5 on the other datasets. For MAE-based models, we select
k = 20 on fMoW and k = 5 on the other datasets. We enable mixed precision
for feature extraction and calculating the pairwise similarities between samples.

D Linear probing classification details

For linear probing, we fit a logistic regression classifier on the training set embed-
dings, using L-BFGS optimizer with 200 maximum iterations, and no regular-
ization. For bimodal classification, we first extract image and metadata features
and concatenate both [CLS] token embeddings, standardize the feature to zero
mean and unit variance, and fit a logistic regression classifier.

E Description of fMoW metadata

In Tab. S2, we detail the full set of 15 metadata fields from fMoW that we
considered throughout our experiments. Recall that by default, we used the
4 https://github.com/facebookresearch/SLIP

https://github.com/facebookresearch/SLIP
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subset of GSD, timestamp, and location fields (row (1), (4), and (5) in Tab. S2,
respectively). This full set of 15 fields was used in the ablation in ?? of the main
paper.

Additionally, we visualize the distribution of the main metadata fields:

– GSD: In Fig. S1, we observe that the vast majority of GSD width and height
values are concentrated between 0.3 m and 2 m. The distribution has a long
tail of higher GSD values ranging up to 23 m.

– Location: In Fig. S2, we see that locations span a global distribution across
all five continents. However, we note an overall bias towards the global North,
while some regions, such as Subsaharan Africa and South Asia, are under-
represented.

– Timestamp: In Fig. S3, we see that dates are unequally spread in the full
12-years time range, with the majority being 2014 and 2017. Months and
weekdays, however, are more uniformly distributed.

Fig. S1: Distribution of ground sampling distances (width and height) in the fMoW
training set. Note the log scale.

F Examples of images and metadata

Tab. S3 presents sample images and metadata pairs from the fMoW dataset, that
we used for metadata-image pretraining within SatMIP and SatMIPS. Metadata
is here shown as text form.

G Additional ablations

We present additional ablations of our SatMIP and SatMIPS models.
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Table S2: Details of the full set of 15 metadata fields selected from the fMoW dataset
for our experiments. Colors designate two types of metadata: (a) sensor : fields that are
determined by the sensor’s characteristics and/or it’s relative position to the target);
(b) environment: fields that are determined by the environment (i.e., the geotemporal
context). Refer to the fMoW paper [7] for a detailed documentation.

Field Description Example
value

Ground sample
distance

GSD of panchromatic band in the raw image strip, in meters.
Transformed according to resized cropping (cf . Sec. A).

[0.3749, 0.2916]

Multispectral
ground sample
distance

GSD of multispectral bands in the raw image strip, in meters.
We include the average of width and height. Transformed
according to resized cropping.

1.3365

Pixel size Size of a pixel in longitude and latitude units in the panchro-
matic band, in degrees. Transformed according to resized
cropping.

[3.27e-06,
2.54e-06]

Timestamp ISO UTC timestamp of acquisition down to the second. 2016-07-02
T12:40:44Z

Location Longitude (-180–180) and latitude (-90–90) of the image cen-
troid, in degrees. Transformed according to cropping (cf .
Sec. A).

[-43.246798,
-22.982982]

UTM zone Provides a number for the UTM zone (1–60), along with a
letter representing the latitude band (“C”–“X”).

23K

Country code ISO alpha-3 country code. BRA

Cloud cover Percentage of the raw image strip that is completely obscured
by clouds (0–100).

0

Scan direction Direction in which the sensor is pointed during take, rela-
tively to the orbital path. Equals “Forward" if taken ahead
of the orbital path and “Reverse" if taken behind.

Reverse

Wavelengths Approximate central wavelength of the red, green and blue
bands. b

[661, 545, 477]

Target azimuth Azimuth angle of the sensor to the center of the image strip,
from north, clockwise, in degrees (0–360).

0.58

Sun azimuth Azimuth angle of the sun to the center of the image strip,
from north, clockwise, in degrees (0–360).

67.86

Sun elevation Elevation angle of the sun from the horizon, in degrees (0–
90).

61.34

Off-nadir angle The off-nadir angle of the sensor to the center of the image
strip, in degrees (0–90).

43.92

Sensor platform Name of the sensor, among: WorldView-2, WorldView-3,
QuickBird-2, and GeoEye-1.

GEOEYE01

a Note that all sensors capture at the same wavelengths, so this field is constant throughout the
dataset, making it inoperative.
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Fig. S2: Distribution of geographic locations in the fMoW training set.

Fig. S3: Distribution of timestamps’ years, months and weekdays in the fMoW training
set.
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Table S3: Sample images from the fMoW dataset with their metadata as a formatted
text, using the full set of 15 fields described in Tab. S2. We also report the number
of resulting text tokens (excluding start-of and end-of-text tokens), and the class the
sample belongs to.

Image Metadata (text) Class

(1) ground_sample_distance: [11.4546, 9.1344],
multispectral_ground_sample_distance: 41.1896, pixel_size:
[1.03e-04, 8.23e-05], timestamp: 2015-09-21T15:30:08Z,
location: [-73.310776, -3.785814], utm_zone: 18M,
country_code: PER, cloud_cover: 14, scan_direction: Reverse,
wavelengths: [661, 545, 477], target_azimuth: 39.12,
sun_azimuth: 77.28, sun_elevation: 70.44, off_nadir_angle:
27.70, sensor_platform: GEOEYE01

Airport

(2) ground_sample_distance: [2.0638, 1.8120],
multispectral_ground_sample_distance: 7.7561, pixel_size:
[1.86e-05, 1.64e-05], timestamp: 2016-07-02T07:33:42Z,
location: [51.253020, 35.711928], utm_zone: 39S, country_code:
IRN, cloud_cover: 3, scan_direction: Forward, wavelengths:
[661, 545, 477], target_azimuth: 312.30, sun_azimuth: 126.03,
sun_elevation: 71.28, off_nadir_angle: 22.31, sensor_platform:
WORLDVIEW03_VNIR

Interchange

(3) ground_sample_distance: [1.8129, 1.9807],
multispectral_ground_sample_distance: 7.5664, pixel_size:
[1.65e-05, 1.80e-05], timestamp: 2014-05-27T03:05:01Z,
location: [120.572210, 14.984249], utm_zone: 51P,
country_code: PHL, cloud_cover: 6, scan_direction: Reverse,
wavelengths: [661, 545, 477], target_azimuth: 85.94,
sun_azimuth: 58.19, sun_elevation: 76.37, off_nadir_angle:
25.91, sensor_platform: WORLDVIEW02

Crop Field

(4) ground_sample_distance: [2.1283, 1.3499],
multispectral_ground_sample_distance: 6.9531, pixel_size:
[1.89e-05, 1.20e-05], timestamp: 2005-12-21T17:59:22Z,
location: [-105.222951, 39.749676], utm_zone: 13S,
country_code: USA, cloud_cover: 2, scan_direction: Forward,
wavelengths: [661, 545, 477], target_azimuth: 289.08,
sun_azimuth: 164.96, sun_elevation: 25.32, off_nadir_angle:
25.12, sensor_platform: QUICKBIRD02

Educational
Institution

(5) ground_sample_distance: [0.3191, 0.4155],
multispectral_ground_sample_distance: 1.4697, pixel_size:
[3.24e-06, 4.22e-06], timestamp: 2017-04-26T10:08:48Z,
location: [6.462309, 13.403795], utm_zone: 32P, country_code:
NGA, cloud_cover: 0, scan_direction: Reverse, wavelengths:
[661, 545, 477], target_azimuth: 341.90, sun_azimuth: 84.84,
sun_elevation: 69.78, off_nadir_angle: 17.99, sensor_platform:
GEOEYE01

Single-
Unit

Residential
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G.1 Multi-task balancing in SatMIPS loss

In Tab. S4, we ablate the value of the hyperparameter λ, which balances the
metadata-image and image-image objectives. We pretrain on fMoW for 25 epochs
with a textual metadata encoder. We observe that performance is not signifi-
cantly impacted by the choice of λ, provided that the value is greather than 0 (or
it is equivalent to SatMIP). SatMIPS can benefit equally from both objectives
regarless of their weighting.

Table S4: Impact of the multi-task loss balancing factor λ in SatMIPS. Note that
λ = 0 is equivalent to SatMIP as the SimCLR objective is null.

λ fMoW
F1

R45
Acc.

F23
Acc.

So2
Acc.

0 45.6±0.4 81.9±0.2 54.1±0.4 54.7±0.5

0.5 53.7±0.3 86.8±0.03 57.0±0.4 56.0±0.1

1.0 53.9±0.1 87.1±0.02 57.6±0.5 56.2±0.6

2 53.9±0.4 86.7±0.1 58.4±1.1 56.3±0.2

G.2 Textual vs. tabular metadata encoders in SatMIP

We present an extensive comparison of the two approaches we adopt for encoding
metadata within SatMIP: using a text encoder (BERT-style Transformer on tex-
tualized inputs), and a tabular encoder (FT-Transformer on featurized inputs).
Our choice for using a textual encoder was motivated by [25], who demonstrated
the flexibility and effectiveness of textual encoding on EXIF tags. Nevertheless,
we may hypothesize that a textual representation should be ill-suited for numer-
ical fields such as location or GSD: as it treats them as sequences of digit tokens,
it must limited understanding of those fields. Using vectorized features as in-
put to a tabular encoder must be more suited for numerical fields by definition.
First, in Tab. S5, we compare the kNN classification performance of SatMIP(S)
trained with both type of encoders on the various datasets as well as their ef-
ficiency. We observe that for SatMIP, surprisingly, a textual encoder tends to
perform better, with higher accuracies on 5 out of the 7 datasets. For SatMIPS,
their performance is on par overall, except in favor of the textual encoder on one
dataset (O31). These results indicate that a textual encoder tends to be more
effective, although the tabular encoder is competitive. However, this observation
may just be due to the choice of hyper-parameters, as we mostly reused the
hyperparameters from SLIP [15] with minimal tuning, and SLIP uses a textual
encoder on language captions. Therefore, we cannot draw any definitive conclu-
sions. However, we note that the tabular encoder is more memory efficient, as it
requires way less tokens to train (about 10× for GSD, timestamp and location
as inputs).
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Then, in Sec. G.2, we compare the linear probing performance of SatMIP(S)
trained with both encoders using multiple modalities. We observe than when
metadata features are used as input to classification, the tabular encoder peforms
much better than the textual encoder, which is in contrast to using image features
alone. This clearly shows that numerical fields understanding is important for
deploying metadata encoders. The textual encoder might be good at solving
the image-metadata matching task from token sequences, but it is limited in
it’s ability to generalize to new data on downstream tasks. This shows that a
tabular encoder should be favored when considering multimodal classification
with SatMIP(S).

Table S5: kNN classification performance with a tabular encoder vs. a textual encoder
for metadatas. 200 epochs pretraining on fMoW. Training time and memory usage are
relative to the baseline, SimCLR.

Model Encoder fMoW
F1

R45
Acc.

O31
Acc.

UCM
Acc.

FGSC-23
F1

Euro
Acc.

So2
Acc.

Train.
time

Mem.
/GPU

SatMIP Textual 55.2±0.2 87.5±0.1 84.8±0.6 95.2±0.8 56.4±0.2 95.7±0.5 55.9±0.2 0.56 0.62
Tabular 55.8±0.3 87.2±0.3 82.4±0.9 94.3±0.3 55.3±1.3 94.2±0.4 55.2±0.5 0.56 0.52

SatMIPS Textual 62.4±0.1 89.7±0.1 88.1±1.1 95.2±0.6 58.8±0.5 94.8±0.1 57.3±0.1 1.05 1.11
Tabular 62.5±0.4 89.6±0.2 86.5±0.9 95.6±0.4 59.2±1.1 94.9±0.2 57.2±0.4 1.05 1.01

H Additional results

We report additional results corresponding to the experiments presented in the
main paper.

We have analyzed the time and memory efficiency of method relatively to our
baseline (SimCLR). In Tab. S7, we report the absolute numbers, corresponding
to the 200 epochs pretraining runs in ?? of the main paper.

I CO2 emissions related to experiments

Experiments performed throughout this project consumed a total of 5,123 hours
of V100-SXM2-32GB compute and 9358 hours of A100-SXM4-80GB compute.
We performed our experiments on the Jean Zay HPC cluster from IDRIS, lo-
cated in Orsay, France. As reported by our HPC cluster monitoring tool, the
experiments amount to a total of 0,504 T CO2eq.
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