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A Implementation Details

RGB-SLAM We reimplement NeRF-SLAM [8] with torch-ngp [11]. Our model
takes the same inputs as in NeRF-SLAM [8]. We utilize camera poses, depth
estimates, and uncertainty maps of keyframes from NeRF-SLAM. We sequen-
tially add keyframes to the training set. The learning rate for camera tracking
is 1e — 4. The learning rate for the tone-mapping module is le — 4. We utilize
camera preconditioning [6] for virtual camera pose optimization. We use pho-
tometric errors instead of 2D projections to make camera poses to change in
motion-blur direction.

RGBD-SLAM For ScanNet [3], we follow the experimental setup of SplaTAM [5],
except for unpadding edges. We unpad 24 pixels in color images and 12 pix-
els in depth images to ignore black regions caused by the calibration process.
I?-SLAM parameterizes virtual camera poses with center poses and velocities.
We use the same learning rate for the center pose and translational velocity
as SplaTAM, while the learning rate for the rotational velocity is set to one-
tenth. The learning rate for the tone-mapping module is 1le — 2. The learning
rate for the trajectory regularizer is 1e6. I>-SLAM optimizes monochromatic
WB for ScanNet. For the synthetic dataset, 72-SLAM optimizes monochromatic
WB and monochromatic CRF. We initialize virtual camera poses by interpo-
lating between the current frame and the previous frame by a factor of 1/10.
The learning rate for trajectory regularizer is le4. The learning rate for camera
tracking is 5e — 5. The mapping interval is every five frames. We use 30 iterations
for mapping and 200 iterations for tracking.

B Dataset

Synthetic dataset We create a new synthetic dataset that simultaneously consid-
ers autoexposure and motion blur with Blender’s |1] Cycles engine. We use three
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(a) Blurry keyframe (b) Sharp keyframe (c) Blurry keyframe (d) Sharp keyframe
in ScanNet in ScanNet in TUM-RGBD in TUM-RGBD

Fig. 1: Examples of sharp keyframes and blurry keyframes in real-world datasets.

Blender scenes with trajectories manually set for each scene pretending a hu-
man is capturing the scene. At first, we render HDR images along the trajectory
without motion blur for ground truth images. Then we render LDR images from
the HDR images based on the classical Reinhard tone-mapping [7]. We define
our tone-mapping function following HDR-NeRF :

ILDR:255((AtIHDR/(AtIHDR+1))1/2'2, (1)

where I pr and Igpr are the pixel value of LDR and HDR images, At = 28V
is the exposure time and EV is the exposure value. We set E'V for each frame by
converting the HDR RGB image to gray values and mapping the LDR output of
the median gray value to 255/2. Finally, we blur the LDR images using Blender’s
built-in motion blur function. We set the shutter curve as a square function. The

shutter value SV; of the ith frame is decided by the exposure as follows:
SV; = a2FVi -, 2)

where a and b are the predefined parameters per scene and trajectory. Specifi-
cally, we set a and b by forcing the minimum and maximum shutter values to
be 0.1 and 1 for each trajectory in the scene for our dataset.

Real-world dataset We use part of the sequences as input instead of the entire
sequences for experiments in Scannet (0~300 in 0024-01, 0~300 in 0031-00,
1000~1400 in 0736-00, and 0~500 in 0785-00). As real-world datasets are heav-
ily affected by motion blur, it is unlikely to evaluate the image quality with the
entire input as a reference. Therefore, we manually annotate sharp images from
input image sequences to evaluate rendering quality in real-world datasets. 9.5%
of input frames from ScanNet [3| and 29.7% from TUM-RGBD are selected
for evaluation. We select the entire frame of fr2/xyz of TUM-RGBD for evalu-
ation since the corresponding scene was carefully captured to avoid motion blur.
Figure [I] depicts examples of selected sharp and blurry images.

C Trajectory Regularization

In this section, we explain our trajectory loss terms (Eq. 16 and 17 in the main
manuscript) in more detail, especially describing the relationship between the
global scale parameter a and the frame rate of input video.
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Table 1: Rendering quality comparison against RGBD-SLAM baselines on ScanNet |3].
I?-SLAM in this table represents our RGBD-SLAM model which is incorporated into
SplaTAM [5].

ScanNet |[3]

Methods Metrics 504 01 0031-00 0736-00 0785-00

PSNR 17.34 21.05 16.38  19.89
Co-SLAM [12] SSIM 0.570 0.645 0.525  0.647
LPIPS 0.542 0.473 0.651  0.618

PSNR 17.67 21.09 16.21  20.71
Point-SLAM [9] SSIM  0.533  0.605 0.508  0.677
LPIPS 0.439 0417 0.508 0.483

PSNR 21.60 24.64 24.50 19.63
SplaTAM |[5] SSIM  0.786 0.773 0.847 0.719
LPIPS 0.236 0.275 0.182  0.340

PSNR 23.39 26.89 24.07 26.40
I*-SLAM SSIM  0.780 0.796 0.828 0.762
LPIPS 0.180 0.236 0.175 0.238

The trajectory loss guides the start and end camera poses to be located on
the global trajectory. Here, global trajectory stands for the trajectory defined
by the middle camera position of each frames. Specifically, we define trajectory
loss as a L2-norm between start and end camera poses and the one point on
linear interpolant of t* and t‘~!. Also, the interpolating parameter should be
determined by the timestamp of start and end poses.

Also, when we assume the linear motion during the exposure time, t' —

, 1 ottt
il = }, where t* = % and f is the frequency of the input video samples.
o t ,
Also, t' —t! = 5 Therefore, the translation vector of the start position t(¢)

fAt

should be located on LERP(ti =1, t?,1— ). Now, we can find the relationship

f

between the global scale parameter a and the video frame rate f, a = 5" Same

analogy holds for the end camera location and rotation vectors.

D Additional Experimental Results

Comparison with more baselines We further compare I>-SLAM with two widely
used neural RGBD-SLAM methods, Co-SLAM [12] and Point-SLAM [9]. In Tab.[T]
Both two methods show a lack of rendering performance in ScanNet’s all scenes
except scene 0785-00. As depicted in Fig. [4] scene 0785-00 contains severe
appearance changes which can cause inaccurate mapping on homogeneous sur-
faces. SplaTAM shows inferior performance than other baselines. However, by
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Fig. 2: PSNR variation over the number of virtual cameras
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Fig. 3: Renderings of RGB-SLAM with image enhancements.

integrating our method into SplaTAM, it outperforms other methods with a
large margin.

Qualitative results We conduct more qualitative comparison in Figs. [ to [7}
Figure[d]demonstrates qualitative results of our RGBD-SLAM model in ScanNet.
I%2-SLAM renders sharp images even when blurry frames are used for mapping. In
the scene 0785-00, I2-SLAM successfully reflects extreme appearance changes.
Figures [ and [7] show that our method reconstructs small objects, e.g., a pen
and a scissors, and areas with complex texture. The effect of our tone-mapper
can be seen through the removal of artifacts in Fig. [0}

Effects of the number of virtual cameras We use five virtual cameras to ap-
proximately simulate motion blur. We conduct an ablation study on the num-
ber of virtual cameras. Figure [2] shows results with our RGB-SLAM model in
Italian-flat-1. With an increasing number of cameras, the performance sees
an upward trend. Considering the trade-off between performance and runtime,
we use five virtual cameras.
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Table 2: Results of RGB-SLAM with enhanced image inputs.

TUM-RGBD Synthetic
Methods ATE | PSNR 1 SSIM 1 LPIPS | ATE | PSNR 1 SSIM 1 LPIPS |
NeRF-SLAM 3.21  26.89 0.817 0.227 247 27.41 0.828 0.310
NeRF-SLAM+ |2] 3.27 26.61 0825 0.202 3.77 27.65 0.820 0.237
NeRF-SLAM+ [2|+TM 2.80 26.22 0.814 0.215 348 27.13 0.809 0.254
I?-SLAM 1.28 29.40 0.861 0.151 1.48 29.59 0.878 0.256

E Comparison with SLAM using 2D Image Deblurring

We conduct comparisons with the RGB-SLAM with enhanced image inputs. We
first deblur input frames with NAFNet [2] and run NeRF-SLAM with deblurred
images. In Tab. 2 and Fig. 3] even with the deblurred inputs, there is no signifi-
cant improvement in tracking and rendering quality. While integrating our tone
mapper (TM) enhances trajectory accuracy, it still shows lower performance
compared to I2-SLAM. This is attributed to the multi-view inconsistency in
image deblurring process.
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Fig. 4: Additional qualitative results in ScanNet [3| dataset.
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Input Frame NeRF-SLAM' I?-SLAM

Fig. 5: Additional qualitative results in £r1/desk of TUM-RGBD

Input Frame NeRF-SLAM'

Fig. 6: Additional qualitative results in fr2/xyz of TUM-RGBD
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Fig. 7: Additional qualitative results in fr3/office of TUM-RGBD
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