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Abstract. Manually creating textures for 3D meshes is time-consuming,
even for expert visual content creators. We propose a fast approach for
automatically texturing an input 3D mesh based on a user-provided text
prompt. Importantly, our approach disentangles lighting from surface
material/reflectance in the resulting texture so that the mesh can be
properly relit and rendered in any lighting environment. We introduce
LightControlNet, a new text-to-image model based on the ControlNet
architecture, which allows the specification of the desired lighting as a
conditioning image to the model. Our text-to-texture pipeline then con-
structs the texture in two stages. The first stage produces a sparse set of
visually consistent reference views of the mesh using LightControlNet.
The second stage applies a texture optimization based on Score Distil-
lation Sampling (SDS) that works with LightControlNet to increase the
texture quality while disentangling surface material from lighting. Our
algorithm is significantly faster than previous text-to-texture methods,
while producing high-quality and relightable textures.

1 Introduction

Creating high-quality textures for 3D meshes is crucial across industries such as
gaming, film, animation, AR/VR, and industrial design. Traditional mesh tex-
turing tools are labor-intensive, and require extensive training in visual design.
As the demand for immersive 3D content continues to surge, there is a pressing
need to streamline and automate the mesh texturing process (Figure 1).

In the past year, significant progress in text-to-image diffusion models [41,
43, 44] has created a paradigm shift in how artists create images. These mod-
els allow anyone who can describe an image in a text prompt to generate a
corresponding picture. More recently, researchers have proposed techniques for
leveraging such 2D diffusion models for automatically generating textures for
an input 3D mesh based on a user-specified text prompt [7,8,28,42]. But these
methods suffer from three significant limitations that restrict their wide-spread
adoption in commercial applications: (1) slow generation speed (taking tens of
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minutes per texture), (2) potential visual artifacts (e.g., seams, blurriness, lack
of details), and (3) baked-in lighting causing visual inconsistency in new lighting
environments (Figure 2). While some recent methods address one or two of these
issues, none adequately address all three.

“Marble goblet with 
white base color 
and red veins”

“Stone Goblet 
carved with runes 

and symbols”

“Wooden goblet with 
grain patterns”

“Metal goblet intricately 
designed to reflect a 
Van Gogh painting”

Light Probe

Fig. 1: We propose an efficient approach for texturing an input 3D mesh given a user-
provided text prompt. Our generated texture can be relit properly in different lighting
environments. The light probe shows the varied lighting environment. We suggest the
readers check our video results of rotating lighting in our supplementary material.

In this work, we propose an efficient approach for texturing an input 3D mesh
based on a user-provided text prompt that disentangles the lighting from sur-
face material/reflectance to enable relighting (Figure 1). Our method introduces
LightControlNet, an illumination-aware text-to-image diffusion model based
on the ControlNet [61] architecture, which allows specification of the desired
lighting as a conditioning image for the diffusion model. Our text-to-texture
pipeline uses LightControlNet to generate relightable textures in two stages. In
stage 1, we use multi-view visual prompting in combination with the Light-
ControlNet to produce visually consistent reference views of the 3D mesh for a
small set of viewpoints. In stage 2, we perform a new texture optimization
procedure that uses the reference views from stage 1 as guidance, and extends
Score Distillation Sampling (SDS) [38] to work with LightControlNet. This al-
lows us to increase the texture quality while disentangling the lighting from sur-
face material/reflectance. We show that the guidance from the reference views
allows our optimization to generate textures with over 10x speed-up than pre-
vious SDS-based relightable texture generation methods such as Fantasia3D [8].
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(b) Reference Lighting Composite RGB Diffuse Specular Composite RGB Diffuse Specular(a) Mesh
(c) Fantasia3D Texture (d) Our Texture

Fig. 2: Given a 3D mesh of a helmet (a) and a lighting environment L, the reference
rendering (b) depicts the “correct” highlights on the mesh due to L, by treating its sur-
face reflectance as half-metal and half-smooth with a gray diffuse color. (c) The texture
generated by the leading method Fantasia3D [8] is not properly relit as Fantasia3D
bakes most of the lighting into the diffuse texture for the mesh and does not capture
the bright highlights in the specular texture. (d) In contrast, our pipeline disentangles
lighting from material, better capturing the diffuse and specular components of the
metal helmet in this environment. Text prompt: “A medieval steel helmet.”

Furthermore, our experiments show that the quality of our textures is generally
better than those of existing baselines in terms of FID, KID, and user study.

2 Related Work

Text-to-Image generation. Recent years have seen significant advancements
in text-to-image generation empowered by diffusion models [41, 43, 44]. Stable
Diffusion [43], for example, trains a latent diffusion model (LDM) on the latent
space rather than pixel space, delivering highly impressive results with affordable
computational costs. Further extending the scope of text-based diffusion models,
works such as GLIGEN [22], PITI [54], T2IAdapter [30], and ControlNet [61]
incorporate spatial conditioning inputs (e.g., depth maps, normal maps, edge
maps, etc.) to enable localized control over the composition of the result. Beyond
their power in image generation, these 2D diffusion models, trained on large-scale
text-image paired datasets, also contribute valuable priors to various other tasks
such as image editing [14,27], 3D generation [38,40], and 3D editing [12,18,52,64].
Text-to-3D synthesis. The success of text-to-image synthesis has sparked con-
siderable interest in its 3D counterpart. Some approaches [20, 33, 47, 63] train a
text-conditioned 3D generative model akin to 2D models, while others employ 2D
priors from pre-trained diffusion models for optimization [8,21,24,28,38,49,53,55]
and multi-view synthesis [26, 46]. For instance, DreamFusion [38] and Score Ja-
cobian Chaining [53] were the first to propose Score Distillation Sampling to op-
timize a 3D representation using 2D diffusion model gradients. Zero-1-to-3 [26]
synthesizes novel views using a pose-conditioned 2D diffusion model. Yet, these
methods often produce blurry, low-frequency textures that bake lighting into
surface reflectance. Fantasia3D [8] can generate more realistic textures by incor-
porating physics-based materials. However, the resulting materials remain en-
tangled with lighting, making it difficult to relight the textured object in a new
lighting environment. In contrast, our method effectively disentangles the light-
ing and surface reflectance texture. Concurrent to our work, MATLABER [58]
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Fig. 3: Text-to-Texture pipeline. Our method efficiently synthesizes relightable tex-
tures given a 3D mesh and text prompt. In stage 1 (top left), we use multi-view visual
prompting with our LightControlNet to generate four visually consistent canonical
views of the mesh under fixed lighting, concatenated into a reference image Iref. In
stage 2, we apply a new texture optimization procedure using Iref as guidance along
with a multi-resolution hash-grid representation of the texture Γ (β(·)). For each itera-
tion, we render two batches of images using Γ (β(·)) – one using the canonical views and
lighting of Iref to compute a reconstruction loss Lrecon and the other using randomly
sampled views and lighting to compute an SDS loss LSDS based on LightControlNet.

aims to recover material information in text-to-3D generation using a material
autoencoder. Our method, however, differs in approach and improves efficiency.
3D texture generation. The area of 3D texture generation has evolved over
time. Earlier models either directly took 3D representations as input to neural
networks [4,48,59] or used them as templates [35,37]. While some methods also
use differentiable rendering to learn from 2D images [4, 13, 37, 59], the models
often fail to generalize beyond the limited training categories. Closest to our work
are the recent works that use pre-trained 2D diffusion models and treat texture
generation as a byproduct of text-to-3D generation. Examples include Latent-
Paint [28], which uses Score Distillation Sampling in latent space, Text2tex [7],
which leverages depth-based 2D ControlNet, and TEXTure [42], which exploits
both previous methods. Nonetheless, similar to recent text-to-3D models, such
methods produce textures with entangled lighting effects and suffer from slow
generation. On the other hand, TANGO [9], generates material textures using
a Spherical-Gaussian-based differentiable renderer, but struggles with complex
texture generation. A concurrent work, Paint3D [60], aims to generate lighting-
less textures, yet it cannot produce material-based textures like ours.
Material generation. Bidirectional Reflection Distribution Function (BRDF)
[34] is widely used for modeling surface materials in computer vision and graph-
ics. Techniques for recovering material information from images often leverage
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neural networks to resolve the inherent ambiguities when applied to a limited
range of view angles or unknown illuminations. However, these methods often
require controlled setups [23] or curated datasets [2, 11, 56], and struggle with
in-the-wild images. Meanwhile, material generation models like ControlMat [50],
Matfuse [51], and Matfusion [45] use diffusion models for generating Spatially-
Varying BRDF (SVBRDF) maps but limit themselves to 2D generation. In con-
trast, our method creates relightable materials for 3D meshes.

3 Preliminaries

Our text-to-texture pipeline builds on several techniques that have been recently
introduced for text-to-image diffusion models. Here, we briefly describe these
prior methods and then present our pipeline in Section 4.
ControlNet. ControlNet [61] is an architecture designed to add spatially local-
ized compositional controls to a text-to-image diffusion model, such as Stable
Diffusion [43], in the form of conditioning imagery (e.g., Canny edges [5], Open-
Pose keypoints [6], depth images, etc.). In our work, where we take a 3D mesh as
input, the conditioning image Icond(C) is a rendering of the mesh from a given
camera viewpoint C. Then, given text prompt y,

Iout = ControlNet(Icond(C), y),

where the output image Iout is conditioned on y and Icond. ControlNet introduces
a parameter s that sets the strength of the conditioning image. When s = 0,
the ControlNet simply produces an image using the underlying Stable Diffusion
model, and when s = 1, the conditioning is strongly applied.
Score Distillation Sampling (SDS). DreamFusion [38] optimizes a 3D NeRF
representation θ [1,29] conditioned on text prompts using a pre-trained 2D text-
to-image diffusion model. A differentiable renderer R applied to θ with a ran-
domly sampled camera view C then generates a 2D image x = R(θ, C). A small
amount of noise ϵ ∼ N(0, 1) is then added to x to obtain a noisy image xt.
DreamFusion leverages a diffusion model ϕ (Imagen [44]) to provide a score
function ϵ̂ϕ(xt; y, t), which predicts the sampled noise ϵ given the noisy image
xt, text prompt y, and noise level t. This score function can update the scene
parameters θ, using the gradient calculated by SDS:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(xt; y, t)− ϵ)

∂x

∂θ

]
,

where w(t) is a weighting function. During each iteration, to calculate the SDS
loss, we randomly choose a camera view C, render the NeRF θ to form an
image x, add noise ϵ to it, and predict the noise using the diffusion model ϕ.
DreamFusion optimzes for 5,000 to 10,000 iterations. In our work, we introduce
an illumination-aware SDS loss to optimize surface texture on a mesh to suppress
inconsistency artifacts and simultaneously separate lighting from the material.
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(b) Inference with LightControlNet

Conditioning Image “Metal …” “Wooden …”“Leather …”

(a) Rendering Conditioning Image

Mesh

Full Color Image

Non-Metal,
Not Smooth

Half-Metal,
Half Smooth

Pure Metal,
Smooth

stack

Conditioning Image

Fig. 4: (a) LightControlNet requires a conditioning image that specifies desired lighting
L for a view C of a 3D mesh. To form the conditioning image, we render the mesh with
the desired L and C using three different materials: (1) non-metal, not smooth, (2)
half-metal, half-smooth, and (3) pure metal, smooth, and then combine the renderings
into a single three-channel image. (b) LightControlNet is a diffusion model conditioned
on such light-conditioning images and text prompts.

4 Method

Our text-to-texture pipeline operates in two main stages to generate a relightable
texture for an input 3D mesh with a text prompt (Figure 3). In Stage 1, we use
multi-view visual prompting to obtain visually consistent views of the object
from a small set of viewpoints, using a 2D ControlNet. Simply backprojecting
these sparse views onto the 3D mesh could produce patches of high-quality tex-
ture but would also generate visible seams and other visual artifacts where the
views do not fully match. The resulting texture would also have lighting baked-
in, making it difficult to relight the textured mesh in a new lighting environment.
Therefore, in Stage 2, we apply a texture optimization that uses a ControlNet
in combination with Score Distillation Sampling (SDS) [38] to mitigate such ar-
tifacts and separate lighting from the surface material properties. In both stages,
we introduce a new illumination-aware ControlNet that allows us to specify the
desired lighting as a conditioning image for an underlying text-to-image diffu-
sion model. We call this model LightControlNet and describe how it works in
Section 4.1. We then detail each stage in Section 4.2 and Section 4.3, respectively.

4.1 LightControlNet

LightControlNet adapts the ControlNet architecture to enable control over the
lighting in the generated image. Specifically, we create a conditioning image for
a 3D mesh by rendering it using three pre-defined materials and under known
lighting conditions (Figure 4). These renderings encapsulate information about
the desired shape and lighting for the object, and we stack them into a three-
channel conditioning image. We have found that setting the pre-defined materials
to (1) non-metal, not smooth; (2) half-metal, half-smooth; and (3) pure metal,
extremely smooth, respectively, works well in practice.
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Conditioning Images

(a) Independent Inputs to LightControlNet
produce visual inconsistencies

(b) Concatenated Input to LightControlNet
produces more consistent output

Conditioning ImageLightControlNet Outputs LightControlNet Output

Fig. 5: Multi-view visual prompting. (a) When we independently input four canon-
ical conditioning images to LightControlNet, it generates four very different appear-
ances and styles even with a fixed random seed. (b) When we concatenate the four
images into a 2×2 grid and pass them as a single image into LightControlNet, it pro-
duces a far more consistent appearance and style. Text prompt: “A hiking boot”.

To train our LightControlNet, we use 40K objects from the Objaverse dataset
[10]. Each object is rendered from 12 views using a randomly sampled camera C
and lighting L sampled from 6 environment maps sourced from the Internet. L is
also subject to random rotation and intensity scaling. For each resulting (L,C)
pair, we render the conditioning image using the pre-defined materials, as well
as the full-color rendering of the object using its original materials and textures.
We use the resulting 480K pairs of (conditioning images, full-color rendering) to
train LightControlNet using the approach of Zhang et al. [61].

Once LightControlNet is trained, we can specify the desired view and lighting
for any 3D mesh. We first render the conditioning image with the desired view
and lighting and then pass it along with a text prompt into LightControlNet,
to obtain high-quality images. These images are spatially aligned to the desired
view, lit with the desired lighting, and contain detailed textures (Figure 4).
Distilling the encoder. We improve the efficiency of SDS by distilling the
image encoder in Stable Diffusion (SD) [43], the base diffusion model in the
ControlNet architecture. The original SD encoder consumes almost 50% of the
forward and backward time of SDS calculation, primarily in downsampling the
input image. Metzer et al. [28] have found the image decoder can be closely
approximated by per-pixel matrix multiplication. Inspired by this, we distill
the encoder by removing its attention modules and training it on the COCO
dataset [25] to match the original output. This distilled encoder runs 5x faster
than the original one, resulting in an approximately 2x acceleration of our text-
to-texture pipeline without compromising output quality (Table 3).

4.2 Stage 1: Multi-view Visual Prompting

In Stage 1, we leverage LightControlNet to synthesize high-quality 2D images
for a sparse set of views of the 3D mesh. Specifically, we create conditioning
images for four canonical views C∗ around the equator of the 3D mesh using a
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fixed lighting environment map L∗ sampled from a set of environment maps. One
approach to generating the complete texture for the mesh would be to apply the
LightControlNet independently with each such conditioning image, but using
the same text prompt, and then backprojecting the four output images to the
surface of the 3D mesh. In practice, however, applying the LightControlNet to
each view independently produces inconsistent images of varying appearance
and style, even when the text prompt and random seed remain fixed (Figure 5).

We use a multi-view visual prompting approach to mitigate this multi-view
inconsistency issue. We concatenate the conditioning images for the four canon-
ical views into a single 2 × 2 grid and treat it as a single conditioning image.
We observe that applying LightControlNet to all four views simultaneously, us-
ing this combined multi-view conditioning image, results in a far more consistent
appearance and style across the views, compared to independent prompting (Fig-
ure 5). We suspect this property arises from the presence of similar training data
samples – grid-organized sets depicting the same object – in Stable Diffusion’s
training set, which is also observed in concurrent works [57, 62]. Formally, we
generate the conditioning image Icond(L

∗, C∗) under a fixed canonical lighting
condition L∗ using four canonical viewpoints C∗. We then apply our LightCon-
trolNet with text prompt y to generate the corresponding reference image Iref:

Iref = ControlNet(Icond(L
∗, C∗), y).

4.3 Stage 2: Texture Optimization

In Stage 2, we could directly backproject the four reference views output in
Stage 1 onto the 3D mesh using the camera matrix C associated with each view.
While the resulting texture would contain some high-quality regions, it would
also suffer from two problems: (1) It would contain seams and visual artifacts
due to remaining inconsistencies between overlapping views, occlusions in the
views that leave parts of the mesh untextured, and loss of detail when applying
the backprojection transformation and resampling the views. (2) as lighting is
baked into the LightControlNet’s RGB images, it would also be baked into the
backprojected texture, making it difficult to relight the mesh.

To address both issues, we employ texture optimization using SDS loss.
Specifically, we use a multi-resolution hash-grid [31] as our 3D texture repre-
sentation. Given a 3D point p ∈ R3 on the mesh, our hash-grid produces a
32-dim multi-resolution feature, which is then fed to a 2-layer MLP Γ to obtain
the texture material parameters for this point. Similar to Fantasia3D [8], these
material parameters consist of metallicness km ∈ R, roughness kr ∈ R, a bump
vector kn ∈ R3 and the base color kc ∈ R3. Formally,

(kc, km, kr, kn) = Γ (β(p)),

where β is the multi-resolution hash encoding function. Notably, this 3D hash-
grid representation can be easily converted to 2D UV texture maps, which
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are more friendly to downstream applications. Given the mesh M , the texture
Γ (β(·)), a camera view C and lighting L we can use nvdiffrast [19], a differen-
tiable renderer R to produce a 2D rendering of it, x, as

x = R(M,Γ (β(·)), L, C).

More details about the rendering equation are in the arXiv version. Since the
mesh geometry is fixed, we omit M in the remainder of the paper.

Recall that the optimization approach of DreamFusion [38] randomly samples
camera views C, generates an image for C using diffusion model ϕ, and supervises
the optimization using the SDS loss. We extend this optimization in two ways.
First, we use four fixed reference images Iref with their canonical views C∗ and
lighting L∗ to guide the texture optimization through a reconstruction loss:

Lrecon = ||Iref −R(Γ (β(·)), L∗, C∗)||2 + Lperceptual(Iref,R(Γ (β(·)), L∗, C∗)),

where both L2 loss and perceptual loss [17] are used. For a non-canonical view
C, we sample a random lighting L and use the SDS loss to supervise the opti-
mization, but with our LightControlNet as the diffusion model ϕLCN, so

∇Γ,βLSDS(ϕLCN, x) = Et,ϵ

[
w(t)(ϵ̂ϕLCN(xt; y, t, Icond(L,C))− ϵ)

∂x

∂Γ (β(·))

]
,

where x = R(Γ (β(·)), L, C) and w(t) is the weight.
Finally, we employ a material smoothness regularizer on every iteration to

enforce smooth base colors, using the approach of nvdiffrec [32]. For a surface
point p with base color kc(p), the smoothness regularizer is defined as

Lreg =
∑
p∈S

|kc(p)− kc(p+ ϵ)|,

where S denotes the object surface and ϵ is a small random 3D perturbation.
We use λrecon = 1000 and λreg = 10 to reweight the loss Lrecon and Lreg.
Scheduling the optimization. We warm up the optimization by rendering the
four canonical views and applying Lrecon for 50 iterations. We then add in itera-
tions using LSDS and optimize over randomly chosen camera views and randomly
selected lighting from a pre-defined set of environmental lighting maps. Specif-
ically we alternate iterations between using LSDS and Lrecon. In addition, for a
quarter of the SDS iterations, we use the canonical views rather than randomly
selecting the views. This ensures that the resulting texture does not overfit to the
reference images corresponding to the canonical views. The warm-up iterations
capture the large-scale structure of our texture and allow us to use relatively
small noise levels (t ≤ 0.1) in the SDS optimization. We sample the noise follow-
ing a linearly decreasing schedule [16] with tmax = 0.1 and tmin = 0.02. We also
adjust the conditioning strength s of our LightControlNet in LSDS linearly from
1 to 0 over these iterations so that LightControlNet is only lightly applied by the
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end of the optimization. We also experimented with a recent variant Variational
Score Distillation [55], but did not observe notable improvement. We have exper-
imentally found that we obtain high-quality textures after 400 total iterations of
this optimization and this is far fewer iterations than other SDS-based texture
generation techniques such as Fantasia3D [8] which requires 5000 iterations.
Faster pipeline without relightability. Our two-stage pipeline is also com-
patible with off-the-shelf depth ControlNet and Stable Diffusion [43] as the back-
bone replacement of LightControlNet. Specifically, we can replace the LightCon-
trolNet in Stage 1 with a depth ControlNet that uses a depth rendering of the
mesh as the conditioning image, and uses Stable Diffusion based SDS in Stage
2. In scenarios where texture relightability is not required, this variant offers an
additional 2× speed-up (as shown in Table 1), since it eliminates the additional
computation required by LightControlNet forward pass in the SDS optimization.

5 Experiments

In this section, we present comprehensive experiments to evaluate the efficacy
of our proposed method for relightable, text-based mesh texturing. We perform
both qualitative and quantitative comparisons with existing baselines, along with
an ablation study on the significance of each of our major components.
Dataset. As illustrated in Figure 3, we employ Objaverse [10] to render paired
data to train our LightControlNet. Objaverse consists of approximately 800k
objects, of which we use the names and tags as their text descriptions. We filter
out objects with low CLIP similarity [39] to their text descriptions and select
around 40k as our training set. To evaluate baselines and our method, we hold
out 70 random meshes from Objaverse [10] as the test set. We additionally gather
22 mesh assets from 3D online games with 5 prompts each to assess our method.
Baselines. We compare our approach with existing mesh texturing methods.
Specifically, Latent-Paint [28] employs SDS loss in latent space for texture gen-
eration. Text2tex [7] progressively produces 2D views from chosen viewpoints,
followed by an inverse projection to lift them to 3D. TEXTure [42] utilizes a
similar lifting approach but supplements it with a swift SDS optimization post-
lifting. Beyond these texture generation methods, text-to-3D approaches serve
as additional baselines, given that texture is a component of 3D generation. No-
tably, we choose Fantasia3D [8] as a baseline, the first to use a material-based
representation for textures in text-to-3D processing.
Quantative evaluation. In Table 1, we compare our method with the base-
lines on the Objaverse [10] test set. For each method, we generate 16 views and
evaluate Frechet Inception Distance (FID) [15,36] and Kernel Inception Distance
(KID) [3] compared with ground-truth renderings. Two variations of our method
are assessed. Both variants use ourr two-stage pipeline, and the first employs a
standard depth ControlNet, while the second uses our proposed LightControl-
Net. Our method outperforms the baselines in both quality and runtime.
Qualitative analysis. In Figure 6, our method can generate highly detailed tex-
tures that can be rendered properly with the environment lighting across various
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“Stylish Boot”

“1978 Puch Moped, motorcycle”

“A vintage space explorer 
jacket with a matching 
helmet, …”

“Jacket made from the 
fabrics of a ghost ship, 
…”

“Futuristic Helmet, …”“Hylian goblin soldier 
from legend of zelda …”

“Mermaid warrior, …”“A stylish jacket, …” “Jacket that gives the 
impression of a swirling 
nebula, …”

“An astronaut wolf, …”

“Pinecone”

“Wooden Boat”

Fig. 6: Sample results from our method applied to Objaverse test meshes (top half)
and 3D game assets (bottom half). To illustrate the efficacy of our relightable textures,
for each textured mesh, we fix the environment lighting and render the mesh under
different rotations. As shown above, our method is able to generate textures that are
not only highly detailed, but also relightable with realistic lighting effects.

meshes. We also visually compare our method and the baselines in Figure 7. Our
method produces textures with higher visual fidelity for both the relightable and
non-relightable variants. In particular, when compared with Fantasia3D [8], a re-
cent work that also aims to generate material-based texture, our results not only
have superior visual quality, but also disentangle the lighting more successfully.

User study. To further evaluate the texture quality quantitatively, we conduct
a user study comparing our results with each of the baselines on the Objaverse
test set in Table 2. We asked 30 participants to evaluate (1) the realism of the
results, (2) the consistency of the generated texture with the input text, and
(3) the plausibility of the results when placed under varying lighting conditions.
Each result is presented in the form of 360-degree rotation to display full texture
details. The reference lighting is provided alongside when participants evaluate
(3). Across all three aspects, participants consistently prefer our method.
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(b) Comparison with relightable and non-relightable baselines. 
Top Prompt: “A hiking boot”;  Bottom Prompt: “A leather horse saddle”.
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(a) Close-up Comparison with Fantasia3D. 
Left Prompt: “A medieval steel helmet” ; Right Prompt: “A leather horse saddle”.
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Fig. 7: Qualitative analysis. (a) We compare with Fantasia3D [8] that also attempts
to generate Physically Based Rendering (PBR) texture. However, their results often
exhibit baked-in lighting, leading to artifacts when put under varied lighting. (b) We
also compare with other baselines that only generate non-relightable (RGB) texture.
For non-relightable texture generation, we can replace our LightControlNet with depth
ControlNet and generate textures with a shorter runtime. More details are in Table 1.

Ablation study. We perform an ablation analysis on different aspects of our
method in Table 3. When replacing our distilled encoder with the original SD en-
coder, performance is twice as slow without noticeably superior quality. On the
other hand, without the multi-view visual prompting for the initial generation,
the system requires 2000 iterations (a 5x slowdown compared to our 400 itera-



FlashTex: Fast Relightable Mesh Texturing with LightControlNet 13

Table 1: Quantitative Evaluation. We test our methods and baselines on 70 test
objects from Objaverse [10] and 22 objects curated from 3D game assets. With depth
ControlNet, our method yields superior results to all baselines while being three times
as fast as the fastest baseline. Using LightControlNet (Ours) within our model improves
the lighting disentanglement while maintaining comparable image quality.

Objaverse test set Game Asset Runtime ↓
FID ↓ KID ↓ FID ↓ KID ↓

(×10−3) (×10−3) (mins)

Latent-Paint [28] 73.65 7.26 204.43 9.25 10
Fantasia3D [8] 120.32 8.34 164.32 9.34 30
TEXTure [42] 71.64 5.43 103.49 5.64 6
Text2tex [7] 95.59 4.71 119.98 5.21 15

Ours (w/ depth) 60.49 3.96 85.92 3.87 2
Ours 62.67 2.69 83.32 3.34 4

Table 2: User study. We conduct a user preference study to evaluate (1) result real-
ism, (2) texture consistency with input text, and (3) plausibility under varied lighting.
Participants consistently prefer our results over all baselines in these respects.

Preferred Percentage Objaverse test set

Realistic Consistent with text Relightable

Ours v.s. Latent-Paint [28] 92.6% 74.5% 84.3%
Ours v.s. Fantasia3D [8] 81.9% 67.6% 74.3%
Ours v.s. TEXTure [42] 70.8% 57.3% 87.1%
Ours v.s. Text2tex [7] 75.4% 61.6% 88.6%

Table 3: Ablation study on algorithmic components. We analyze the role of
our distilled encoder (1st row) and multi-view visual prompting (2nd row). Replacing
the distilled encoder with the original encoder doubles the running time without a
noticeable improvement. When removing the multi-view visual prompting for initial
generation, the system requires 2,000 iterations (5x compared to our 400 iterations) to
produce reasonable results, which produces slightly worse texture quality.

Objaverse test set FID ↓ KID (×10−3) ↓ Runtime ↓ (mins)

Ours (w/o dist. enc.) 60.34 2.84 8
Ours (w/o m.v.v.p) 74.23 3.54 19

Ours 62.67 2.69 4

tions) to produce reasonable results while still leading to slightly worse texture
quality. In Section 4.1, we render a conditioning image using three pre-defined
materials to encompass a broad range of feasible effects. Table 4 shows omitting
any one of these bases degrades quality. Table 5 evaluates our selection of four
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Table 4: Ablation study on material bases. We verify the impact of the material
bases in rendering conditioning images. Omitting any one of these degrades quality.

Material Basis

non-metal, half-metal, pure metal, FID ↓ KID (×10−3) ↓
not smooth half-smooth smooth

✓ ✓ ✓ 62.67 2.69

✓ ✓ 66.34 3.11
✓ ✓ 64.32 3.42
✓ ✓ 67.43 4.12

✓ 72.13 4.53

Table 5: Ablation study on canonical view selection in Section 4.2. Using
only front and back views provides insufficient supervision while adding top and bottom
views worsens quality. This likely stems from pre-trained 2D diffusion models struggling
with top and bottom views. Additionally, stacking more views reduces each view’s
resolution, leading to poorer initialization for Stage 2.

Num. of canonical views FID ↓ KID (×10−3) ↓

2 views (front, back) 67.43 3.47
4 views (Ours: front, back, left, right) 62.67 2.69
6 views (front, back, left, right, top, bottom) 70.14 3.72

canonical views in Section 4.2. Relying on only the front and back views pro-
vides insufficient supervision. Interestingly, incorporating top and bottom views
degrades the performance. We hypothesize that this is likely due to the limitation
of 2D diffusion model backbones in reliably generating top and bottom views.
Furthermore, stacking more views within a single image results in a decreased
resolution for each view, given the fixed resolution of the multi-view image.

6 Discussion

We proposed an automated texturing technique based on user-provided prompts.
Our method employs an illumination-aware 2D diffusion model (LightControl-
Net) and an improved optimization process based on the SDS loss. Our approach
is substantially faster than previous methods while yielding high-fidelity tex-
tures with illumination disentangled from surface reflectance/albedo. We demon-
strated the efficacy of our method through quantitative and qualitative evalua-
tion on the Objaverse dataset and meshes curated from game assets.
Limitations. Our approach still poses a few limitations: (1) Baked-in lighting
can still be found in certain cases, especially for meshes that are outside of the
training data distribution; (2) The generated material maps are sometimes not
fully disentangled and interpretable as metallicness, roughness, etc.
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