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1 ShapeNet Objects for Our Training

CPPF [5] leverages synthetic models from ShapeNet [1] for the network training,
where a large amount of synthetic object models are collected per category. How-
ever, only a small amount of objects are needed for our pipeline and we randomly
selected only 10 CAD models from the ShapeNet objects for the training. As is
mentioned in NOCS [4], ShapeNet objects contain object meshes that do not
look real or have topology problems which results in rendering failures, there-
fore we manually remove meshes with defects. Training objects of bottle, bowl,
camera, can, laptop and mug categories are visualized in Fig. 1, and the trained
networks are evaluated on NOCS and Wild6D [6] dataset. Even though part of
the objects in certain categories such as cans and mugs are textured with single
colors and have large domain gap in comparison with real textures, our network
robustly captures the semantic features and can be applied on real data after
training. The objects in the chair category for our training are visualized in Fig.
2 and the result is evaluated in the SUN RGB-D [3] dataset. We observe that the
chair category has a large variety of shapes and the part of the model textures
are single-colored. Despite the challenging task setup including heavy occlusions,
our method shows great improvements in comparison with the CPPF baseline
in the SUN RGB-D dataset.

2 Detailed Evaluations on NOCS dataset

Inputs Preprocessing The masks from the NOCS dataset contain inac-
curate segmentation results and leads to point cloud outliers, therefore radius
outlier removal is applied to filter the sparse background points from the partial
inputs.

Evaluation Results per Category The evaluation of our method on
NOCS dataset for each category is reported in Tab. 1. It is observed that bottle,
camera and can categories have relatively low scores for 3D∗

25 and 3D∗
50. The

scores for bottle and can are low due to missing bounding box predictions in
the dataset. The 3D∗

50 score for the camera is low because the testing cameras
have large deformation in the camera lens, which is hard to be approximated
by affine transformation of shape priors. For the 5°5cm, 10°5cm, 15°5cm scores,
the camera category is low. The mug category has a lower score in 10°5cm be-
cause of the difficulty of rotation estimation based on mug handles. Despite this,
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Fig. 1: Visualizations of ShapeNet synthetic models for the training of bottle, bowl,
camera, can, laptop and mug categories. Afterwards we evaluate the trained models on
NOCS and Wild6D datasets. The objects in the red rectangle are used for inference as
shape priors.

Fig. 2: Visualizations of ShapeNet synthetic models for the training of the chair cate-
gory. Afterwards we evaluate the trained models on SUN RGB-D datasets. The objects
in the red rectangle are used for inference as shape priors.

our method outperforms CPPF and NOCS baseline by a large margin for the
challenging mug category.

Rotation AP Comparison per Category The rotation average precision
is plotted in Fig. 4 including NOCS, CPPF and our method. Our method greatly
outperforms the CPPF and NOCS on the challenging mug and laptop category.
The reason is that crucial semantic features such as mug handles help the network
to predict accurate rotations, which tend to be neglected from geometric features.
The performances of bottle and can category between our method and CPPF
are similar, because of relative simple geometry of bottles and cans. For the
bowl category, ours are comparable with NOCS and outperforms CPPF. The
camera category is challenging and our method are slightly better than NOCS
and CPPF which are almost zero. Overall our method surpasses the baselines
and shows great improvements on challenging categories.
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Fig. 3: Visualization of 3D IoUs for all the ten template instances in the camera and
mug category.

CategoryMetric 3D∗
25 ↑ 3D∗

50 ↑ 5°5cm ↑ 10°5cm ↑ 15°5cm ↑
Bottle 53.0 46.9 67.4 92.4 97.4
Bowl 100.0 79.2 25.3 75.3 91.0

Camera 80.4 22.4 0.0 0.2 3.9
Can 65.8 46.9 66.6 83.7 91.1

Laptop 100.0 94.8 9.2 71.5 90.3
Mug 93.7 88.7 4.3 37.6 67.8

Average 82.1 63.2 28.8 60.1 73.6

Table 1: Evaluation results on NOCS REAL275 dataset for each category

3D∗
25 ↑ 3D∗

50 ↑ 5°5cm ↑ 10°5cm ↑ 15°5cm ↑
Mask R-CNN 81.9 64.3 31.2 61.6 74.2

HQ-SAM 82.1 63.2 28.8 60.1 73.6

Table 2: Ablation on segmentation masks

Translation AP Comparison per Category As is visualized in Fig. 5.
Our method outperforms the baselines for bowl, bottle, laptop, mug categories
and has similar results for the camera and can categories. Overall our translation
prediction is robust for the NOCS categories.

Template Sensitivity For ablation on template sensitivity, we iterate through
all the ten templates shown in Fig. 1 from supplementary for each category and
calculate averaged evaluation results for comparison. To visualize performances
between different templates, the 3D IoUs for ten templates of camera and bowl
categories are plotted in Fig. 3. Camera templates have large shape variations
such as 1st camera and 7th camera, however there are only small differences in
prediction results as shown in the left of Fig. 3. This is because testing cam-
eras in the NOCS dataset also have various shapes. The challenge of in-category
variation is reflected in a lower averaged metric of camera category.

Segmentation Masks To explore the influence of segmentation masks, we
evaluate our model with original Mask RCNN results along with HQ-SAM [2]
refined masks and update the result in Tab. 2. Experiment results show that the
metrics such as 3D∗

50 increase by 1.1% without HQ-SAM masks.
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CategoryMetric 3D+
25 ↑ 3D+

50 ↑ 5°5cm ↑ 10°5cm ↑
Bottle 92.9 82.3 72.0 89.4
Bowl 99.2 91.4 26.9 67.0

Camera 47.3 13.4 0.0 0.1
Laptop 98.6 94.0 50.1 83.1
Mug 85.0 57.2 4.9 15.5

Average 84.6 67.7 30.8 51.0

Table 3: Evaluation results on Wild6D dataset for each category

Fig. 4: Rotation average precision visualizations for each NOCS dataset category, com-
paring CPPF, NOCS and ours.

Fig. 5: Translation average precision visualizations for each NOCS dataset category,
comparing CPPF, NOCS and ours.
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(a) (b) (c) (d)

Fig. 6: Visualization of predicted 3D bounding boxes on Wild6D dataset. Green is
predicted, red is the ground truth.

3 Detailed Evaluations on Wild6D Dataset

Since Wild6D dataset features a large variety of object shapes and textures in
the object models and provides 162 objects among 486 sequences for the testing,
the evaluation results reflect the generalization ability of the methods on both
object geometries and appearances. The detailed evaluation results for the bottle,
bowl, camera, laptop and mug categories are reported in Tab. 3. The evaluation
result shows that the bottle category has the highest score as 72 % for the 5°5cm
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(a) (b) (c) (d)

Fig. 7: Visualization of predicted 3D bounding boxes within challenging scenes on
Wild6D dataset. Green is predicted, red is the ground truth.

metric. The mug and camera categories have low 5°5cm scores, which is the same
as the NOCS dataset. Overall the average 3D25, 3D50, 5°5cm, 10°5cm scores are
84.6%, 67.7%, 30.8%, 51.0% on Wild6D dataset are comparable with NOCS
dataset evaluations, which shows the robust generalization ability on diverse
object shapes and textures of our method.

4 More Visualizations on Wild6D Dataset

More evaluations of our method on Wild6D dataset are visualized in Fig. 6. The
evaluation shows our result on objects with diverse textures and challenging
materials such as bottle (b) and bowl (c) from Fig. 6. Our methods predicts
object poses robustly under the overexposure of the camera in bowl (b) and (d)
from Fig. 6. It is observed that the ground truth poses are inaccurate in certain
frames, such as bowl (a) from Fig. 6. The camera category is challenging because
of the large shape variations in the dataset, as shown in camera (c) and (d) from
Fig. 6.
Challenging Scenes As is shown in Fig. 7, our method fails for certain frames.
In Fig. 7 (a), there are cases where the ground truth does not perfectly match
the object. Detection failures cause the prediction to fail, as shown in Fig. 7
(c). Transparent objects such as (b) and (d) from Fig. 7 lead to the depth
measurements failures and inaccurate pose estimations of our method.

5 More Visualizations on SUN RGB-D Dataset

Evaluation results on SUN RGB-D dataset are visualized in Fig. 8, our method
predicts the object pose accurately even under partial occlusions. However, heavy
occlusions lead to inferior results.
Challenging Scenes The scenes are challenging for our method on certain
frames and the results are visualized in Fig. 9. Objects that are only visible from
the corner such as Fig. 9 (a) are hard for prediction. The chairs stacked together
or heavily occluded such as (b) and (c) from Fig. 9 lead to heavy occlusions.



GS-Pose: Supplementary 7

(a) (b) (c) (d)

Fig. 8: Visualization of predicted 3D bounding boxes on SUN RGB-D dataset. Green
is predicted, red is the ground truth.

(a) (b) (c) (d)

Fig. 9: Visualization of predicted 3D bounding boxes within challenging scenes on SUN
RGB-D dataset. Green is predicted, red is the ground truth.

Object pose annotation errors such as the chair scales in Fig. 9 (d) decrease our
3D+

10, 3D
+
25 scores on certain frames.
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