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Abstract. Category-level pose estimation is a challenging task with
many potential applications in computer vision and robotics. Recently,
deep-learning-based approaches have made great progress, but are typ-
ically hindered by the need for large datasets of either pose-labelled
real images or carefully tuned photorealistic simulators. This can be
avoided by using only geometry inputs such as depth images to reduce
the domain-gap but these approaches suffer from a lack of semantic in-
formation, which can be vital in the pose estimation problem. To re-
solve this conflict, we propose to utilize both geometric and semantic
features obtained from a pre-trained foundation model. Our approach
projects 2D semantic features into object models as 3D semantic point
clouds. Based on the novel 3D representation, we further propose a self-
supervision pipeline, and match the fused semantic point clouds against
their synthetic rendered partial observations from synthetic object mod-
els. The learned knowledge from synthetic data generalizes to observa-
tions of unseen objects in the real scenes, without any fine-tuning. We
demonstrate this with a rich evaluation on the NOCS, Wild6D and SUN
RGB-D benchmarks, showing superior performance over geometric-only
and semantic-only baselines with significantly fewer training objects.

1 Introduction

Object pose estimation is a fundamental problem in the computer vision and
robotics fields. With the advancement of deep learning methods, various learning-
based pose estimation approaches have proven effective for instance-level pose
estimation [19, 23, 39, 53, 61, 67]. Furthermore, recent approaches have extended
the pose estimation problem from instance-level to category-level, estimating
the pose of unseen object instances within a given category. However, most
methods [4], [8], [9], [32] rely on the real dataset with annotated object poses,
which are time-consuming to collect. To avoid heavy annotation efforts in the
real dataset, methods [12], [5], [63], [26] train on synthetic object models and
generalize it to real scenes. However, there exists domain gap between synthetic
and real data including both RGB and depth images, because it is hard to fully
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Fig. 1: We propose a novel self-supervision approach for category-level pose estimation
that makes use of 3D semantic features from synthetic CAD models. (1) For synthetic
object models, 2D semantic features are fused into their 3D point cloud. We then render
RGB-D images of synthetic objects from different camera poses and train a matching
network to learn from semantic point clouds and their rendered partial observations.
(2) At inference time, we utilize the trained network to match a selected semantic prior
against partial observations of novel objects, and then recover the object poses. Our
approach is robust to the visual appearance of object instances and generalizes to novel
objects in real scenes.

simulate the environment lighting, object texture, the sensor noise etc. The dif-
ference in the training and test data distributions leads to deteriorated network
performances, which makes it hard to compete with supervised methods from
the real data.
As depth information suffers less from domain gap than RGB information,

methods [12], [63], [26] trained on synthetic data focus on geometry only, with-
out making use of RGB information. This means the synthetic data needs to only
cover the distribution of shape variety, not texture and color. However, relying
on geometric information alone is not adequate to solve all ambiguities present
in the pose estimation problem. For example, observing semantically meaning-
ful parts of an object, such as the keyboard or display of a laptop, should help
disambiguate the pose, even if the difference in geometry is minimal.

The challenges in utilizing color features in the synthetic training motivates
us to rethink the problem from a different angle. Even though the synthetic RGB
images are heavily affected by the different object instance textures and the
domain gap, semantic information hidden in the images preserves the same for
category-level instances and provides crucial guidance to disambiguate geometric
matchings. To this end, we employs a pre-trained foundation model DINOv2 [38]
to extract semantic features provided from 2D RGB images. To further lift the
2D semantic knowledge to the 3D point cloud, we sample multiple camera poses
around the synthetic CAD model and project the 2D DINOv2 features to the
point cloud based on the point visibility. Considering that points are visible from
multiple views, we average the features from multiple observations as a feature
per point. By this way, the object point cloud is enriched with semantic features
per point which we name as a semantic point cloud as shown in Fig. 1.
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Having embedded semantic features in the point cloud, another challenge
is to estimate their correspondences with novel object instances from RGB-D
inputs, without using any real training data. As an interesting observation, self-
supervision methods [45], [37] generate a learning signal from the data itself
for learning, without the need of external labels. Based on the idea, we train a
matching network to estimate the correspondences between the semantic point
cloud and their 2D RGB-D renderings in a self-supervised way. Firstly we gener-
ate partial and full semantic point cloud pairs from the RGB-D renderings and
synthetic models, and obtain ground truth correspondences from the synthetic
model itself. Next we combine semantic features and geometric features together
in the training, to fuse both global and local information and boost their per-
formance. Because semantic features instead of raw RGB images are leveraged
for the synthetic training, our trained network generalizes to novel objects in
the real scenes. To deal with symmetric categories, we re-align the ground truth
correspondences as unique ones according to the symmetric axis in the training.
At inference time, we select a synthetic model as semantic prior and match it to
RGB-D inputs of novel instances without any fine-tuning. Through exhaustive
evaluations on multiple real datasets, our self-supervision pipeline shows supe-
rior performances over other synthetic-only baselines and achieves competitive
results in comparison with methods trained on the real annotated dataset. In
summary, our proposed method features following contributions:

1. We fuse 2D semantic features to 3D semantic point clouds, and the combined
global semantic and local geometric features result in a boosted network
performance and domain generalization ability.

2. We propose a powerful self-supervision pipeline to match between the se-
mantic point cloud and their RGB-D renderings from synthetic CAD models.
The trained network generalizes to novel object instances in the real scenes,
without the need of any real annotated dataset.

3. We conduct rich evaluations on multiple real datasets including NOCS [55],
Wild6D [65], SUN RGB-D [48]. Exhaustive evaluations show that our simple
yet effective approach greatly outperforms semantic-only or geometric-only
baselines and have competitive results in comparison with methods trained
on real data, while requiring as few as ten synthetic CAD models per cate-
gory.

2 Related Work

2.1 Category-Level Object Pose Estimation

In the past few years, instance-level object pose estimation networks has made
great progress in computer vision and robotics fields [11,17,18,21–23,27,28,40,
41,44,47,49,52,54,59,60,64]. Further, category-level object pose estimation net-
works are proposed to handle unseen object instances in the category without
re-training [3, 4, 8, 9, 20,30–32,35,50,56–58,63,66].
Approaches Trained on Real Annotated Data Most category-level pose
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methods are trained on the real annotated dataset which avoids the domain
gap. NOCS [55] predicts normalized object coordinate space map from RGB
images and then recover the object pose from depth images. Further meth-
ods [4, 8, 29, 31, 32] directly leverage geometric features from depth images for
the training without using RGB images. Especially VI-Net [32] gets excellent
results by decoupling rotations on the spherical representations. Instead of only
regressing object poses, methods [3, 9, 20, 30, 35, 50, 56, 65] leverage shape priors
and jointly estimate the input object shapes, which are important for robotic
applications. For example DPDN [30] learns a shape prior deformation network
in a self-supervised approach on the real data.To alleviate the real annotations
needed for the training, methods [24, 25, 36, 57] firstly train on synthetic data
and perform unsupervised learning on real scenes. However, collecting real im-
ages from a large amount of viewing angles is still needed.
Approaches Trained on Synthetic Data Real data with annotations is ex-
tremely hard to collect, considering that many object categories exist in the
household environment and need to be supported for robotics applications. Meth-
ods [5,12,26,62,63] explore training with only synthetic object CAD models but
try to generalize to real scenes. Gao et al. [12] uses partial object point cloud
as inputs and refines object poses. Chen et al. [5] trains an implicit object ren-
derer and optimizes object poses by novel view synthesis. CPPF [63] leverages
the adapted point pair features and train a pose regression network on a large
amount of category-level instances from ShapeNet [1]. The approaches mostly
leverage geometric features, which fails to leverage the potential of RGB informa-
tion. CPPF++ [62] further trains another network with RGB features and takes
the advantage of ensemble models from two predictions, which however sacrifices
the inference speed. Our method fuses semantic and geometric information in
one network, and achieves superior performances with real-time capability.

2.2 Correspondences from Semantic Features

Color images are enriched with semantic features which guide the object pose
estimations. Given an object CAD model, instance-level object pose estimation
networks [64], [54] predict dense object correspondences from input color images
and recover the 6D object poses from the 2D-to-3D correspondences. However,
category-level objects have different shapes and appearances, which make the
2D-to-3D correspondence predictions more challenging. NOCS [55] proposes to
learn the object shape and the correspondence matching jointly in a normalized
object coordinate space on a large amount of rendered synthetic objects. Re-
cently methods such as ZSP [15], [14] directly calculates correspondences from
2D-to-2D semantic features with multiple 2D object views in a zero-shot set-
ting. As the drawback, the method needs to run on multiple object views up
to 5 which is time-consuming. In contrast, our method only needs to inference
once from the RGB-D input to the 3D template object and is real-time capable.
Also directly estimating the correspondences from global semantic features are
prone to outliers and our feature fusion method delivers more accurate result,
which is shown in the experiments. Other 2D keypoint matching methods such
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Fig. 2: Overview of semantic and geometric feature embedding. Different from
other synthetic-only pose estimation pipelines, our method incorporates both geomet-
ric and semantic features to improve performance. (1) Firstly, we sample camera poses
around the synthetic object CAD model with 2D RGB-D image renderings. (2) After-
wards, we fuse 2D semantic features from rendered RGB image to 3D point clouds as
3D semantic features. Specially, we project each point to the visible 2D observations
and extract the 2D semantic feature on the projected image location. As an object
point can be observed from multiple views, we calculate the average over the observed
features and get a smooth representation. We directly use the 3D object point coor-
dinates as geometric features and combine them with fused semantic features as the
matching network inputs. (3) In comparison, baseline methods such as CPPF [63] only
utilize geometric features, while others (NOCS [55]) leverage RGB images and need
a large amount of textured objects for the training. In contrast, our network requires
much fewer training objects with a good performance with the novel semantic repre-
sentation in 3D space.

as SuperGlue [46] and LightGlue [34] firstly extract keypoint features from color
images and fuse the features with a transformer network for the feature fusion.
Especially LightGlue considers the keypoint inlier probability design which re-
duces potential outliers. Therefore we leverage LightGlue as our feature fusion
backbone and modify the correspondence matching from 2D image keypoints to
the 3D semantic point clouds.

2.3 Correspondences from Geometric Features

Recent advances of stereo and Time-of-Flight (ToF) cameras enable the depth
perception of the environment. Therefore, geometric features from the projected
point cloud are widely utilized in point cloud registrations. PPF-Net [7], PPF-
FoldNet [6], GeoTransformer [43] firstly extracts point pair features (PPF) from
the point cloud and leverages PointNet [42] or transformer for the matchings.
CPPF [63] extends the PPF features to estimate the categoy-level objects. How-
ever, the above geometric features are limited to local features and fail to dis-
tinguish geometric parts which have similar shapes, for example the laptop lid
and the keyboard. As a result, CPPF has a poor performance on the challenging
mug and laptop category in comparison with bowls and bottles. By considering
both global semantic feautres and local geometric features, our method shows
superior performances even for the challenging categories.
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Fig. 3: Overview of our matching network. Left: For matching between a semantic
point cloud and the RGB-D input, we firstly extract 2D semantic features from the
RGB image and back-project the semantic features with the depth image as a partial
input point cloud. We then uniformly sample 3000 points from the semantic point
cloud and 1000 points from partial input point cloud for the matching. The normalized
point coordinates are embedded as geometric features with positional encoding and
added with semantic features. The embedded features are fused with self- and cross-
attention layers for multiple iterations in a transformer network for global perceptions.
The assignment matrix is calculated based on the cosine similarity of the fused point
features. Right: To disambiguate the symmetrical poses, (1) Since multiple ground
truth poses can exist for axis-symmetry objects, (2) the Ground Truth(GT) pose is
constrained to intersect the object xz-plane with the camera origin coordinate system.

3 GS-Pose

Problem Definition We assume a limited amount of synthetic CAD models
S = {Si, |i = 1, · · ·, O} are available in one category during training. Given a
RGB-D image with detection mask of a novel instance for this category at in-
ference time, our task is to recover the 9D object pose including the rotation
R ∈ SO(3), translation t ∈ R3 and scale s ∈ R3, assuming access to a single
reference CAD model from the set S. No real images with pose annotations are
available during training.
Overview As a category-level pose estimation method self-supervised from syn-
thetic CAD models, GS-Pose estimates correspondences between the RGB-D in-
put and synthetic models leveraging fused semantic and geometric features. For
the training, 2D semantic features are lifted to 3D CAD models and generates
semantic point clouds, which is visualized in Fig. 2. Afterwards, a matching net-
work is trained self-supervised by matching the semantic point clouds against
RGB-D renderings from their own synthetic CAD model, which is visualized in
(1) from Fig. 1 and Fig. 3. In addition we deal with symmetric categories to
avoid pose ambiguities. At inference time, we take a selected semantic shape
prior and match it against RGB-D inputs of novel instances in the real scenes.
The object poses are recovered from the matched correspondences and visualized
in (2) from Fig. 1.

3.1 Semantic and Geometric Feature Embedding

Semantic Features on 2D Images Utilizing a semantic representation from
a pre-trained foundation model would reduce the sensitivity to texture differ-



GS-Pose 7

ences while providing vital global information to help tackle ambiguous geom-
etry structures. Image foundation models, typically trained on web-scale data,
provide a powerful base model, the features from which are able to reflect object
semantic. With the prevalence of the transformer architecture, foundation mod-
els based on vision transformers such as DINOv2 [38] are able to better capture
global relationships inside the features.
Semantic Features Lifting to 3D Point Cloud Despite powerful 2D founda-
tion models, 3D foundation models for point clouds are still yet to be thoroughly
explored, because of the challenge in collecting large scale 3D assets for train-
ing. To tackle this challenge, we reuse the 2D foundation models and project
the features to the 3D object point cloud P to be used for 3D-3D matching.
As shown in Fig. 2, we first sample camera poses Tj , j ∈ {1 .. C} around the
objects, ensuring the model points are visible in at least one view. Next, the
rendered RGB images are transformed to semantic features F2d with DINOv2
which are later resized to the original image size of 480 x 480. For each frame j,
the visibilities Vp,j of object vertices p in the mesh are calculated. Based on the
camera pose T and intrinsic K, the visible points are projected to the 2D feature
image to retrieve the corresponding semantic features, as shown in Equ. 1. To
align the feature discrepancies from multiple observations, we take the average
of the visible features from multiple views for each point, as formulated in Equ.
2. The averaging additionally filters the noise from multiple predictions, shown
in (2) from Fig. 2.

∀(pi ∈P, j ∈ {1 .. C})
(pij,x
pij,y

1

)
= K · T−1

j · pi (1)

Fpi =
1∑C

j=0 Vpi,j

C∑
j=0

Vpi,j · F2d,j(pij,x, pij,y) (2)

Geometric Features on 3D Point Cloud To gather geometric point fea-
tures, a typical approach is to calculate the point pair features (PPF) based on
their neighboring point distances and normals. However, recent networks [43]
based on transformer architecture take point coordinates as inputs and use high
frequency functions to embed geometric information of the points. In empiri-
cal experiments we find this approach effective in extracting local features from
the point cloud. Therefore we directly take the point coordinates as geometric
features and combine it with semantic features for the matching task.

3.2 Self-Supervision from Synthetic CAD Models

Motivation Embedding both semantic and geometric features in the given syn-
thetic CAD models, we get semantic point clouds Ps = {(Fpi , pi), ∀pi ∈ P}. Our
goal is to estimate novel object poses (R, t, s) from their RGB-D inputs. To solve
the problem, we take a matching-based approach which estimates the correspon-
dences between the RGB-D inputs and the semantic point cloud Ps, and then
recover the input object 6D poses with scales. The challenge is to avoid using
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real training dataset with pose annotations, while delivering competitive results
on the real test scenes. This motivates us to design a self-supervised pipeline
fully exploiting the synthetic object models themselves, i.e. train the network
based on the semantic point clouds Ps and their partial RGB-D observations
from 2D renderings. With this approach, we only need semantic point cloud and
their rendering pairs from the synthetic CAD models for the training and can
generalize it to novel objects in real scenes.
Synthetic Training Pairs To collect semantic point clouds Ps and 2D ren-
derings pairs for the training, we reuse the RGB-D renderings along with the
extracted DINOv2 features from sampled object poses shown in (1) from Fig. 2.
We then back-project depth images to an input point cloud Q, and then embed
2D semantics into a partial semantics object cloud Qs = {(Fqi , qi), ∀qi ∈ Q}.
The partial point cloud Qs is centered and normalized as training inputs, and
the ground truth correspondences are retrieved by the finding the mutual nearest
points inside the semantic point cloud Ps, given the rendering camera pose T .
We use only 10 synthetic object models per category and 40 rendering camera
poses per object.
Global and Local Feature Fusion Given two point clouds with semantic fea-
tures Ps and Qs, we fuse the semantic features and geometric features jointly in
a transformer network. The semantic features provide high-level understandings
of object parts as global information, while geometric features are enriched with
detailed information of local geometries. The joint training from global and local
information disambiguate object poses and boosts the matching performances,
which is proved in exhaustive experiments against geometric-only or semantic-
only baselines in the experiments. Domain Generalization The key design
for domain generalization is to avoid the direct usage of raw RGB images. The
semantic information is employed in the training for adjusting various possible
object textures. Also the semantic features adapt well to real images thanks to
the large scale pre-training. In addition depth information suffers less from the
domain gap, which makes it possible to train the fusion network with only syn-
thetic data. Therefore our synthetic training generalizes to novel objects in real
scenes with high data-efficiency, as much fewer synthetic objects are required in
comparison with geometric-only baselines [63]. Disambiguating Symmetry
For many objects, there exist symmetries that cause ambiguities in the object
pose, where the network will be trained against conflicting ground truth signals
for a given pose. This presents a significant challenge in the pose estimation
problem. Therefore, we extract unique ground truth poses by constraining the
object xz-plane, (red and blue-axis plane as shown in the Fig. 3) to always in-
tersect with the origin of camera coordinate system.We also treat the mug as an
axis-symmetry object when the handle is invisible in the view.

3.3 Training Implementations

Matching Network Implementation Following by GeoTransformer [43], Su-
perGlue [34] and LightGlue [34], we utilize a transformer structure with multiple
self- and cross-attention layers to fuse both semantic and geometric features of
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two point clouds, as shown in Fig. 3. Specifically, the geometry features are em-
bedded with the positional encodings of point coordinates and concatenated with
the semantic features as network inputs. Matching between partial observations
Qs and the full 3D reference features Ps has an advantage of faster inference
time than multiple 2D-2D partial matchings such as ZSP [15]. However, this
may additionally increase the potential for mismatches to occur as the possible
matching regions are also expanded. To avoid matching to regions that are out of
input view visibility, we find it empirically useful to predict the inlier probability
from LightGlue [34] in addition to the output features.
Training and Inference Assume the partial input point cloud Q has M points
and the full object point cloud P has N points. After the transformer feature
fusion, the fused features are FQ and FP with corresponding inlier probabilities
as σP and σQ. The assignment matrix Â is obtained by multiplication of the
cosine similarity from FQ and FP , and the inlier probabilities, as recorded in
Equ. 3. The training loss is the sum of inlier classification losses and the assign-
ment matrix loss. The inlier classification losses are in Equ. 4 for partial inputs
Q and Equ. 5 for full inputs P . The assignment matrix loss LA is calculated in
Equ. 6 with the focal loss [33] and γ as 2. Apos and Aneg are the positive and
negative ground truths for the assignment matrix A. Based on the assignment
matrix from the output features, a threshold is applied to extract high confidence
matches. At inference time, Umeyama algorithm [51] combined with RANSAC
algorithm [10] is applied based on the matched correspondences with a selected
shape prior to robustly recover the rotation, translation and the object scales.

∀(i ∈ {1 ..M}, j ∈ {1 .. N}) Âi,j = σP
i · σQ

j ·Ai,j (3)

LQ = − 1

N

M∑
j=0

(σQ
j,gtlogσ

Q
j + (1− σQ

j,gt)log(1− σQ
j )) (4)

LP = − 1

M

M∑
i=0

(σP
i,gtlogσ

P
i + (1− σP

i,gt)log(1− σP
i )) (5)

LA =− 1

|Apos|
∑

Âi,j∈Apos

(1− Âi,j)
γ log(Âi,j)

− 1

|Aneg|
∑

Âi,j∈Aneg

Âγ
i,j log(1− Âi,j) (6)

4 Experiments

4.1 Datasets

To cover as many categories and novel instances as possible, three datasets:
NOCS [55], Wild6D [65] and SUN RGB-D [48] are employed for the evaluations.
We train GS-Pose from ShapeNet [1] objects for the bottle, bowl, camera, can,
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lpatop, mug categories and evaluate on the NOCS REAL275 dataset and Wild6D
dataset. To test on challenging scenes with occlusions, we train the network
on ShapeNet chair category and evaluate on SUN RGB-D dataset. The NOCS
REAL275 dataset collects the object pose annotations of six categories, with
8K images among 18 real scenes in total. We utilize the testing split including
2750 images for the evaluation. The Wild6D dataset contains 486 videos over
162 testing objects, which are a magnitude higher than the NOCS REAL275
dataset and challenge the model generalization ability. The SUN RGB-D dataset
contains 10182 9D bounding boxes for the chair category in indoor environments,
including strong occluded scenes. Therefore evaluations on SUN RGB-D dataset
reflect the network performance against occlusions.

4.2 Implementation Details

For the network training, only 10 synthetic models are selected for each cate-
gory from ShapeNet dataset. For each synthetic object, 40 images from different
views are rendered for the lifting of 3D semantic point clouds and reused for
the network training. The rendered RGB-D images are of a resolution 480 x 480
and in total 400 partial rendered views are use for the synthetic training per
category. The smallest DINOv2 model ViT-S [38] with a feature dimension of
384 are leveraged for the real-time inference speed. For the 2D detection masks
on the evaluation dataset, we use the trained MaskRCNN [16] results provided
from NOCS, Wild6D, SUN RGB-D datasets respectively. The cropped RGB-D
images from 2D detections are resized to a dimension of 480 x 480 and back-
projected to the semantic partial point cloud. At training and inference time,
3000 points and 1000 points are uniformly sampled from the full object model
Ps and input partial point cloud Qs for correspondence estimation. GS-Pose is
trained with a learning rate of 1e-4 for 100 epochs for each category on a desktop
with Intel Xeon E5-2698 CPU and Tesla V100-DGCS-32GB GPU.

4.3 Metrics

For the 9D object pose evaluation, the mean precision of 3D intersection over
union (IoU) at different thresholds of X% are recorded as 3DX . To be noticed,
methods [63], [32], [35] employ different implementations of the metric. CPPF
[63] firstly finds the intersections points between two 3D bounding boxes and
calculates the overlap as the convex hull volume from the intersection points,
which we annotate as 3D∗

X . Methods [32], [35] directly utilize the maximum
and minimum of two bounding boxes to get the overlap, which we annotate as
3D+

X . Additionally 5°5cm, 10°5cm, 15°5cm metrics are reported to measure the
accuracy of rotations and translations. The 20°10cm, 40°20cm, 60°30cm metrics
are used for the evaluation of rotation and translation error on the SUN RGB-D
dataset.
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NOCS CPPF Ours NOCS CPPF Ours

Training Data N(S) 3D∗
25 ↑ 3D∗

50 ↑ 5°5cm ↑ 10°5cm ↑ 15°5cm ↑
Chen et al. [5] Syn(O) 210 15.5 1.3 0.7 3.6 9.1
Gao et al. [13] Syn(O) 210 68.6 24.7 7.8 17.1 26.5

CPPF [63] Syn(O) 210 78.2 26.4 16.9 44.9 50.8
CPPF++ [62] Syn(O) 210 82.4 55.2 32.3 65.9 85.2

ZSP [15] - 0 - - 5.8 20.3 32.0
CPPF++ [62] Syn(O) 10 80.9 51.6 22.6 59.6 74.0

Ours Syn(O) 10 82.1 63.2 28.8 60.1 73.6

Table 1: Results for REAL275 dataset against synthetic-only and zero-shot
baselines. Top: Qualitative results. The predicted 3D bounding boxes from NOCS [55]
(left), CPPF [63] (middle), and ours (right). Green is predicted and red is the ground
truth. Bottom: Evaluation results in comparison with synthetic-only [5,13,63] and zero-
shot [15] baselines. Syn.(O) means synthetic ShapeNet objects only. N(S) represent the
number of synthetic objects in the training per category.

4.4 Performance Analysis

Performance on NOCS REAL275 Dataset For thorough evaluation, we
compare our method with synthetic-only approaches as well as networks trained
on real annotated datasets. The comparison with synthetic-only approaches are
reported in Tab. 1. The evaluation shows that our method results in an overall
increase of 3D IoU, rotation and translation scores. Especially the 3D50 met-
ric increases greatly by 36.8% in comparison with geometric-only baselines [63],
even though the method is trained on a smaller amount of synthetic objects.
The 5°5cm, 10°5cm, 15°5cm increase by 11.9%, 15.2%, 22.8%. It is observed that
ours performs better than CPPF on difficult categories such as mugs and lap-
tops. The detailed result for each category is plotted on the top of Tab. 2. We
further compare with CPPF++ [62] which leverages both RGB and depth in-
puts. Evaluation results show that we outperform CPPF++ by 11.6% on 3D∗

50

and 6.2% on 5°5cm when only 10 objects are available for the training. Notewor-
thy CPPF++ fails to fuse RGB-features and geometric features in one network,
therefore they train two separate networks and get best matching results from
two predictions. As a result, CPPF++ has an inference time of 930 ms per
object, while ours needs only 51ms and is real-time capable. In addition we
compare with ZSP [15], a semantic-only approach for zero-shot pose estima-
tions. Ours performs much better on both the 5°5cm, 10°5cm, 15°5cm metrics.
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(c)(a) (b) (d)

Training Data Shape Prior 3D+
75 ↑ 5°5cm ↑ 10°5cm ↑

NOCS [55] Syn(O+B)+Real ✗ 9.4 10.0 25.2
FS-Net [4] Real ✗ - 28.2 60.8

DualPoseNet [31] Syn(O+B)+Real ✗ 30.8 35.9 66.8
GPV-Pose [8] Real ✗ - 42.9 73.3

SS-ConvNet [29] Syn(O+B)+Real ✗ - 43.4 63.5
VI-Net [32] Syn(O+B)+Real ✗ 48.3 57.6 82.1
SPD [50] Syn(O+B)+Real ✓ 27.0 21.4 54.1

CR-Net [56] Syn(O+B)+Real ✓ 33.2 34.3 60.8
CenterSnap [20] Syn(O+B)+Real ✓ - 29.1 64.3
ACR-Pose [9] Syn(O+B)+Real ✓ - 36.9 54.8

SGPA [3] Syn(O+B)+Real ✓ 37.1 39.6 70.7
SPD+CATRE [35] Syn(O+B)+Real ✓ 43.6 54.4 73.1

DPDN [30] Syn(O+B)+Real ✓ - 50.7 78.4
Ours Syn(O) ✓ 37.0 28.8 60.1

Table 2: Results for REAL275 dataset against networks trained on real
annotated data. Top: Visualization of each category’s 3D IoUs for CPPF (a) and
Ours (b). The translation and rotation mAPs of our method in comparison with CPPF
and NOCS are plotted in (c) and (d). Bottom: Evaluation results in comparison with
baselines trained on real annotated data. Syn.(O+B) means ShapeNet models rendered
with real backgrounds (NOCS CAMERA25 dataset). Real means real images in NOCS
REAL275 dataset. Syn.(O) indicates synthetic ShapeNet objects only.

The evaluation results in comparison with methods trained on real annotated
datasets are reported in Tab. 2. Without the domain gap of synthetic data, VI-
Net [32] trained on real data lead highest scores on the metrics. However, our
method provides competitive results in comparison with methods trained on the
real data, such as DualPoseNet [31], FS-Net [4], CR-Net [56], CenterSnap [20],
ACR-Pose [9]. In comparison with DualPoseNet [31], the 5°5cm and 10°5cm
scores are slightly lower, while ours outperforms DualPoseNet on 3D+

75 by 6.2%.
In comparison with ACR-Pose [9], our 10°5cm is higher (60.1% vs 54.8%). The
comparisons show that our method has competitive performance in comparison
with approaches trained on real data, by only learning from a limited amount
of synthetic models.
Performance on Wild6D Dataset Wild6D dataset [65] contains 162 testing

objects, much more than NOCS dataset. The evaluation results in Tab. 4 show
that our method has a strong generalization ability on novel object instances in
the wild, even though trained only with a few synthetic objects. In comparison
with methods trained with real data such as DualPoseNet, our method pro-
vides comparable results for the 3D25 (84.6% vs 90.0%), 3D50 (67.7% vs 70.3%),
5°5cm (30.8% vs 34.4%) metrics, and outperforms the state-of-the-art method
RePoNet-semi [65] on 10°5cm by 8.5 % without using real data. Failure cases are
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Metric 3D+
10 ↑ 3D+

25 ↑ 20°10cm ↑ 40°20cm ↑ 60°30cm ↑
CPPF [63] 36.0 14.6 1.1 7.7 13.1

Ours 56.8 33.0 6.6 43.4 69.7

Table 3: Results for SUN RGB-D dataset. Top: Qualitative results for predicted
object poses under heavy occlusion. Green is predicted and red is the ground truth.
Bottom: Evaluation results in comparison with the CPPF baseline.

Metric Training Data N(S) N(R)) 3D+
25 ↑ 3D+

50 ↑ 5°5cm ↑ 10°5cm ↑
CASS [2] Syn(O+B)+Real(NOCS) 180 3 19.8 1.0 0.0 0.0
SPD [50] Syn(O+B)+Real(NOCS) 180 3 55.5 32.5 3.5 13.9

DualPoseNet [31] Syn(O+B)+Real(NOCS) 180 3 90.0 70.0 22.8 36.5
RePoNet-semi [65] Syn(O+B)+Real(Wild6D*) 180 312 84.7 70.3 34.4 42.5

Ours Syn(O) 10 0 84.6 67.7 30.8 51.0

Table 4: Results for Wild6D dataset. Syn.(O) means synthetic ShapeNet ob-
jects only, while Syn.(O+B) means ShapeNet models rendered with real backgrounds
(NOCS CAMERA25 dataset). Wild6D* means Wild6D dataset without pose annota-
tons. N(S) and N(R) represent the number of synthetic and real objects in the training
per category.

observed when the depth estimations fail for transparent bottles, or inaccurate
2D segmentations of the cameras lead to the pose estimation failures.
Performance on SUN RGB-D Dataset SUN RGB-D dataset features chal-
lenging indoor scenes with occlusion and we evaluate on all the chairs in the
validation dataset following the setup in CPPF [63]. The evaluation results are
shown in Tab. 3, and our proposed method outperforms the baseline by 20.8%
and 18.4% on 3D10 and 3D25 metric, which shows good generalization ability
towards zero-shot object poses estimation in indoor scenes. The rotation and
translation scores are higher than the baseline, especially for 40°20cm and 60°30
cm. In extremely challenging scenes where the chairs are stacked together or
heavily occluded as visualized on top of Tab. 3, GS-Pose still predicts accurate
results in comparison with the baseline. The experiment in SUN RGB-D dataset
shows the robustness of our method in the case of occlusions.

4.5 Ablation Study

To analyse different network components, exhaustive ablations are performed
and the following results are reported for the NOCS REAL275 dataset. Inlier
Probability Prediction for Matching In the ablation A1 from Tab. 5 (a),
the inlier probability module is removed including calculation of the assignment
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(a) Ablation on network components

C1 C2 3D∗
25 ↑ 3D∗

50 ↑ 5°5cm ↑ 10°5cm ↑ 15°5cm ↑
A1 ✓ 64.9 48.9 19.9 49.3 66.9
A2 ✓ 72.3 44.5 12.7 40.5 56.7
A3 ✓ ✓ 82.1 63.2 28.8 60.1 73.6

(b) Ablation on the training objects number
Metric 3D∗

25 ↑ 3D∗
50 ↑ ↑ 5°5cm ↑ 10°5cm ↑ 15°5cm ↑

CPPF [63] (10 objects) 75.7 14.6 7.3 27.1 33.4
CPPF [63] (40 objects) 77.3 26.1 13.0 37.6 43.6
CPPF [63] (210 objects) 78.2 26.4 16.9 44.9 50.8

Ours (10 objects) 82.1 63.2 28.8 60.1 73.6
Ours (20 objects) 82.3 62.7 29.9 62.9 77.6
Ours (40 objects) 82.1 63.8 28.9 57.5 74.9

Table 5: Ablation study on the NOCS REAL275 dataset. (a) Ablation of
network components on NOCS REAL275 dataset, C1 represents inlier probability net-
works and C2 stands for symmetry handling of ambiguous categories. (b) Ablation on
the influence of objects number in the training.

matrix (Equ. 3) and the inlier classification loss (Equ. 4 and 5). Without con-
sideration of matching inliers, the 3D∗

25, 3D∗
50 drop by 17.2% and 14.3%. In

addition to the worse 3D bounding box predictions, the rotation and transla-
tion scores also decrease slightly. The 5°5cm, 10°5cm, 15°5cm decrease by 8.9%,
10.8%, 6.7%. Evaluation shows that the predicting inlier probability helps the
network to focus on the regions of attention and reduces the outliers in the final
matching stage. Symmetric Handling In the ablation A2 from Tab. 5 (a), we
remove the symmetry handling of all categories in the training. The result shows
that the 3D∗

25 drops slight to 72.3%, while 3D∗
50 decreases greatly to 44.5%. The

5°5cm, 10°5cm, 15°5cm drop by 16.1%, 19.6%, 16.9%. The results show that
the conflicting ground truth matches confuse the network and lead to inferior
performances, and it is important to disambiguate the ground truth matches
for the axis-symmetry categories. Influence of Synthetic Training Object
Numbers To show the influence of the number of synthetic objects for training,
we train CPPF with different object numbers and show the evaluation result
in Tab. 5 (b). The 5°5cm, 10°5cm, 15°5cm score increases with the number of
training objects, which shows that approaches such as CPPF that rely on geo-
metric information and synthetic-only data require more object shape variation
in the training dataset for better generalization capability. In contrast, we train
our method with 10, 20, 40 synthetic models as shown in Tab. 5 (b) and the
result shows that the performance saturates already with as few as 10 objects
on 3D∗

25 and 3D∗
50. Inference Time The inference takes only 0.051s in average

on a RTX 3080 GPU and is real-time capable, which is much faster than CPPF
(0.413s) and comparable with GPV-Pose (0.05s).

5 Conclusion

In this paper, we introduce a novel 3D representation incorporating both se-
mantic and geometric features for category-level pose estimations from syn-
thetic objects. Based on the novel representation, we employ a matching network
self-supervised from the semantic point cloud and their 2D RGB-D renderings.
While requiring only ten object instances per category, our method outperforms
synthetic-only baselines by a great margin and shows an outstanding generaliza-
tion ability on multiple real datasets.
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