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Abstract. Immersive scene generation, notably panorama creation, ben-
efits significantly from the adaptation of large pre-trained text-to-image
(T2I) models for multi-view image generation. Due to the high cost of ac-
quiring multi-view images, tuning-free generation is preferred. However,
existing methods are either limited to simple correspondences or require
extensive fine-tuning to capture complex ones. We present PanoFree, a
novel method for tuning-free multi-view image generation that supports
an extensive array of correspondences. PanoFree sequentially generates
multi-view images using iterative warping and inpainting, addressing the
key issues of inconsistency and artifacts from error accumulation without
the need for fine-tuning. It improves error accumulation by enhancing
cross-view awareness and refines the warping and inpainting processes
via cross-view guidance, risky area estimation and erasing, and symmet-
ric bidirectional guided generation for loop closure, alongside guidance-
based semantic and density control for scene structure preservation. In
experiments on Planar, 360°, and Full Spherical Panoramas, PanoFree
demonstrates significant error reduction, improves global consistency,
and boosts image quality without extra fine-tuning. Compared to ex-
isting methods, PanoFree is up to 5x more efficient in time and 3x more
efficient in GPU memory usage, and maintains superior diversity of re-
sults (2x better in our user study). PanoFree offers a viable alternative
to costly fine-tuning or the use of additional pre-trained models.
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1 Introduction

Text-to-image (T2I) generation over multiple views for immersive scenes, like
panorama generation, is a challenging task requiring coherence and diversity
among many generated images (e.g ., [3, 8, 12, 16, 17, 21, 36, 37, 39, 48]). Early
work using GANs or VAEs (e.g ., [4–6, 11, 24, 25, 47, 50]) have been replaced
recently with diffusion-based models (e.g ., [1,9,10,22,23,46,49,51,52,54]), often
leveraging Stable Diffusion [38]. State-of-the-art panorama generation methods
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“A charming town nestled in the Alps with snow-capped houses.”

“A modern kitchen with stainless steel appliances like oven and range hood.

“Street art area under a cloudy sky.” “Arctic wilderness, aurora, trail”

Planar Pano

360 Pano

Full Pano

Fig. 1: PanoFree can generate multi-view images according to different types of corre-
spondences without fine-tuning, and a natural application is tuning-free generation for
different types of panoramas. We demonstrate this by generating three commonly used
panoramas. Top: Planar Panorama; Middle: 360 Panorama; Bottom: Full Panorama.

use Joint Diffusion (e.g ., [1,22,46]), where parallel diffusion processes to generate
multi-view images and enhancing global consistency by fusing latent or attention
features based on cross-view correspondences. However, we find these methods
can only generate some types of panoramas, limiting their scope (e.g ., [1, 22]),
or require fine-tuning using expensive panorama datasets (e.g ., [22, 46]).

To address these challenges, we propose PanoFree a tuning-free multi-view
image generation method using iterative warping and inpainting of perspective
images to support diverse correspondences with low costs (see Fig. 1 for ex-
ample generations). Iterative warping and inpainting of perspective images pro-
vide a means to the diverse multi-view correspondences required in panorama
generation without additional fine-tuning [4, 11, 18]. However, recent work has
overlooked these benefits due to accumulated errors causing suboptimal image
quality [1, 22, 46]. We find that most accumulated errors from iterative warping
can be attributed to the deficient conditions during generation. Specifically, con-
ditioning solely on the previous image narrows cross-view awareness, leading to
inconsistencies. Warping and inpainting can also propagate noise, e.g ., truncated
objects or jagged edges. Additionally, the given conditions may be incomplete
to meet specific requirements, such as ensuring 360-degree consistency for loop
closure and maintaining correct spatial relationships for realistic scenes.

To address these issues, PanoFree expand cross-view awareness by condition-
ing the current view on multiple views with guided image synthesis techniques
such as SDEdit [29]. Then, PanoFree estimates and erases the risky areas, re-
gions likely containing noise, to reduce the noise introduced by warping and
inpainting. In addition, PanoFree adopts a bidirectional generation path with
a symmetrical conditioning strategy for loop closure. Lastly, PanoFree further
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utilizes pseudo global guidance with region-specific semantic and density control
to make scene structure more reasonable.

We evaluate PanoFree on three text-to-panorama generation tasks: Planar,
360◦, and Full Spherical Panoramas. PanoFree effectively alleviating accumu-
lated errors in sequential generation, and significantly improves image quality
and global consistency (e.g . 31.6% better in FID). This enables PanoFree to
have better (or at least comparable) results to the state-of-the-art [1,22,46], de-
spite these methods either having narrower applications or requiring fine-tuning
datasets. Specifically, PanoFree is up to 5x more efficient in time and 3x more
efficient in GPU memory usage, and maintains superior diversity of results (2x
better in our user study). Lastly, PanoFree is also highly flexible, enabling it to
plug-in-and-play with various pre-trained T2I models and adapters.

Our contributions can be summarized as follows:
– We introduce PanoFree, a tuning-free multi-view image generation method ap-

plicable for various correspondences and pre-trained T2I models. Thus PanoFree
can greatly reduce the data and fine-tuning costs for immersive scene gener-
ation tasks such as text-to-panorama generation.

– We provide a in-depth perspective of accumulated errors and identify the
deficient conditions as the main causes. We further effectively rectify deficient
conditions and alleviate accumulated errors with the cross-view guidance as
well as risky area estimation and erasing in PanoFree.

– As far as we know, PanoFree is the first to achieve feasible tuning-free gener-
ation for 360◦ Panoramas and Full Spherical Panoramas.

2 Related Work

Diffusion Models [15, 19, 40, 42–45] are a popular framework for generative
models. Early work required a long trajectory for sampling to produce high-
quality samples [7,45], before being sped up with advanced sampling techniques
that also preserved generation quality [20, 26, 27, 41]. Latent Diffusion Models
(LDMs) [33,38] made these models more efficient by training in the latent space.
T2I Diffusion and Panorama Generation. Diffusion models are widely
adopted for text-to-image (T2I) generation [31, 36, 38, 39]. Many downstream
tasks used large pre-trained T2I diffusion models, like Stable Diffusion [38], to
boost performance [4, 11, 18], including panorama generation [4, 11, 18]. These
methods have largely supplanted GAN and VAE methods [4–6,11,24,25,32,47,
50], with most recent work in panorama generation tasks using diffusion mod-
els [1, 9, 10, 22, 23, 46, 49, 51, 52, 54]. These diffusion-based panorama generation
methods use joint diffusion to fuses multiple diffusion processes through latent or
attention manipulation [1, 22, 46]. However, they are either limited to modeling
simple correspondences or require extensive fine-tuning to model complex ones.
Guided Image Synthesis with Diffusion Models. It can be challenging to
achieve satisfactory results solely relying on text guidance. Therefore, some prior
work [28–30, 53] guide or control the generation results with reference images
as fine-grained condition. ControlNet [53] and T2I-Adapter [30] are the most
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commonly used methods to incorporate additional image conditions by adding
extra image encoders, but they all require few-shot fine-tuning. SDEdit [29]
achieves tuning-free guided image synthesis by adding noise to the guide image
and then denoising it back to a real image using a pre-trained diffusion model.

3 Method

PanoFree targets the text-to-panorama generation task, which takes textual
descriptions as guidance to create multi-view perspective images that can be
stitched into a wide-angle, high-quality panorama. PanoFree generates multi-
view images through sequential warping and inpainting steps, which typically
results in acclimated errors due to deficit conditions (discussed in Sec. 3.1). Each
component of Panofree is designed to minimize the effect of these various defi-
ciencies. Specifically, Sec. 3.2 mitigates inconsistency using SDEdit-based cross-
view guidance and Sec. 3.3 removes artifact-inducing content by estimating and
erasing risky areas. At a higher level, PanoFree employs Bidirectional Genera-
tion with Symmetric Guidance for loop closure and error reduction (Sec. 3.4).
Additionally, it applies guidance-based semantic and density control for scene
structure preservation (Sec. 3.5). See Fig. 2 for an overview of our approach.

3.1 Deficient Conditions behind Accumulated Errors

In this section, we discuss the causes behind the deficit conditions in the itera-
tive warping and inpainting process and reformulate the problem as conditional
generation. Given the text prompt ct, i-th view’s image xi, warping functionW,
transformation matrix of the projection from i-th view to the (i + 1)-th view
Pi+1

i , and pre-trained T2I inpainting model Φinp, the warping and inpainting
step to generate the (i+ 1)-th view can be denoted as:

x̂i,mi =W(xi,P
i+1
i ); xi+1 = Φinp(x̂i,mi, ct), (1)

where x̂i is the image warped from i-th view to (i + 1)-th view and mi is the
masking indicating the area to inpaint. And we can simplify the warping and
inpainting steps in the following conditional image generation form:

xi+1 ∼ q(x|ct,xi,P
i+1
i ). (2)

However, during this generation process, we found conditions can become defi-
cient. Major accumulated errors arise from three types of deficient conditions:
Biased Conditions, Noisy Conditions, and Partial Conditions. See Sec. A.2 in
the supplementary for detailed error illustrations.
Biased Conditions is the most obvious problem. In the above step, xi+1 is
solely conditioned on xi, which biases the cross-view awareness heavily to i-th
view. If xi has deviated from the desired global distribution in certain aspects,
then xi+1 is likely to continue deviating in the same direction, resulting in signif-
icant inconsistency. We also found that slight style and content shifts often ac-
cumulate in this way, leading to significant inconsistency between distant views.
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(a) Overview of the generation and guidance framework.
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“A playful street art area adorned with colorful graffiti and slogans, under blue sky with a few clouds.”

(b) Illustration of a single warping and inpainting step.

Image Warping InpaintingRisky Area Estimation Risky Area Erasing Guided Image SynthesisImage Combining

Fig. 2: Overview of our PanoFree method, taking 360 Panorama Generation as an ex-
ample. (a): At a framework level, PanoFree adopts two generation paths with opposite
viewpoint translation or rotation. It enhances consistency by symmetrically selecting
views from the other path as guidance to generate a new view (Sec. 3.4). Loop clo-
sure is ensured by merging these two paths. (b): In each warping and inpainting step,
PanoFree reduces accumulated error by guiding the inpainting process with cross-view
images (Sec. 3.2), along with estimating and erasing risky areas (Sec. 3.3).

Noisy Conditions mainly refer to xi containing artifact-inducing contents. Ex-
isting artifacts in xi could guide inpainting model to generate similar artifacts in
xi+1 and propagate to every following view. Additionally, disjointed or distorted
areas, jagged or sharp content, and objects truncated by edges in xi are also
highly risky to introduce artifacts in xi+1.
Partial Conditions refer to the conditions not containing all the necessary in-
formation to meet specific requirements. For example, if we follow Eq. (2) on the
final view, we lack information about x0, making it impossible to generate image
coherent with x0 to ensure loop closure. Additionally, using a single text prompt
to generate all views within a full spherical panorama may lead to hallucinations,
such as cities floating in the sky or underwater mountains.

3.2 Cross-View Guidance

To rectify the biased conditions discussed in Sec.3.1 and enlarge cross-view
awareness, a natural idea is to let xi+1 conditioned on more views,

xi+1 ∼ q(x|ct,xi,P
i+1
i ,xg

1, ...,x
g
m) (3)
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where xg
1, ...,x

g
m are selected from x0, ...,xi−1. This naturally results in a Guided

Image Synthesis task form with self-generated images as guidance. Many existing
methods can be adapted to implement our design, such as ControlNet [53] and
T2I adapter [30]. To avoid relying on fine-tuning and reduce memory and time
costs, we choose SDEdit [29], a training-free guided image synthesis approach,
with a single guidance image xg ∈ [x0, ...,xi−1].
Guided Image Synthesis using SDEdit. Given xg as guidance, SDEdit es-
tablishes a Gaussian distribution using xg as the expectation and the intermedi-
ate status at time t0 in the reverse SDE process. The desired data distribution
is obtained by gradually removing noise from xg(t0):

xg(t0) ∼ N (xg, σ2(t0)I); x ∼ SDEdit(xg, t0,Φ), (4)

where Φ denotes a generative model. In PanoFree, we use inpainting mask mi

to paste the guidance image xg to the blank areas in the warped image x̂i and
then use SDEdit in the inpainting process:

x̂g
i = mi · xg + (1−mi) · x̂i; xi ∼ SDEdit(x̂g

i , t0,Φinp). (5)

Since we only want to use additional guidance images to rectify the biased condi-
tions rather than replicate the guidance image, we use t0 ∈ [0.9, 1.0) in practice.
Meanwhile, we found that different selection of generation path and guidance
image results in different generation qualities, and the optimal choice may vary
for different tasks. We introduce a general selection effective for various tasks in
Section 3.4 and provide an example of extending this technique to make scenes
more realistic in specific scenarios in Section 3.5.

3.3 Risky Area Estimation and Erasing

To rectify the noisy conditions discussed in Sec.3.1 and eliminate the accumu-
lation of artifacts, a natural idea is to detect and localize the artifact-inducing
contents, and erase them. However, precise detection and localization often re-
quires costly training. Thus, we turn to roughly estimate and erase the risky
areas that are likely to contain artifact-inducing contents, based on indicators
often associated with artifact: distances, color and smoothness. See Sec. A.2 in
the supplementary for examples.
Risk Estimation based on Distances. We consider the distance from the
center point of the initial view x0 and the distance to the edges. This is based
on two priors: 1. The farther from the initial view, the more accumulated errors
and the more likely to contain artifact-inducing contents. 2. Areas close to the
edges are highly risky because truncated objects are mostly generated around
the edges, and areas near the edges are often more severely distorted during
warping. We use initial risk rinit to represent the risk estimated based on the
distance from the initial view, and edge risk redge to represent the risk estimated
based on the distance from edges. They are derived from the following:

rinit(ci) = Rp(D0(ci)); redge(ci) = Rp(De(ci)), (6)
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where ci represents the pixel coordinates of xi within the panorama coordinate
system, D0 measures the distance to the center point of the initial view along
the generation path, De measures the distance to all edges e, and Rp is a scaling
function. We use weighted euclidean distance for D0, Gaussian filters for De, and
min-max normalization for Rp.
Risk Estimation based on Color and Smoothness. After generating a view,
we can predict the risk based on color and smoothness. This uses two priors: 1.
Artifacts are often not smooth or distinct in color. 2. Salient areas with abrupt
colors or unevenness are prone to causing artifacts. Color-based risk rcolor and
smoothness-based risk rsmooth are estimated in similar forms:

rcolor(xi) = Rf (Dc(xi)); rsmooth(xi) = Rf (Ds(xi)), (7)

where Dc and Ds measures the abruptness of each pixel based on color and
smoothness. When implementing them, we choose pixels with the same vertical
coordinates across views, and calculate the “distances” of each pixel to the mean
color and color gradient. WithinRf , we applied Gaussian filtering after min-max
normalization, as those estimated risks are usually noisy.
Erasing with Estimated Risks. With the estimated risks, we can erase the
risky areas on the image warped to next view and the inpainting mask. Assume
that we get inpainting mask for current view mi and risks for previous view
ri−1 = [rii−1, r

e
i−1, r

c
i−1, r

s
i−1]. The risks are combined linearly and new inpainting

mask for current view can be obtained with:

mr
i =Mr(mi,W(ri−1 ·w,Pi

i−1)). (8)

Mr is the risk-based remasking function, and w are user defined combination
weights. We defineMr as thresholding the risk within the warped area.
Smoothing and Anti-aliasing. We note that the inpainting mask from risk-
based erasing may not be smooth. Additionally, sharp and jagged edges on the
inpainting mask can lead to artifacts. Therefore, we also employ fixed filtering
Mf , where Gaussian filtering and thresholding are used to smooth the mask
and reduce sharp edges, while median filtering is used to reduce jagged edges.
Then, we use the final inpainting mask for the combination with guidance, and
the risky areas on the warped image are removed and regenerated.

mf
i =Mf (m

r
i ); x̂g

i = mf
i · x

g + (1−mf
i ) · x̂i. (9)

3.4 Bidirectional Generation with Symmetric Guidance

Bidirectional Generation. We begin by dividing a unidirectional generation
path x0 → x1...x2n into two bidirectional generation paths x0 → x1 → ...→ xn

and x−n ← ... ← x−1 ← x0. Typically, we would make these two generation
paths symmetric. And we found this can reduce accumulated errors because the
distance to the initial view is reduced in each direction. This consistently reduces
artifacts, but may not reduce style and content inconsistency, as there may be
different style/content shift in the two directions.



8 A. Liu et al.

Loop Closure. To ensure loop closure, we can add a (2n + 1)-th view as the
"merging view" to merge the 2 generation paths by warping xn and x−n to the
(2n+1)-th view and inpaint it. However, if the differences between the two paths
are too large, x2n+1 may contain image tearing, failing to ensure loop closure.
This is due to the partial conditions on each path: there is no information from
the other path before merging. Therefore, we rectify the partial conditions by
introducing awareness of the other path.
Symmetric Guidance. We introduce the awareness of the other path by se-
lecting symmetric guidance images from the other path. Specifically, when gen-
erating xi+1, we will select x−i as the guidance image. Thus, xi+1 will get the
awareness of both paths as it is conditioned on xi and x−i:

xi+1 ∼ q(x|ct,xi,x−i,P
i+1
i ) (10)

We emperically found that bidirectional generation with symmetric guidance
is not only effective in ensuring loop closure but also a universally applicable
strategy to effectively reduce accumulated errors in various scenarios.

3.5 Aligning with Scene Structure Prior

When generating full spherical panoramas, we divide a spherical panorama into
five parts: first, we generate a 360 panorama as the central part, then we expand
upwards and downwards, and finally, we generate two images centered around
the top and bottom poles to close up the entire spherical surface. During the
expansion and closing stages, models often fail to align with scene structure
priors due to partial conditions and generate artifacts.
Hallucination refers to the artifacts caused by mismatches between partial
conditions and scene structure priors. For example, when generating a city scene,
using the same prompt during the expansion and closing stages may result in
a floating city in the sky or a city underwater. The most direct solution is to
input a new prompt, but this would require additional manual effort, which is
not ideal. So, we attempt to rectify the partial conditions by extracting scene
structure priors and applying semantic and variance control from the initial view.
Prior Extraction. Although the pretrained T2I model may not align a full
panorama with scene structure priors, it can align a single perspective view
image with them. Therefore, we extract the scene structure prior from the initial
view image x0 and incorporate it into the expansion process. For example, when
generating the first view image in the upward expansion xue

0 , we use upper 1/3
part of the initial view image as guidance with resizing it to the size of xue

0 .
Semantic and Variance Tuning. When the give text prompt only describe
part of the scene, we may want generated semantic contents less conditioned on
the partial prompt and more conditioned on the prior images during expansion
and closing. We achieve this by reducing guidance scale and widen the field of
view. Meanwhile, we adjust the variance of the initial noise to avoid the color
blocks caused by low guidance scale. Through experimentation, we’ve found that
a combination of slightly high initial variance and low guidance scale can stably
reduce hallucinations and color blocks during the expansion and closing stages.
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4 Experiments

We evaluate the performance of PanoFree across three generation tasks: Planar
Panorama Generation, 360 Panorama Generation, and Full Panorama Gener-
ation. However, note that we focus on planar panorama and 360◦ panorama
generation, where the comparisons are more precise and consistent.
Implementation details. PanoFree is implemented using the publicly available
Stable Diffusion code from Diffusers [34] based on the PyTorch framework. For
the experiments in the main paper, we utilized the generation and inpainting
models of Stable Diffusion (SD) v2.0 [38]. All experiments are conducted on a
single NVIDIA RTX A6000 GPU. Further details and specific configurations can
be found in the corresponding sections of the main paper and the supplementary.
Evaluation metrics. We introduce a more comprehensive set of evaluation
metrics than prior work [1, 22, 46] covering five themes: image quality, global
consistency, prompt capability, diversity, and resource consumption.
– Image Quality is measured with Fréchet Inception Distance (FID) [14], Kernel

Inception Distance (KID) [2], which measure fidelity and diversity. FID and
KID calculated between the views randomly cropped from the panorama and
reference images generated by SD with the same prompts.

– Global Consistency is measured with Intra-LPIPS (IL) [55] used by SyncD-
iffusion [22], which is computed by cropping non-overlapping views from a
panorama and computing the averaged LPIPS scores of all view pairs.

– Prompt Capability is measured via CLIP Score (CS) [13] by computing the
text-image similarity of randomly cropped views of the panorama.

– Panorama Diversity is also measured by FID and KID. Additionally, we
propose Cross-LPIPS (CS) [55]. Cross-LPIPS is computed across 2 panora-
mas generated with a same text with differents random seeds. We crop non-
overlapping views from each panorama, and compute the averaged LPIPS
scores of all view pairs where two views come from different panoramas.

– Resource Consumption includes time consumption, measured by the cumula-
tive time cost of all diffusion processes to generate a single panorama, and
peak GPU memory consumption, measured by the maximum GPU memory
consumption during inference.

Evaluation Settings. Prior work either used arbitrary prompts [1, 22] or only
focused on a single type of scene [46]. Instead, we consider 3 distinct scene types:
indoor, street, and city scenes, and natural scenes. We obtained 100 prompts
for each type from ChatGPT [35]. We use 10 random seeds per prompt for
planar panorama and 360 panorama generation, and 3 different random seeds
per prompt for full panorama generation (see supplementary for details).
User Study. For planar panorama generation and 360◦ panorama generation,
we conducted four user studies for each task to further evaluate the global con-
sistency, image quality, prompt compatibility, and diversity of the generated
panoramas (see supplementary for details).
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“A photo of a rock concert” “Skyline of New York City”

“Desert oasis with palm trees and a shimmering pool”

SG

MD

SYD

PF

“Silhouette wallpaper of a dreamy scene with shooting stars”

SG

MD

SYD

PF

Fig. 3: Planar Panorama generation results. Compared to vanilla Sequential Genera-
tion and MultiDiffusion (MD) [1], PanoFree achieves superior global consistency and
image quality. It is also comparable to SyncDiffusion (SYD) [22] in these aspects.

Table 1: Comparison of tuning free methods for Planar Panorama generation using
Stable Diffusion [38]. We find PanoFree (PF) outperforms the state-of-the-art while
having low computational requirements. Note that Cross-LPIPS and Intra-LPIPS are
in 10−2 scale, KID is in 10−3 scale.

Method Intra-LPIPS↓ Cross-LPIPS↑ FID↓ KID↓ CS↑ Time (s)↓ Memory (GB)↓

SG 70.40 71.03 24.91 4.33 26.68 25 3.2
MD [1] 68.48 69.92 21.16 3.50 27.89 95 5.8

SYD [22] 64.48 68.07 20.56 3.62 27.18 128 10.0

PF (Ours) 65.34 69.68 17.05 3.80 27.21 26 3.2

4.1 Planar Panorama Generation

Planar Panorama corresponds to the scene observed with camera translation
along the focal plane in reality. This is a relatively simple task, as it only in-
volves extending the image without considering more complex geometric changes.
Baselines. We have chosen 3 tuning-free baselines for comparison, Vanilla Se-
quential Generation (SG), MultiDiffusion (MD) [1] and SyncDiffusion (SYD) [22].
Additional details are in the supplementary.
Results. The quantitative and qualitative evaluations are shown in Table 1 and
Fig. 3, respectively. Below we compare PanoFree to each baseline.
– Compared with vanilla Sequential Generation, PanoFree significantly enhances

image quality and global consistency, demonstrating its effectiveness in reduc-
ing accumulated errors. Moreover, PanoFree does not compromise diversity or
have a significant effect on GPU time and memory overhead.

– Compared with MultiDiffusion, PanoFree has significant advantages in image
quality and global consistency. Meanwhile, its time and GPU memory over-
head is only 26% and 55% that of MultiDiffusion, respectively.

– Compared with SyncDiffusion, PanoFree achieves comparable performance in
global consistency and image quality. Although SyncDiffusion performs better
in consistency, it requires introducing additional models for latent optimiza-
tion. This leads PanoFree’s time overhead to be 20% of SyncDiffusion and
GPU memory overhead to be 32% of SyncDiffusion.
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MD SYD PF

“Skyline of New York City”

Fig. 4: Diversity comparison on Planar Panorama Generation task. Each group is
generated using the same text with different random seeds. Compared to MultiDiffusion
(MD) [1] and SyncDiffusion (SYD) [22], PanoFree achieves superior diversity.

Table 2: User study results of Planar Panorama Generation. 15 questions are used for
each evaluation item and answered by 5 Amazon MTurk workers.

Consistency (%) Quality (%) Prompt Compatibility (%) Diversity (%)

SYD [22] 52.7 46.0 41.3 35.3
PF (ours) 47.3 54.0 58.7 64.7

The Loss of Diversity with Joint Diffusion. When using different random
seeds with the same prompt, methods using Joint Diffusion exhibit reduced
diversity in their results. In contrast, our PanoFree method can better maintain
diversity (see cross-LPIPS scores in Table 1). Additionally, we believe this is the
source of PanoFree’s gains over MultiDiffusion and SyncDiffusion in FID.

This diversity issue becomes particularly apparent when given some under-
specified prompts. Therefore, we generated a “underspecified set” consisting of
20 short and blurry prompts to demonstrate this issue. For each prompt, we used
20 different random seeds. We demonstrate the diversity differences qualitatively
in Fig. 4. Please refer to supplementary for quantitative analysis.
User Study. The results in Table 2 clearly show that human evaluators believe
PanoFree produces more diverse panoramas and demonstrates better compati-
bility with prompts than SyncDiffusion [22]. Additionally, both methods exhibit
similar levels of global consistency and image quality.

4.2 360 Panorama Generation

Due to the distortion caused by equirectangular projection, generating 360-
degree panoramas is more challenging than planar panorama generation. Vanilla
sequential generation tends to produce many artifacts, significantly decreasing
image quality. Moreover, MultiDiffusion [1] and SyncDiffusion [22] cannot be
directly used for generating 360-degree panoramas. As far as we know, PanoFree
is the first implementation of training-free 360-degree panorama generation.
Baselines. We used 2 baselines for comparison: Vanilla Sequential Generation
(SG) and MVDiffusion (MVD). Additional details are in the supplementary.
Results. The quantitative and qualitative evaluations are shown in Table 3 and
Fig. 5 respectively. Below we compare PanoFree to each baseline.
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Table 3: Comparison of 360◦ Panorama generation methods using Stable Diffu-
sion [38]. We find PanoFree (PF) still outperforms the state-of-the-art while having
low computational requirements. Note that Cross-LPIPS and Intra-LPIPS are in 10−2

scale, KID is in 10−3 scale.

Method Intra-LPIPS↓ Cross-LPIPS↑ FID↓ KID↓ CS↑ Time (s)↓ Memory (GB)↓

SG 70.62 73.06 32.28 7.90 26.35 21 3.2
MVD [46] 67.71 70.07 37.89 8.76 26.27 110 6.9

PF (ours) 68.62 72.67 25.84 7.48 26.51 22 3.2

“Cozy log cabin with a stone fireplace and 
rustic wooden furniture”

“Cozy neighborhood pub with outdoor seating”

SG

PF

MVD

“Desert oasis with palm trees and a shimmering pool”

“Crystal-clear mountain lake reflecting
snow-capped peaks”

SG

PF

MVD

Fig. 5: 360◦ Panorama generation results. Compared to vanilla Sequential Generation
(SG), PanoFree achieves superior global consistency and image quality. It is also com-
parable to MVDiffusion (MVD) [46] in these aspects.

– Compared with vanilla Sequential Generation, PanoFree significantly enhances
image quality and global consistency. Specifically, vanilla sequential genera-
tion creates artifacts with complex optical geometry transformations, severely
impacting image quality. However, PanoFree effectively recovers image quality
by estimating and erasing risky areas, minimizing artifact propagation.

– Compared with MVDiffusion, PanoFree achieves comparability in image qual-
ity and global consistency, yet significantly outperforms in terms of time,
GPU memory overhead, and diversity. Particularly, MVDiffusion is signifi-
cantly worse than PanoFree in terms of FID and KID scores, even underper-
forming vanilla Sequential Generation. This is partly due to the inevitable
bias of MVDiffusion’s generated results towards the training dataset, result-
ing in larger discrepancies compared to those produced by Stable Diffusion.
Visually, MVDiffusion also exhibits a noticeable lack of generation diversity.
As depicted in Fig. 6, given a prompt, results generated with different random
seeds show minimal variation in both content and style.

User Study. The user study results in Table 4 show that human evaluators
believe PanoFree also produces more diverse 360◦ panoramas compared with
MVDiffusion [46]. And PanoFree demonstrates better global consistency. Both
methods exhibit similar levels of image quality and prompt comparability.

4.3 Full Spherical Panorama Generation

PanoFree is also the first to achieve feasible tuning-free generation for Full Spher-
ical Panoramas. However, it’s hard to conduct meaningful comparisons due the
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MVD PF

“Charming alpine village nestled among snow-capped peaks”

Fig. 6: Diversity comparison on 360◦ Panorama Generation task. Each group is gen-
erated using the same text with different random seeds. Compared to MVDiffusion
(MVD) [46], PanoFree achieves superior diversity.

Table 4: User study results of 360◦ Panorama Generation. 15 questions are used for
each evaluation item and answered by 5 Amazon MTurk workers.

Consistency (%) Quality (%) Prompt Compatibility (%) Diversity (%)

MVD [46] 40.7 48.7 47.3 33.3
PF (ours) 59.3 51.3 52.6 66.6

lack of tuning-free generation baseline methods or those with strong out-of-scope
generation capabilities for Full Spherical Panoramas generation task. Thus, we
conduct qualitative evaluation as well as comparison with vanilla sequential gen-
eration by showcasing generated results in Fig. 7. Vanilla sequential generation
exhibit more artifacts as distortion increases. Additionally, partial conditioning
issue mentioned in Sec. 3.5 causes hallucinations. And PanoFree still could effec-
tively reduce artifacts and hallucinations. Note that we start both methods from
360◦ panoramas generated by PanoFree into full spherical panoramas, otherwise
vanilla sequential generation will perform even worse.

4.4 Ablation Study

Tab. 5 contains an ablation study that sequentially integrates each PanoFree
component. We evaluate consistency (Intra-LPIPS) and image quality (FID)
with 30% of the prompts from Sec. 4.1 & Sec. 4.2 for both planar and 360◦

panorama. We show that cross-view guidance provides the strongest benefit,
followed by distance and edge-based risky area erasing. These components ef-
fectively reduce image tearing and visual chaos. Color and smoothness-based
erasing have a smaller impact, likely due noise in these low-level features. Qual-
itative results are in Sec. B of the supplementary.

5 Conclusion

We present PanoFree, a tuning-free multi-view image generation that supports
an extensive array of correspondences. PanoFree improves error accumulation
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“Cozy neighborhood pub with 
outdoor seating”

Charming alpine village nestled 
among snow-capped peaks

SG

PF

Street art area under 
a cloudy sky.

Fig. 7: Full Spherical Panorama generation results. Vanilla Sequential Generation (SG)
tends to generate hallucinations due to partial conditions, while PanoFree effectively
mitigates this issue.

Table 5: Quantitative ablation
of PanoFree components using
30% of prompts from Sec. 4.1 &
4.2. Intra-LPIPS (10−2) and FID
show cross-view guidance offers
the most benefit, followed by dis-
tance and edge-based risky area
erasing. Color and smoothness-
based erasing have minimal im-
pact.

Task Method Intra-LPIPS↓ FID↓

Planar
None 70.84 24.75
+ CG 66.63 20.63
+ Dist 65.87 18.21

360◦

None 71.34 33.47
+ CG 69.21 27.38

+ Dist & Edge 69.03 26.69
+ Color & Smooth 68.94 26.51

by enhancing cross-view awareness and refining the warping and inpainting pro-
cesses through cross-view guidance, risky area estimation and erasing, and sym-
metric bidirectional guided generation for loop closure, alongside guidance-based
semantic and density control for scene structure preservation. PanoFree is eval-
uated on various panorama types—Planar, 360°, and Full Spherical Panoramas.
PanoFree demonstrates significant error reduction, improved global consistency,
and image quality across different scenarios without extra fine-tuning. Compared
to existing methods, PanoFree is up to 5x more efficient in time and 3x more
efficient in GPU memory usage, and maintains superior diversity of results (2x
better in our user study). Moreover, PanoFree can be extended to texture gener-
ation for 3D models. We intend to explore these possibilities in future research.

Limitations. A limitation of our work is that we are unable to generate scenes
beyond the capability of the pre-trained T2I model. Therefore, we rely on large
pre-trained T2I models to ensure the broad application scope. And when pro-
vided with text descriptions beyond the capability range of the pre-trained T2I
models, the generated results may not match the text.
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