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1 Details of Object Priors

In the following, we provide implementation details of all object priors evaluated
in this paper.

Grid The object prior Grid utilizes the baseline implemented in SAM3, how-
ever, using 64 points per side leading to a 64× 64 grid as in the zero-shot object
proposals experiment described in [11]. Given an image of size h × w, the grid
points have a spacing of h

64 in the vertical dimension and a spacing of w
64 in the

horizontal dimension. All grid points are translated by h
64 · 1

2 in the horizontal
dimension and w

64 · 1
2 in the vertical dimension, to center the grid on the im-

age. Note that we directly use the grid points as prompts, without the sampling
utilized for most other priors.

Dist For the Dist object prior, we first extract the centroid of each annotated
VOC object from the COCO train split. As the centroid, we take the average
x- and y-coordinates of all pixels belonging to the object. Subsequently, we
normalize the coordinates by the image height and width, leading to relative
coordinates. Given these relative coordinates, we aggregate all centroids across
the dataset in an array of size 64 × 64. Finally, each entry in the aggregator
represents the absolute number of objects with a centroid at this location, given
a resolution of 64 × 64. To generate the object prior per image, we resize the
aggregator to the respective image’s size, ignoring the image content.

GT To create the object prior GT, we extract the centroid of each non-VOC
object from the COCO train split and directly take these centroids as prompt.
3 https://github.com/facebookresearch/segment-anything/blob/main/segment_
anything/automatic_mask_generator.py
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As the centroid, we take the average x- and y-coordinates of all pixels belonging
to the object. Note that GT is the only object prior that accesses information
from the unknown non-VOC classes in this study. Hence, it serves as an upper
bound rather than a practical object prior.

Spx We create the Spx object prior by first applying the superpixel segmenta-
tion method FH [3] to the image. In its original formulation, FH has only one
parameter (k) to indirectly control the number of superpixels. We use k = 10000
in our experiments, leading to an average of 33.4 superpixels per image. Since
we use the implementation in scikit-image4, additional pre- and post-processing
steps apply, including Gaussian smoothing and the removal of tiny superpixels.
Note that we use default parameters for all these steps. After the superpixels are
generated, we extract the centroid per superpixel as point prompts. Similar to
GT and Dist, we take the average x- and y-coordinates of all pixels belonging
to the superpixel as centroid.

Contour For the Contour object prior, we follow [18]. First, we extract an
edge map from the image using the SE edge detector [2]. Subsequently, we apply
strong Gaussian smoothing (σ = 20) to the edge map. This yields a weighted
edge strength per pixel and represents the density of edges around each pixel.
Hence, we take this result as object prior.

VOCUS2 To generate the VOCUS2 object prior, we apply the VOCUS2 sys-
tem by [4] to each image. Since VOCUS2 has several parameters steering the
center-surround contrast calculation, we use the default parameters5 for the
Coffee Machine Sequence dataset [7], focusing on small objects. The resulting
saliency map of VOCUS2 is the object prior.

DeepGaze The object prior DeepGaze utilizes the pre-trained system Deep-
Gaze IIE [13]. We use the official6 model pre-trained on the datasets SALI-
CON [8] and MIT1003 [9] for eye fixation prediction, including a center bias.
The output of DeepGaze IIE is the object prior.

CAM We create the object prior CAM, using the CAMs [19] of a pre-trained
classifier. As our classifier, we choose a ResNet-50 [6] pre-trained on ImageNet [15].
Hence, no training on the COCO dataset is conducted. Given an input image,
we select the class with the highest probability returned by the classifier and
produce a CAM for this class, if the probability is greater than 0.2 to remove
uncertain classifier results. The generated CAM is the object prior.

4 https://scikit-image.org/docs/stable/api/skimage.segmentation.html
5 https://github.com/GeeeG/VOCUS2/blob/master/cfg/coffee_cfg.xml
6 https://github.com/matthias-k/DeepGaze
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DINO For the object prior DINO we follow [1] and utilize a ViT-S backbone
pre-trained on ImageNet [15] with a patch size of 8 in the self-supervised DINO
framework. From the six attention heads of the network’s last transformer layer,
we extract the self-attention of the CLS token. We combine these six self-attention
maps by taking the per-pixel maximum to create the final object prior.

U-Net To generate the U-Net object prior, we train a U-Net [14] on the COCO
training images with a joined mask covering all VOC objects as target. The U-
Net encoder consists of four stages with two 3× 3 convolution layers each using
64, 128, 256, and 512 filters, respectively. The bottleneck consists of another two
3 × 3 convolution layers with 1024 filters each. Finally, the decoder’s structure
is set up to match the encoder also including skip connections between the
respective stages. The final layer of the network is a 1× 1 convolution with one
filter to produce the output.

The network is trained for up to 20 epochs with early stopping using binary
cross entropy loss and Adam optimizer. All input images are rescaled to 512 ×
512 and the batch size is 4. The training data is generated from the original
annotations of the VOC objects in the COCO training set. For each image, we
join all masks of VOC objects resulting in a binary segmentation. These binary
segmentations serve as the training target for the U-Net.

To create the object prior, the U-Net processes each image of the COCO
training set. The resulting output map with per-pixel logits is the object prior.

2 Additional Object Prior Results

This section presents additional qualitative results of the proposed object priors
with resulting pseudo annotations. Moreover, we present detailed quantitative
results of SOS using all proposed object priors w.r.t. bject sizes and classes.

Qualitative Results of Object Priors Figure 1 depicts examples of all object
priors, except GT, on the COCO training set. While most object priors highlight
similar areas, some differences are clearly visible. The baseline object prior Dist
only resizes the spatial distribution of VOC objects in the COCO training set to
the image size, ignoring the image content. Similarly, Grid rescales the 64× 64
grid to the image size. In contrast, Spx and Contour focus more on the objects
but also on highly textured background areas like the trees in the first example.
VOCUS2 highlights objects, but also salient background regions as visible in the
fourth example. The second saliency-based object prior, DeepGaze, has a much
stronger focus on objects, but mainly focuses on faces and has difficulties detect-
ing secondary objects like the elephant in the second example. Similarly, CAM
focuses on the objects, but at a very coarse resolution. The DINO object prior
only highlights a few locations, however, covering most objects in the images.
This leads to pseudo annotations for a variety of objects. In contrast, the U-Net
object prior highlights entire objects.
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Fig. 1: Examples of all object priors evaluated in this paper as heatmaps.
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Fig. 2: Example pseudo annotations generated in SOS based on all object priors eval-
uated in this paper.
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Qualitative Results of Pseudo Annotations In Fig. 2, pseudo annotations
for all object priors and example images presented in Fig. 1 are given. The
pseudo annotations reflect the findings on the level of the object priors. Most
notably, all priors, except for DINO, consistently lead to several background
pseudo annotations, while missing foreground objects.

Size-specific Results of SOS with Various Object Priors To better assess
the strengths and weaknesses of the object priors, Tab. 1 presents the size-specific
results of SOS using each object prior in the COCO (VOC) → COCO (non-
VOC) setting. This is the same setting used in the object prior study in the
main paper. The size-specific results assign each annotated object to the class
S (small object, area < 322), M (medium object, 322 ≤ area < 962), or L (large
object, 962 ≤ area), as defined by [12]. For the subsequent analysis, we ignore
the GT object prior results as they use the original annotations’ centroids of the
unknown classes, resulting in an upper bound.

The results show that SOS with DINO object prior outperforms all other
variations on all but one measure (ARM

100). For small objects, DINO and Spx
lead to the highest recall, while DINO also generates the best results in preci-
sion. Medium and large objects are recalled by most methods on a similar level.
However, DINO produces the best precision results. Hence, DINO ’s success is
driven by strong results on small objects and high precision across all object
sizes.

Table 1: Class-specific results of SOS using all object priors presented in this paper
in the COCO (VOC) → COCO (non-VOC) setting *: Uses ground truth of unknown
classes.

Object Prior Small objects Medium objects Large objects
APS ARS

100 FS
1 APM ARM

100 FM
1 APL ARL

100 FL
1

Grid 0.8 20.6 1.5 5.3 46.9 9.5 7.7 53.3 13.5
Dist 1.0 15.2 1.9 3.5 31.0 6.3 8.3 47.3 14.1
GT 9.2* 29.9* 14.1* 22.2* 50.7* 30.9* 29.8* 55.8* 38.9*
Spx 1.3 34.8 2.5 6.2 44.9 10.9 12.9 51.0 20.6
Contour 1.3 20.8 2.4 6.9 48.3 12.1 11.8 50.9 19.2
VOCUS2 1.1 21.7 2.1 6.2 48.5 11.0 15.0 54.1 23.5
DeepGaze 0.7 20.4 1.4 6.0 45.6 10.6 13.9 53.1 22.0
CAM 1.3 20.3 2.4 7.1 47.6 12.4 11.2 53.7 18.5
DINO 2.2 38.1 4.2 8.7 48.1 14.7 22.6 55.5 32.1
U-Net 1.4 21.3 2.6 7.3 49.4 12.7 18.5 51.9 27.3

Class-specific Results of SOS with Various Object Priors Table 2 pre-
sents the class-specific AR100 results of SOS using all introduced object priors
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in the COCO (VOC) → COCO (non-VOC) setting. This is the same setting as
used in the object prior study in the main paper. Note that measuring precision
in this experiment is not useful, as no classification of the detections is done in
OWIS. For the subsequent analysis, we ignore the GT object prior results as
GT uses the original annotations’ centroids of the unknown classes, resulting in
an upper bound.

The results show that SOS using the DINO object prior performs best on
most classes. Overall, all object priors behave similarly on different levels of AR
across most classes. However, on classes like Sports balls or Toaster, some
object priors perform much worse compared to the others. Most notably, SOS
using VOCUS2 only produces an AR100 of 40.4 for class Toaster, which is much
lower than SOS with DINO object prior (70.0). Another deviation from the
general per-class trend is visible in the results of Dist. Several classes including
Traffic light, Snowboard, or Mouse are not covered well by SOS with Dist
object prior, due to their mostly off-center location.

Across all object priors, animal classes and traffic-related classes lead to
strong results. Conversely, elongated objects like Skis, Fork, or Knife result
in low AR100 scores. Generally, more research w.r.t. object properties is neces-
sary to better understand the per-class differences.

Table 2: Class-specific AR100 results of SOS using all object priors presented in this
paper in the COCO (VOC) → COCO (non-VOC) setting. *: Uses ground truth of
unknown classes. V2 and DG denote VOCUS2 and DeepGaze.

Class Grid Dist GT Spx Contour V2 DG CAM DINO U-Net

Truck 52.7 50.5 55.5* 52.6 52.9 51.9 51.0 53.5 53.5 52.9
Traffic light 25.3 13.3 35.4* 24.7 23.6 27.0 22.3 20.5 27.1 19.5
Fire hydrant 64.7 56.7 66.0* 62.7 63.0 63.6 63.2 62.4 63.9 64.2
Stop sign 68.3 51.9 72.3* 68.5 66.1 67.7 66.7 67.1 69.5 65.9
Parking m. 56.8 52.8 59.7* 59.8 57.7 58.8 56.7 62.0 61.5 60.2
Bench 20.7 17.1 21.1* 20.0 21.1 19.8 19.2 19.6 19.3 21.2
Elephant 59.6 57.9 61.7* 58.4 58.9 59.3 59.4 60.0 59.4 62.2
Bear 74.5 72.8 74.8* 71.7 70.8 72.5 73.0 74.1 73.1 73.2
Zebra 52.8 47.9 56.6* 54.8 53.0 54.4 53.7 53.8 55.5 55.0
Giraffe 47.7 43.8 50.8* 49.3 47.6 49.6 48.3 49.2 50.0 48.3
Backpack 25.1 21.6 31.9* 24.3 26.4 26.8 26.5 24.8 25.3 29.8
Umbrella 48.8 31.8 50.2* 45.7 49.9 49.6 47.0 46.5 46.6 49.1
Handbag 26.4 17.4 32.3* 24.9 28.0 27.7 23.7 27.2 25.2 30.6
Tie 24.6 19.3 35.2* 23.5 26.3 24.4 25.1 22.8 25.3 27.2
Suitcase 45.5 41.5 50.6* 41.9 49.3 49.6 49.3 49.4 47.9 53.6
Frisbee 67.4 51.7 68.1* 67.0 63.5 69.4 66.4 64.7 68.2 67.7
Skis 2.7 1.4 3.4* 3.1 3.1 3.2 2.5 3.2 2.8 3.0
Snowboard 21.0 10.6 22.8* 22.0 23.6 23.6 20.9 21.3 23.5 23.3
Sports ball 46.7 22.7 51.7* 45.7 35.2 45.0 37.3 39.8 47.2 37.5
Kite 42.6 30.1 45.5* 44.0 38.4 42.4 42.8 39.2 44.2 40.6
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Baseball bat 20.8 15.7 29.1* 21.5 26.5 24.6 23.4 23.5 28.1 24.6
Baseball gl. 40.8 35.4 46.8* 39.4 44.7 42.5 45.3 42.3 44.7 48.9
Skateboard 17.0 16.4 24.9* 19.3 20.2 18.6 19.6 18.3 22.2 21.3
Surfboard 31.6 26.6 34.5* 30.5 33.4 34.2 33.8 33.1 33.6 34.1
Tennis racket 43.5 31.8 52.8* 44.4 44.7 42.3 44.7 46.5 48.3 45.0
Wine glass 26.7 20.5 35.7* 26.3 25.9 21.9 24.1 25.5 25.6 25.6
Cup 49.6 36.2 57.0* 47.4 49.0 47.7 45.6 49.9 48.3 49.7
Fork 8.2 5.5 16.4* 10.6 11.3 10.3 8.8 8.8 12.4 11.6
Knife 12.9 6.8 19.1* 14.0 15.4 14.4 11.2 14.5 14.1 15.8
Spoon 17.4 7.1 23.7* 18.9 18.7 19.0 15.2 17.3 19.9 18.9
Bowl 44.2 29.7 46.8* 38.5 40.9 47.7 41.6 47.8 45.2 42.3
Banana 32.1 19.9 34.6* 24.1 30.9 32.1 31.8 31.2 34.0 32.4
Apple 39.3 23.9 44.0* 33.6 36.7 40.6 36.9 38.6 39.5 41.7
Sandwich 40.5 35.1 50.1* 35.3 36.2 41.2 40.2 41.9 48.2 39.4
Orange 46.6 27.6 52.1* 39.1 46.3 49.8 46.6 46.7 47.6 48.9
Broccoli 26.1 22.4 38.5* 28.0 32.8 33.4 33.1 31.7 37.0 33.0
Carrot 34.8 22.5 39.5* 22.8 35.1 37.3 35.3 33.6 32.8 36.9
Hot dog 26.2 24.7 37.3* 20.6 24.6 27.1 30.0 26.2 31.2 27.5
Pizza 49.0 37.4 56.1* 38.0 41.7 51.2 50.4 47.2 54.9 42.4
Donut 51.8 32.6 60.7* 41.0 51.8 56.7 51.2 54.0 53.8 56.0
Cake 43.5 31.5 51.5* 41.1 41.9 44.3 42.3 45.2 45.8 43.9
Bed 30.9 29.3 29.8* 30.6 28.8 32.5 28.9 32.2 29.3 27.7
Toilet 47.8 42.4 58.7* 48.6 46.4 48.8 46.0 49.0 59.3 46.3
Laptop 52.5 48.9 55.2* 52.5 53.6 52.8 49.8 54.9 55.8 52.5
Mouse 60.2 25.6 68.5* 61.8 58.3 61.7 57.4 62.3 60.5 61.6
Remote 29.1 21.3 43.5* 34.1 31.4 33.3 29.5 31.6 35.5 35.1
Keyboard 51.6 41.4 54.6* 48.2 52.8 49.7 55.0 50.8 54.7 54.8
Cell phone 38.6 31.3 46.4* 39.5 40.2 40.4 40.0 40.2 44.1 41.4
Microwave 62.0 51.8 61.5* 58.4 65.5 62.7 61.6 65.8 62.0 57.6
Oven 29.0 26.4 33.1* 30.4 30.5 31.7 31.0 32.2 34.1 30.9
Toaster 65.6 58.9 70.0* 74.4 68.9 40.4 72.2 76.7 70.0 68.9
Sink 42.2 29.8 47.9* 39.0 42.7 44.5 42.7 44.6 43.6 45.0
Refrigerator 50.2 37.9 51.7* 49.0 50.8 53.7 49.3 48.4 53.7 49.7
Book 17.0 10.2 26.8* 16.3 19.4 18.6 16.3 16.2 15.3 16.5
Clock 59.7 38.0 64.6* 59.1 60.6 59.7 60.3 57.1 63.7 57.8
Vase 47.8 41.6 54.6* 47.7 47.2 47.7 49.3 49.2 49.5 51.0
Scissors 16.1 11.4 21.1* 19.2 19.4 21.9 17.2 12.5 15.6 18.3
Teddy bear 42.7 39.7 48.8* 39.9 41.3 45.5 43.6 42.6 47.4 43.2
Hair drier 32.7 12.7 16.4* 31.8 36.4 36.4 25.5 28.2 36.4 29.1
Toothbrush 15.8 14.6 19.5* 17.4 19.5 18.6 19.8 16.8 22.5 20.9
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3 Additional COCO (V OC) → COCO (non-VOC)
Qualitative Results

Figure 3 depicts the qualitative results of baseline Mask R-CNN [5], LDET [16],
GGN [17], UDOS [10], and our SOS on various test images in the cross-category
COCO (VOC) → COCO (non-VOC) setting. The results clearly show that SOS
detects more objects across a variety of scenes, including cluttered indoor and
outdoor scenes. Moreover, the detected objects cover several classes, sizes, and
other object properties (e.g., elongation).

4 Pseudo Annotation Quality

This section presents detailed size- and class-specific results of the pseudo an-
notations from GGN [17] and SOS against the non-VOC objects of the COCO
training set as described in Sec. 5.4 in the main paper.

Size-specific Results of Pseudo Annotation Quality Table 3 presents the
size-specific recall results of the GGN3 [17], SOS3, and SOS10 pseudo annotations
against the non-VOC original annotations of the COCO training set. The size-
specific results assign each annotated object to the class S (small object, area <
322), M (medium object, 322 ≤ area < 962), or L (large object, 962 ≤ area),
as defined by [12]. The results show that SOS3 outperforms GGN3 in all size
categories. Moreover, all object sizes profit from enlarging the number of pseudo
annotations from 3 to 10. Hence, SOS10 outperforms GGN3 and SOS3 across all
object sizes.

Table 3: Size-specific recall results of the pseudo annotations GGN3, SOS3, and SOS10

against the original non-VOC object annotations of the COCO training set.

Annotations RecS RecM RecL

GGN3 0.4 6.2 21.5
SOS3 4.4 15.6 34.4
SOS10 9.2 25.1 40.9

Class-specific Results of Pseudo Annotation Quality The class-specific
recall results of the GGN3 [17], SOS3, and SOS10 pseudo annotations against
the original non-VOC obejct annotations on the COCO training set are given
in Tab. 4. The results show that SOS3 outperforms GGN3 on most object classes,
while SOS10 outperforms SOS3 on almost every class. In total, SOS10 yields
better results than GGN3 on every object class.
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Ground Truth Mask R-CNN LDET GGN UDOS SOS (ours)

Fig. 3: Qualitative results of OWIS methods and baseline Mask R-CNN in the cross-
category COCO (VOC) → COCO (non-VOC) setting. Filled masks denote detected
objects, while red frames indicate missed objects.
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The characteristics between GGN3 and SOS3 differ. SOS3 produces a high
recall on animal-related classes, similar to the results in Tab. 2. GGN3 has a
notably low recall for these classes. A similar behavior is visible for Sports
ball, Broccoli, and Clock, among others. The opposite effect, strong recall
by GGN3 and low recall for SOS3, is only visible for the class Parking meter.
Comparing SOS3 and SOS10 reveals similar per-class results on different levels
of recall, with few exceptions (e.g., Bear and Frisbee).

Overall, SOS3 and SOS10 recall many objects from animal classes, several
sports-related classes, and most food classes. On the contrary, elongated objects
like Skis, Fork, and Knife lead to low recalls, similar to the results in Tab. 2.
Moreover, objects that are usually coupled with other objects like Handbag,
Backpack, or Bed that typically appear with a human wearing it (Handbag and
Backpack) or an item being located on it (Bed) lead to low recalls for both
SOS3 and SOS10. We attribute this to the ambiguity of point prompts in these
cases. However, more research is necessary to define clear patterns of simple and
difficult object properties or alignments.

5 Additional Ablation Studies

Finally, we present several ablation studies showing the influence of the param-
eters in SOS, the use of multiple segments per prompt, the effect of the random
sampling from the object priors, and the use of both pseudo annotations and
original annotations from known classes. All experiments follow the setup de-
scribed in Sec. 4.2 in the main paper.

Influence of Parameter S First, we analyze the influence of the parameter
S, the number of sampled coordinates from the object priors. The results of
SOS utilizing 20, 50, and 100 samples, presented in in Tab. 5, show that initially
sampling more coordinates leading to more prompts is beneficial, however, there
is no difference between S = 50 and S = 100. Hence, more sampled coordinates
do not lead to more or better pseudo annotations, as the number of pseudo
annotations is limited by parameter N and other filtering steps (see Sec. 3.3 in
the main paper). Overall, SOS is robust to the exact choice of S.

Influence of Parameter N We also investigate the influence of N , the size of
the pruning region inside an object prior around an extracted coordinate during
sampling. The results of SOS with different values for N in Tab. 6 indicate that
the pruning of substantial areas is beneficial since N = 20 outperforms N = 5.
Pruning larger areas (N = 30) does not lead to better results, and with even
larger values the results are expected to decrease again. Overall, the pruning is
important for strong results of SOS, however, SOS is robust to the exact choice
of the value for N .
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Table 4: Class-specific recall results of the pseudo annotations GGN3, SOS3, and
SOS10 against the original non-VOC object annotations of the COCO training set.

Class GGN3 SOS3 SOS10 Class GGN3 SOS3 SOS10

Truck 22.9 15.3 23.2 Bowl 8.8 10.4 18.2
Traffic light 2.9 6.7 12.6 Banana 3.4 7.3 12.2
Fire hydrant 27.4 40.5 50.1 Apple 2.4 11.6 12.1
Stop sign 17.2 39.2 41.4 Sandwich 12.0 23.9 36.0
Parking meter 21.2 15.6 24.1 Orange 2.5 9.8 11.5
Bench 4.7 7.0 12.0 Broccoli 1.5 16.5 29.0
Elephant 17.8 44.8 48.6 Carrot 1.0 4.4 7.3
Bear 8.0 79.5 69.5 Hot dog 8.4 18.7 35.8
Zebra 5.0 47.8 57.7 Pizza 14.4 39.8 43.8
Giraffe 10.0 62.7 68.6 Donut 4.7 22.4 27.6
Backpack 3.7 3.9 9.0 Cake 10.3 20.5 32.6
Umbrella 14.2 14.7 19.4 Bed 13.5 9.0 13.7
Handbag 2.5 4.2 9.1 Toilet 11.5 24.0 40.1
Tie 1.6 12.3 17.3 Laptop 25.3 25.5 35.4
Suitcase 12.0 14.3 20.2 Mouse 3.6 16.6 20.3
Frisbee 14.1 48.4 46.6 Remote 3.1 10.3 19.7
Skis 0.3 1.7 5.6 Keyboard 3.5 15.6 25.1
Snowboard 7.9 15.3 23.4 Cell phone 7.0 16.8 24.6
Sports ball 2.5 31.5 42.0 Microwave 12.2 19.0 25.8
Kite 9.8 14.9 27.0 Oven 8.8 8.8 19.5
Baseball bat 1.9 14.9 40.5 Toaster 15.1 20.0 24.9
Baseball glove 2.7 7.9 21.3 Sink 5.0 14.5 21.3
Skateboard 5.0 12.6 27.4 Refrigerator 12.4 13.9 19.0
Surfboard 13.2 27.7 41.1 Book 0.9 1.9 3.8
Tennis racket 10.5 21.3 44.4 Clock 3.3 33.0 38.0
Wine glass 4.5 5.6 10.8 Vase 10.6 19.1 23.5
Cup 7.7 8.2 13.2 Scissors 1.6 6.8 19.7
Fork 1.0 2.6 7.5 Teddy bear 13.9 20.1 28.3
Knife 1.5 3.2 6.5 Hair drier 11.6 19.7 33.3
Spoon 1.3 3.6 7.5 Toothbrush 2.1 12.6 24.5

Table 5: SOS results with various values for S in the COCO (VOC) → COCO (non-
VOC) setting.

S AP AR100 F1

20 8.6 37.9 14.0
50 8.9 38.1 14.4
100 8.9 38.1 14.4



Supplementary Material - SOS: Segment Object System 13

Table 6: SOS results with various values for N in the COCO (VOC) → COCO (non-
VOC) setting.

N AP AR100 F1

5 8.1 37.9 13.3
10 8.6 38.1 14.0
20 8.9 38.1 14.4
30 8.9 38.0 14.4

Influence of Parameter τconf The parameter τconf controls the filtering of
SAM segments based on SAM’s confidence score. The results of SOS with various
values for τconf in Tab. 7 indicate that restricting the pseudo annotation gener-
ation to high-confidence SAM segments is beneficial (τconf = 70 vs. τconf = 90),
with τconf = 90 leading to the best results. This is similar to the findings in [11],
where a threshold of 88 is used. Overall and similar to the previous parameters,
SOS is robust to the exact choice of τconf.

Table 7: SOS results with various values for τconf in the COCO (VOC) → COCO
(non-VOC) setting.

τconf AP AR100 F1

70 8.6 38.0 14.0
80 8.8 38.2 14.3
90 8.9 38.1 14.4
95 8.9 36.9 14.3

Influence of Parameter τNMS To remove duplicate pseudo annotations and
pseudo annotations strongly overlapping with original annotations, we apply
NMS with τNMS as the IoU threshold. The results of SOS utilizing various values
for τNMS and deactivating the NMS, visible in Tab. 8, indicate that the filtering
is important for high-quality results of SOS. Similar to previous parameters, the
exact choice of τNMS is not important, implying a robustness of SOS against the
exact value of τNMS.

Number of Segments per Prompt in SAM To resolve ambiguous point
prompts, we follow [11] and allow SAM to produce three segments per prompt.
Table 9 shows the results of SOS, with SAM producing one or three segments
per prompt. It is clearly visible that three segments per prompt improve the
results. This is also in line with the image data that features several classes that
regularly lead to ambiguous point prompts, including Bench and Bed.
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Table 8: SOS results with various values for τNMS in the COCO (VOC) → COCO
(non-VOC) setting.

τNMS AP AR100 F1

off 8.0 36.5 13.1
70 8.6 38.1 14.0
90 8.8 38.1 14.3
95 8.9 38.1 14.4
98 8.9 37.8 14.4

Table 9: SOS results with 1 or 3 segments generated per prompt inside SAM in the
COCO (VOC) → COCO (non-VOC) setting.

Segments per prompt AP AR100 F1

1 5.7 33.8 9.8
3 8.9 38.1 14.4

Random Sampling from Object Prior Since coordinates for point prompts
are randomly sampled from the object prior, we investigate the influence of this
randomness on the overall results. To this end, we run the entire training pipeline
of SOS including the random sampling from the object priors ten times and
investigate the variability in AP, AR100, and F1. Overall, the standard deviation
is very low with 0.09 for AP, 0.07 for AR100, and 0.12 for F1 on an interval of
[0, 100]. For instance, the largest difference in AP between two runs is 0.2 (8.9
vs. 9.1). Therefore, the results of SOS are stable.

Pseudo Annotations Only Finally, we investigate the performance of SOS
using only pseudo annotations, ignoring the original annotations of the known
classes. The results in Tab. 10 clearly show that a mixture of original and pseudo
annotations drastically improves the results of SOS. Hence, despite the high
quality of the pseudo annotations, a foundation of original annotations is crucial
for a strong performance of SOS.

Table 10: SOS results with the instance segmentation system trained on pseudo an-
notations only or a mixture of pseudo annotations and original COCO annotations of
VOC classes.

Annotations AP AR100 F1

Pseudo 1.4 10.6 2.5
Pseudo + COCO (VOC) 8.9 38.1 14.4
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