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Abstract. Currently, there is relatively limited research on the back-
ground activity noise of event cameras in different brightness conditions,
and the relevant real-world datasets are extremely scarce. This limita-
tion contributes to the lack of robustness in existing event denoising
algorithms when applied in practical scenarios. This paper addresses
this gap by collecting and analyzing background activity noise from the
DAVIS346 event camera under different illumination conditions. We in-
troduce the first real-world event denoising dataset, ED24, encompass-
ing 21 noise levels and noise annotations. Furthermore, we propose ED-
former, an innovative event-by-event denoising model based on trans-
former. This model excels in event denoising by learning the spatiotem-
poral correlations among events across varied noise levels. In compar-
ison to existing denoising algorithms, the proposed EDformer achieves
state-of-the-art performance in denoising accuracy, including open-source
datasets and datasets captured in practical scenarios with low-light in-
tensity requirements such as zebrafish blood vessels imaging.

Keywords: Event camera · Background activity noise · Denoising · Spa-
tiotemporal correlation

1 Introduction

Event cameras mimic human visual perception by asynchronously outputting
events to capture scene motion or brightness changes, providing superior tem-
poral resolution, lower power consumption, and a broader dynamic range com-
pared to traditional cameras, rendering them well-suited for high-speed and high-
dynamic-range scenarios [12].

The output of the event camera often incorporates various types of noise,
primarily including photon shot noise, dark current shot noise, leakage current
noise, and hot pixel noise [14]. Photon shot noise [21] arises from the quantum
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nature of photons, while dark current shot noise [27] results from the impact of
randomly drifting dark currents in low-light conditions on changes in pixel circuit
voltages. Leakage current noise [26] is attributed to the influence of temperature
variations and parasitic photocurrents on pixel circuitry, and hot pixel noise [18]
is caused by reset switches with unusually low thresholds or exceptionally high
dark currents. These four types of noise are collectively denoted as Background
Activity (BA) noise. Even in the absence of any scene motion and variations
in brightness, these noise events persist, classifying them as signal-independent,
i.e., non-informative noise [15]. In dim lighting conditions, BA noise dominates
the output of the event camera, significantly impacting the imaging quality.

Numerous efforts have been devoted to BA noise removal, categorized based
on denoising approaches into time interval-based, event density-based, image
filtering-based, optical flow-based, and learning-based methods. Time interval-
based methods [7,16,19] distinguish noise by utilizing the time intervals between
triggered events. Event density-based methods [6, 11, 15, 20, 34, 35] differentiate
noise by leveraging event density within a specified spatiotemporal range or
by considering spatiotemporal distance. Image filtering-based methods [1, 5, 28]
transform event sequences into images and subsequently apply image filtering.
Optical flow-based methods [9, 24, 25, 32, 33] utilize the motion continuity of
events to discern noise. Learning-based methods [2, 3, 10], on the other hand,
differentiate noise by learning the features of events.

However, time interval-based and event density-based methods heavily rely
on manually crafted threshold parameters, rendering them incapable of adap-
tively denoising event signals with varying noise rates. Image filtering-based
methods can only remove noise at the image level, failing to capture the denoised
original event sequence. Optical flow-based methods incur high computational
complexity, and optical flow estimation is susceptible to the influence of outliers.
Learning-based methods currently transform event sequences into time surfaces
or event images for model training. Compared to traditional algorithms that
operate event-wise, these learning-based methods sacrifice the temporal granu-
larity of the original event sequence. Additionally, due to the scarcity of denoising
datasets, learning-based methods exhibit unstable denoising performance when
confronted with event signals from different scenes and noise rates.

In addressing the aforementioned challenges in existing denoising methods,
our research motivations are twofold. First, we aim for the proposed denoising
model to exhibit generalization across varied BA noise rates. Second, we aim
to denoise the raw event sequence directly, preserving its full spatiotemporal
granularity for optimal denoising accuracy. In pursuit of these objectives, as
shown in Fig. 1, we present the annotated denoising dataset ED24 and introduce
an innovative transformer-based event denoising model called EDformer. The
primary contributions of our work are as follows:

- We capture pure BA noise from a DAVIS346 event camera using optical
instruments, conduct statistical analyses under various illumination condi-
tions, and introduce the first annotated real-world denoising dataset, ED24,
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ED24

Fig. 1: The overall schematic of our work. On the left side, the ED24 dataset is pre-
sented, encompassing 100 distinct scenes, each featuring 21 different noise levels along
with noise annotations, suitable for event-wise denoising model training. On the right
side, the denoising process of event sequences across various noise levels is depicted us-
ing our proposed EDformer model. Red/blue indicates positive/negative polarity event.

comprising 21 noise levels. This dataset effectively addresses the inadequacies
in current event denoising training sets.

- We introduce the EDformer, a transformer-based denoising model that clas-
sifies events for denoising by learning spatiotemporal correlations on an
event-by-event basis. In the experimental section, we compared the ED-
former with other denoising methods using evaluation metrics such as AUC
and MESR. Additionally, we conducted visualization comparisons in the mi-
croscopy scene. The experimental results demonstrate the superior perfor-
mance of our EDformer in event denoising.

2 Noise Analysis

To design effective BA denoising algorithms, it is crucial to understand the gen-
uine characteristics of BA noise. Previous work [15] treated BA noise as a fixed-
pattern noise, implying that in relatively low-light conditions (without specifying
a particular illuminance), BA noise approximately follows a log-normal distribu-
tion. However, they still have two unresolved issues persist: 1) How does BA noise
distribute under varying illumination conditions? 2) How should multiple types
of noise be modeled when they coexist under certain illumination conditions?

2.1 Statistical Modeling

In order to investigate the two aforementioned issues, as shown in Fig. 2, we uti-
lized an inverted microscope [31] and a DAVIS346 event camera [23] to capture
pure BA noise under different illumination conditions. The light source of the in-
verted microscope maintained a constant intensity. We adjusted the illumination
by adding an attenuator in front of the light source and controlling the voltage
of the attenuator. The illumination at different voltages was measured using a
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Fig. 2: Collecting BA noise by quantitatively adjusting the illuminance.

photometer. The collection process used voltage increments of 0.1, ranging from
0.0 to 4.0 in the attenuator’s voltage control. This voltage range corresponds to
an illumination range of 36.79 to 0.15 lux, where higher voltage indicates lower
illumination. Due to the constant intensity of the light source, the absence of
external light interference, and the stationary state of DAVIS346, the collected
events are pure BA noise.

The partial results of our statistical modeling of BA noise under varying illu-
mination conditions are presented in Fig. 3, with the complete results available
in the Appendix E. This involved computing time intervals between consecu-
tive triggering events at each pixel position and subsequently transforming them
into logarithmic frequencies. In the first column of Fig. 3, the attenuator volt-
ages is 0.0V, corresponding to illuminances of 36.79 lux. In this context, the
low-frequency range (frequency less than 1Hz) is primarily occupied by posi-
tive polarity events. As per [22], these positive polarity events are identified as
leakage current noise, displaying a right-skewed log-normal distribution. For the
rest column of Fig. 3, the attenuator voltage spans from 1.1V to 2.5V, corre-
sponding to illuminances ranging from 7.13 lux to 0.35 lux. Across this range,
decreasing illumination leads to the gradual emergence of mid-frequency noise
(frequency greater than 1Hz and less than 10Hz), featuring both positive and
negative polarity events. These events exhibit an increasing mean frequency
with decreasing illumination, ultimately prevailing in extremely low-light condi-
tions. This suggests that these noise events are attributed to dark current shot
noise [27], following a log-normal distribution. Hot pixel noise persists under any
illumination condition, primarily in the high-frequency range (frequency greater
than 10Hz), and the quantity of hot pixel noise increases gradually as illumi-
nation decreases. Due to the diversity and complexity of noise components, the
Gaussian mixture fitting results in Fig. 3 only provide a rough illustration of the
components of BA noise in different frequency ranges and their variations with
decreasing illumination. Analyzing the changes in BA noise reveals that the BA
noise at any illumination level is composed of various noise components, with a
frequency span extending across four orders of magnitude.
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Fig. 3: The first row depicts the log-frequency probability density of all BA noise across
five illumination conditions, fitted with the mixture Gaussian distribution. The black
background displays the pure BA noise collected within 33 ms, where the red point
indicates positive polarity noise, and the blue point indicates negative polarity noise.
The second and third row represent the log-frequency probability density of positive
and negative polarity BA noise, respectively.

Table 1: The comparison of public event denoising datasets

Datasets Camera Resolution APS IMU Scenes Sequences Capture/s DoF Noise Level Noise Label

DVSNOISE20 [3] DAVIS 346 346 ×260 Gray ✓ 16 48 807 Cam. - -
RGBDAVIS [9] DAVIS 240 190 ×180 RGB ✓ 20 20 122 All. - -

ENFS [10] DAVIS 346 224 ×125 - - 1 100 4238 Obj. - -
DND21 [15] DAVIS 346 346 ×260 - - - 8 - All. 2 ✓
E-MLB [8] DAVIS 346 346 ×260 Gray ✓ 100 1200 7300 All. 4 -

ED24 (ours) DAVIS 346 346 ×260 - ✓ 100 2100 7300 All. 21 ✓

2.2 Dataset Creation

Previous work [15] used a log-normal distribution to model BA noise. However,
in reality, the distribution of BA noise varies significantly under different illumi-
nation conditions and cannot be adequately simulated with a single distribution
parameter. Given the disparity between simulating noise and real-world noise,
we directly incorporated the collected pure BA noise into the noise-free event
sequences, creating the ED24 dataset required for denoising model training.

Specifically, we employed an inverted microscope and a DAVIS346 event cam-
era to respectively capture pure BA noise under 21 different illumination condi-
tions, ranging from 1.5V to 3.5V for attenuator voltage (BA noise below 1.5V
was too sparse, and noise distribution above 3.5V was nearly uniform). Each
illumination condition was recorded for one minute. Subsequently, we randomly
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sampled BA noise of corresponding duration based on the timestamps of noise-
free event sequences. The sampled noise was then combined with the noise-free
events, and the combined events were reordered based on timestamps. It is note-
worthy that the noise-free event sequences were generated using the DAVIS346
event camera capturing 100 indoor and outdoor scenes under well-lit conditions.
Due to the ample brightness, BA noise had low frequency and was extremely
sparse, enabling its complete removal using a straightforward BAF algorithm [7].
In our experiments, we set the BAF’s time interval threshold to 1ms. As shown
in Tab. 1, our ED24 dataset stands out as the first annotated real-world event
denoising dataset, encompassing a range of 21 noise levels. For additional ED24
dataset details, please refer to the Appendix D.

In practical terms, our approach to constructing the denoising dataset ED24
has two potential limitations: 1) Owing to variations in the number of photons
per unit time, valid events in low-light conditions tend to be sparser compared
to those in well-lit conditions. Consequently, directly merging noise-free data
collected in well-lit conditions with BA noise in low-light conditions may not
accurately reflect real-world scenarios. 2) Our noise capture was limited to the
DAVIS346 under different brightness conditions, and variations may exist across
different sensors. To address these issues, our future work will explore the re-
lationship between brightness and the sparsity of valid events. Additionally, we
plan to integrate noise patterns from other event cameras into the dataset. Never-
theless, the current ED24 dataset is already sufficient for neural network models
to learn the spatiotemporal differences in correlation between valid events and
BA noise. The specific denoising performance will be discussed and analyzed in
the experimental section.

3 Denoising Model

3.1 Problem Definition

According to the pixel circuitry of the event camera [22, 30], when the light
signal L is incident upon the photo-sensor, it is converted into the current
I = Ip + Idark(Ip ∝ L), where Ip is the the photocurrent and Idark is the dark
current. Subsequently, current I undergoes logarithmic transformation through
a feedback diode, resulting in the voltage Vp. Later, it is further amplified into
the voltage change ∆Vd(t). The voltage change value is also influenced by the un-
avoidable junction leakage current. When the voltage change ∆Vd(t) reaches the
positive threshold −θON or the negative threshold θOFF , an event is triggered:∆Vd(t) ≤ −θON ON event

∆Vd(t) ≥ θOFF OFF event
−θON < ∆Vd(t) < θOFF No event

(1)

This process results in a sequence of N -event formally denoted as E = {ei}Ni=1.
Each event ei = {ui, pi, ti} is a tuple that records pixel position ui = (xi, yi),
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Fig. 4: Left side illustrates the pipeline of our EDformer, featuring the large/small-scale
branch and attention feature fusion module. Each branch comprises spatiotemporal
embedding and three-way attention modules. The attention features FL

attn and FS
attn

from large/small-scale branches are fused using the attention feature fusion module to
obtain the event classification result Fout. Right side presents the key computational
steps in the spatiotemporal embedding and three-way attention modules.

where the event is located, polarity pi ∈ {−1, 1} and timestamp ti. pi indicates
the increase or decrease of pixel brightness.

Due to the fact that event cameras output both valid signals and noise in the
form of events, direct differentiation is highly challenging. However, the genera-
tion of valid events is generally linked to changes in brightness caused by object
motion, characterized by dense and continuous patterns. On the other hand, the
generation of BA noise is random, and in the spatiotemporal dimension, it tends
to be more sparse and irregular compared to valid events. In other words, the
distinction between valid events and BA noise lies in their spatiotemporal char-
acteristics. Therefore, our proposed EDformer distinguishes valid events from
fixed-pattern noise by calculating spatiotemporal correlations on an event-by-
event basis, treating the denoising task as an event classification problem.

3.2 Network Architecture

As depicted in Fig. 4, the EDformer segments the entire event sequence into
multiple segments based on timestamp order, with each segment containing N
events, and provides binary classification outcomes for each of them. The model
comprises three main modules: the large-scale branch, the small-scale branch,
and the attention feature fusion. The large-scale and small-scale branches are
responsible for event-wise feature extraction and spatiotemporal correlation cal-
culation across different temporal scales in the event sequence. The attention
feature fusion module is designed to integrate features from events across vari-
ous temporal scales, ultimately generating the final classification results.
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Spatiotemporal Embedding For N input events E = {ei}Ni=1, the spatiotem-
poral embedding module performs feature extraction in both spatial and tem-
poral dimensions based on the events’ pixel coordinates and timestamp infor-
mation. In the spatial dimension, the N events are stacked into positive and
negative polarity channels of an event image, based on their polarities and pixel
coordinates. These channels record the quantity of positive and negative polarity
events at each pixel position. Subsequently, considering the sparsity of events,
we employ sparse convolution [13] to extract spatial features at pixel positions,
which yields N spatial embedding vectors Fsp. The convolution is computed only
when the pixel is at the center of the convolution kernel, and events stacked at
the same pixel location share the convolution results. In the temporal dimension,
the N events undergo filtering for positive and negative polarity using two diag-
onal matrices. Then, the timestamps of positive and negative polarity events are
separately input into two different MLPs to compute the temporal embedding
tensors Fte for N events. Consequently, we concatenate Fsp and Fte, and down-
scale them to a spatiotemporal embedded vectors F = MLP(Concat(Fsp,Fte)),
where the index of spatiotemporal embedded vector f i correspond one-to-one
with that of the event ei.

Event-wise Position Encoding Similar to point clouds, event sequences can
also be construed as ensembles within an irregularly embedded metric space,
where the attributes of the constituent elements pertain to spatiotemporal in-
formation. H. Zhao et al. [37] introduces the utilization of vector attention to
address collections within such irregular embedding metric spaces, establishing
the consequential significance of judiciously implemented positional encoding.
The mathematical formulation thereof is as follows:

attni =
∑

fj∈χ(i)

ρ(γ(φ(f i)− ψ(f j) + δ))⊙ (α(f j) + δ) (2)

where f i is the input embedded vector, and ⊙ represents Hadamard product.
The subset χ(i) ⊆ χ is a set of vectors in a selected neighborhood of f i. φ, ψ
and α are feature transformations, such as sparse convolution or MLPs. ρ is a
normalization function such as softmax and γ is a mapping function (e.g., an
MLP) that produces attention vectors for feature aggregation. δ is a position
encoding function. As our spatiotemporal embedding module has established a
one-to-one correspondence between embedding vectors and events based on their
indices, in the subsequent computations, f i and f j in Eq. (2) can be obtained
based on the indices of ei and ej .

According to Eq. (2), we have devised three transformer layers tailored for
event sequences. In contrast to the positional encoding methods in [37], which
exclusively address local contexts, our proposed LXformer, SCformer, and GX-
former concurrently consider both local and global spatiotemporal information
for event positional encoding, thereby enhancing the comprehension of the in-
trinsic structure of event sequences for effective event classification.
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Firstly, the continuity of motion establishes close correlations among local
events in the spatiotemporal dimensions. To construct spatiotemporal correla-
tions between adjacent events, we employ K-nearest neighbors (KNN) to exe-
cuting local position encoding in LXfomer:

δlocij = MLP(

√
(xi − xlocj )

2
+ (yi − ylocj )

2
+ (ti − tlocj )

2
) (3)

where xi, yi, ti are the coordinates and timestamp of event ei, and xlocj , ylocj , tlocj

are the coordinates and timestamp of event elocj , which is one of the kl nearest
event to ei. Notably, the computed self-attention weights attnloc

i computed by
LXformer represent the local spatiotemporal correlations between events. This
computational approach is analogous to denoising algorithms based on event
density, where both methods involve noise removal through the examination of
event features within a local spatiotemporal scope.

Subsequently, to further elucidate the XY-dimensional relevance of events,
we utilize the ball query algorithm [29] to retrieve ksc events {escj }ksc

j=1 within the
m×m local window of each event ei to executing sparse convolutional positional
encoding in SCfomer:

δscij = MLP(
√

(xi − xscj )
2
+ (yi − yscj )

2
) (4)

where xscj , yscj are the coordinates of event escj . The self-attention weights attnsc
i

computed by SCformer signify the local spatial correlations between events in
the XY dimension, which bears striking resemblance to denoising methods based
on image filtering.

The overarching global spatiotemporal correlations among events afford a
holistic grasp of the motion trends across the entire event sequence, a pivotal
consideration for high-level visual tasks. To effectively extract global spatiotem-
poral correlations, we employ subsampling with a rate of r for down-sampling the
farthest events to select representative events Ê, whose corresponding embedded
vectors are denoted as F̂, and then utilize KNN to select kg events {egj}

kg

j=1 ∈ Ê
to executing global position encoding in GXfomer:

δgij = MLP(
√
(xi − xgj )

2
+ (yi − ygj )

2
+ (ti − tgj )

2
) (5)

where xgj , y
g
j , t

g
j are the coordinates and timestamp of event egj . Specifically,

the embedding vector f j used in the computation of global attention attng
i is

sampled from f j = maxer∈Er
(MLP (Concat (er,fr))), where Er is the set of

⌊ 1
r ⌋ nearest events of eg, fr is the corresponding embeded vector of er.

Finally, we concatenate local spatiotemporal attention attnloc
i , local spatial

attention attnsc
i , and global spatiotemporal attention attng

i , and pass them
through an MLP to obtain the fused attention of the three transformer layers:

attni = MLP(Concat(attnloc
i ,attnsc

i ,attn
g
i )) (6)

It is crucial to emphasize that the index of the fused attention attni also cor-
respond one-to-one with that of the event ei, and the attention feature for all
events are denoted as Fattn = {attni}Ni=1.
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Attention Feature Fusion Considering that even for the same event, the at-
tention feature across the two scale branches may differ, which further impact the
classification results Fout. So we design a simple and efficient attention feature
fusion module to comprehensively consider the same event at different scales:

Fout = MLP(softmax(MLP(F′))⊙ F′) (7)

where F′ = MLP(FL
attn) + MLP(FS

attn), and FL
attn and FS

attn are the attention
feature from large-scale and small-scale branch. The concatenated tensor F′ un-
dergoes transformative mapping via an MLP. Subsequently, the softmax func-
tion yields a set of weights reflective of the significance of individual elements.
These weights are then employed in a weighted summation through tensor mul-
tiplication, facilitating the amalgamation of features and accentuating pertinent
components in the final output.

4 Experiments

4.1 Datasets and Metrics

Currently, the public datasets for event-based denoising primarily include DVS-
NOISE20 [3], RGBDAVIS [9], ENFS [10], DND21 [15], E-MLB [8]. Among them,
only DND21 has event-wise noise annotations that can be used for training de-
noising models based on event classification. However, DND21 has a very small
amount of data and is obtained through v2e simulation [17]. Its spatiotemporal
distribution differs from real-world event sequences, resulting in the denoising
effect of trained models not being well applicable to real data. In response to this,
we have created a real-world dataset, ED24, with noise annotations for training
our proposed EDformer denoising model. The trained model is then tested for
denoising performance on the other public denoising datasets.

The mainstream evaluation metrics for event denoising include MESR [8],
RPMD [3], and ROC/AUC [15]. MESR evaluates denoising performance by pro-
jecting events into a warped event image and calculating image contrast metric,
which can be directly tested on event sequence. RPMD evaluates denoising per-
formance by measuring APS intensity and predicting DVS behavior based on
IMU motion. ROC/AUC evaluates denoising accuracy by calculating False Pos-
itive Rate (FPR) and True Positive Rate (TPR) using noise-annotated data.

4.2 Experimental Setup

We trained our EDformer on an NVIDIA RTX 3090, utilizing the whole ED24
dataset for training. During training, the batch-size is 96, and N = 4096 events
were randomly sampled from the training set without any data augmentation,
but all events can be input during inference. In the large-scale branch, kl =
ksc = kg = 16, m = 9, and r = 8. In the small-scale branch, kl = ksc = kg = 16,
m = 9, and r = 16. The model was trained from scratch for 60 epochs using
the AdamW optimizer with a learning rate of 0.001, aiming to minimize the
cross-entropy loss [36].
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Fig. 5: Visual comparison of DND21 dataset at 5Hz/pixel and 10Hz/pixel noise rates

4.3 Quantitative Evaluation

To accurately assess denoising accuracy, we conducted AUC experiments follow-
ing the settings in [15]. We employed v2e synthetic shot noise with a frequency
range of 1 to 10 Hz/pixel, a COV of 0.5 decades FPN, and added them to the
hotel-bar and driving datasets. For BAF, YNoise, TS and KNoise, we swept
the correlation time t in [2, 200] ms. For DWF, we swept the distance threshold
s with magnitude in [10, 100] pixels. For MLPF, EDnCNN and EDformer, we
swept the classification threshold θ from 0 to 1. The AUC results are illustrated
in Tab. 2 and the corresponding ROC are shown in the Appendix B. The visual
comparison of denoising of the two scenes at 5Hz/pixel and 10Hz/pixel is shown
in Fig. 5. It is evident that our proposed EDformer consistently demonstrates
superior performance, achieving the highest AUC and showcasing robust gener-
alization in denoising accuracy across varying shot noise rates. Notably, under
high BA noise rates, the denoising performance of EDformer surpasses that of
other methods, affirming its efficacy in challenging low-light conditions.

Table 2: The AUC of different denoising methods on DND21 datasets at different shot
noise rates. The best bolded and the second underlined.

Methods
1 Hz/pixel 3 Hz/pixel 5 Hz/pixel 7 Hz/pixel 10 Hz/pixel

Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving Hotel-bar Driving

KNoise [19] 0.6773 0.6296 0.6521 0.6230 0.6703 0.6235 0.6583 0.6164 0.6413 0.6142
DWF [15] 0.9268 0.7409 0.8930 0.7099 0.8620 0.6901 0.8338 0.6747 0.7958 0.6563
BAF [7] 0.9535 0.8479 0.9197 0.8155 0.8916 0.7930 0.8662 0.7732 0.8366 0.7479

EDnCNN [3] 0.9573 0.8873 0.9371 0.8771 0.9365 0.8748 0.9254 0.8654 0.9006 0.8574
Ynoise [11] 0.9690 0.9409 0.9517 0.9240 0.9234 0.9093 0.9177 0.8972 0.8987 0.8800

TS [20] 0.9716 0.9307 0.9721 0.9260 0.9606 0.9270 0.9654 0.9241 0.9620 0.9202
MLPF [15] 0.9704 0.8887 0.9718 0.8873 0.9704 0.8845 0.9691 0.8817 0.9634 0.8761

EDformer (ours) 0.9928 0.9541 0.9891 0.9472 0.9845 0.9424 0.9792 0.9343 0.9699 0.9264

Furthermore, we utilized the inverted microscope and DAVIS346 event cam-
era to capture additional event data of zebrafish blood vessels. Due to the po-
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EDformer MLPF TS YNoise EDnCNN BAF DWF KNoise

Fig. 6: Observation of zebrafish blood vessels using the inverted microscope and
DAVIS346 event camera, comparing denoising performance of different methods. The
proposed method effectively remove the BA noise and retain the valid information of
raw event sequence.

tential harm posed by intense light to zebrafish and the subsequent rise in the
surrounding temperature, causing discomfort to the organisms, the attenuator
voltage was set to 3.5V, creating an extremely low-light environment. Inade-
quate illumination has rendered CMOS chip in DAVIS346 incapable of capturing
clear RGB images of zebrafish blood vessels. This underscores the advantage of
event camera with high dynamic range. However, the raw event sequence is also
plagued by a considerable amount of BA noise, necessitating effective removal.
We visually compared the denoising algorithms mentioned in Tab. 2, and the
results are shown in Fig. 6. It can be observed that our EDformer is capable of
accurately removing BA noise even in low-light microscopic scenarios. Moreover,
it retains more complete details of blood vessels compared to other denoising al-
gorithms. This advantage in denoising accuracy significantly expands the future
practical application of event camera in microscopy.

In order to further validate the denoising generalization of our proposed
EDformer, we conducted MESR testing on E-MLB, RGBDAVIS and DND21
datasets according to the settings described in [8]. As shown in Tab. 3, our
model achieves the highest MESR score on RGBDAVIS and ranks second on
E-MLB and DND21. It is worth noting that our model achieved the highest
MESR on the the E-MLB (Night) ND64 dataset. This further demonstrates the
superior denoising performance of EDformer under extremely low-light condi-
tions compared to other denoising methods. During the MESR testing process,
we identified a certain limitation of MESR in evaluating event over-denoising.
To illustrate this, we conducted additional analysis in the Appendix C.

4.4 Ablation Experiments

To further validate the impact of the three transformer layers on denoising per-
formance, we designed ten ablation experiments as shown in Tab. 4, which il-
lustrates the impact of removing different components on denoising accuracy.
Specifically, Exp. #2 removes SCformer and GXformer, Exp. #3 removes GX-
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Table 3: The mean ESR (MESR) results of different denoising methods on public
available event denoising datasets. The best bolded and the second underlined.

Methods
E-MLB (Daylight) E-MLB (Night) RGBDAVIS DND21

ND1 ND4 ND16 ND64 ND1 ND4 ND16 ND64 Indoor Outdoor -

Raw 0.821 0.824 0.815 0.786 0.89 0.824 0.786 0.768 0.905 0.776 0.869
BAF [7] 0.861 0.869 0.876 0.89 0.946 0.973 0.992 0.942 0.943 0.891 0.92

KNoise [19] 0.846 0.837 0.83 0.807 0.954 0.956 0.871 0.817 0.934 0.895 0.887
DWF [15] 0.878 0.876 0.866 0.865 0.923 0.962 0.988 0.932 0.923 0.89 0.905

EvFlow [32] 0.848 0.878 0.868 0.833 0.969 0.983 0.889 0.797 0.829 1.061 1.006
YNoise [11] 0.866 0.863 0.857 0.821 1.009 0.943 0.875 0.792 0.825 1.077 0.966

TS [20] 0.877 0.887 0.87 0.837 1.033 0.944 0.886 0.797 0.837 1.12 0.985
†IETS [4] 0.772 0.785 0.777 0.753 0.950 0.823 0.804 0.711 0.762 0.988 0.900
†GEF [9] 1.051 0.938 0.935 0.927 1.027 0.955 0.946 0.935 1.031 0.986 0.932

MLPF [15] 0.851 0.855 0.846 0.84 0.926 0.928 0.91 0.906 0.983 0.932 0.944
EDnCNN [3] 0.887 0.908 0.903 0.912 1.001 1.024 1.079 1.086 0.982 1.014 0.977

†EventZoom [10] 0.996 0.988 0.996 0.97 1.055 1.007 1.01 0.988 0.93 1.135 1.059
EDformer (Ours) 0.952 0.955 0.956 0.942 1.048 1.019 1.076 1.099 1.051 1.17 1.041
† The result is cited from [8], for which the source code has not been released to the public.

former, Exp. #9 removes the small-scale branch, and Exp. #10 removes the
large-scale branch. Exp. #1 is the optimal model parameter settings, while the
other nine comparative experiments investigate the effects of module combi-
nation, spatiotemporal dimension, and large/small-scale branch on the model’s
denoising performance.

Module Combination When comparing Exp. #2, #3, and #4, adding LX-
former, SCformer, and GXformer modules improves the model’s classification
accuracy. This suggests that EDformer’s denoising performance relies on lo-
cal spatiotemporal correlations, and incorporating calculations for local space
and global spatiotemporal correlations further enhances denoising accuracy. In
contrast, comparing Exp. #1 and #4 reveals that inhibiting the GXformer in
the large-scale branch actually improves denoising accuracy. This indicates that
global spatiotemporal correlation may not be suitable for large temporal scale.

Spatiotemporal Dimension When comparing Exp. #5, #6, #7, and #8 as
a group, it can be observed that excessively large or small values for KNN in
LXformer, and an overly small ball query size in SCformer and a reduction in
the global sample number in GXformer both result in a decrease in the model’s
denoising accuracy.

Large/Small-Scale Branch When comparing Exp. #9 and #10, using a fixed
input quantity instead of considering event at different temporal scales signif-
icantly reduces the model’s denoising performance. This is because the fixed
event input quantity may not accurately capture the varying number of events
triggered in a scene due to changes in environmental brightness and motion. The
design of branches for different temporal scales effectively addresses this issue.
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Inference Time Since our attention module only considers k neighbours around
each event as discussed in Eq. (2). The computational complexity for attention,
therefore, reduces from O(N2) to O(Nk). We tested with a sequence of length
N = 89960, and the GPU memory consumption was 4GB. During inference,
determining whether each event is BA noise takes approximately 22 µs. If we
simplify the model components to only use LXformer, the inference time can be
reduced to ∼ 9µs per event, but the denoising accuracy will decrease.

Table 4: Ablation experiments of EDformer parameters

Exp.
Large Scale Branch Small Scale Branch AUC (5 Hz/pixel)

kl m r kl m r Hotel-bar Driving

#1 16 9 8 16 9 16 0.9845 0.9424
#2 16 - - 16 - - 0.9720 0.9234
#3 16 9 - 16 9 - 0.9779 0.9364
#4 16 9 16 16 9 16 0.9841 0.9415
#5 8 9 8 8 9 16 0.9808 0.9396
#6 32 9 8 32 9 16 0.9815 0.9324
#7 16 5 8 16 5 16 0.9835 0.9379
#8 16 9 8 16 5 8 0.9836 0.9386
#9 16 9 8 - - - 0.9628 0.9051
#10 - - - 16 9 16 0.9608 0.8954

5 Conclution

This paper extends the research on the BA noise under various illumination
conditions. We introduced ED24, the first annotated real-world event denoising
dataset with 21 noise levels, and proposed EDformer, a transformer-based de-
noising model, which achieves event denoising through event-wise classification
by learning the spatiotemporal correlations of events. EDformer outperforms
existing methods, showcasing state-of-the-art denoising accuracy. These contri-
butions aim to enhance the understanding of event camera BA noise and provide
valuable resources for future research in the event denoising field.
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