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In this supplementary material, we provide additional evaluations of our pro-
posed SED. We further investigate the effect of the detailed composition of the
SCS and SCR in our SED. Additional experiments are conducted and reported
according to the following themes:

– Local and Global Threshold in SCS. Considering class balance during
sample selection, our SCS adaptively adjusts the threshold in an epoch-wise
and class-wise manner to enable effective clean sample identification. Table 1
shows the results of using SCS with and without local and global thresholds.

– Truncated Normal Distribution in SCR. Considering the confidence of
the corrected label of noisy samples, we propose a dynamic truncated normal
distribution as a sample re-weighting function to mitigate the biased label
correction. Table 1 also shows results of re-weighting and non-reweighting
experimental setups.

– Comparison with existing sample selection methods. To provide a
more comprehensive visualization of the adaptive and class-balanced sample
selection process of our SED, we conducted additional experimental analyses.
Fig.1 illustrates the selection thresholds and precision of different sample
selection methods (i.e., Small-loss, GMM and ours SED) for each class on
CIFAR100N-Sym-50%.

– Effect of Hyper-parameters in EMA. To dynamically reflect the learn-
ing performance changes of the model, we use the exponential moving aver-
age (EMA) to dynamically update self-adaptive thresholds in SCS, truncated
normal distribution parameters in SCR, and the mean-teacher model (θ∗).
The results of the ablation experiments are presented in Table 2 and Table 3.

– Extend Experiment Results. To further verify the robustness of our
SED as the training processes, Fig. 2 and Fig. 3 record the test accuracy
of the training process under different noise conditions on CIFAR100N and
CIFAR80N. Fig. 4, Fig. 5, and Fig. 6 present some sample selection results
of our SED on real-world datasets.

1 Futher Analysis

In this section, we investigate the impact of the detailed composition of the SCS
and SCR in our SED. As outlined, our proposed SED selects and re-weights
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Table 1: Effect of each component in test accuracy (%) on CIFAR100N (Sym-50%).

Model Test Accuracy

Standard 34.10

Standard+SCS w/o local threshold 53.36
Standard+SCS w/o global threshold 55.64
Standard+SCS w/o EMA 54.72
Standard+SCS 58.21
Standard+SCR 54.42
Standard+CR 55.51
Standard+SCS+SCR w/o re-weighting 59.75
Standard+SCS+SCR w/o EMA 60.08
Standard+SCS+SCR 60.43
Standard+SCS+CR 59.28
Standard+SCR+CR 55.98
Standard+SCS+SCR+CR 62.65

samples based on class-specific thresholds that are calculated in a data-driven
manner. This helps to promote self-adaptivity and balance in both sample selec-
tion and re-weighting. Specifically, we mainly explore the effect of local thresholds
in our SCS and the dynamic truncated normal distribution in our SCR during
the training process. Besides, we employ the exponential moving average (EMA)
to further refine these thresholds to alleviate unstable training. Thus, we further
explore the influence of the hyper-parameter (i.e., m and α) of the exponential
moving average in SCS, SCR, and the mean-teacher model θ∗.

1.1 Local and Global Thresholds in SCS.

Our proposed SCS adaptively adjusts the threshold in an epoch-wise and class-
wise manner to enable effective clean sample identification. As shown in Table 1,
we provide the result of using SCS without local and global thresholds. The
performance drops by 4.85% and 2.57% accordingly. This proves that our local
threshold design is crucial for improving the robustness of the model. By consid-
ering class balance during sample selection, our SCS can significantly alleviate
the learning bias of the model.

Furthermore, our SCS employs the exponential moving average (EMA) [6] to
further refine the global and local threshold. This helps to alleviate the issue of
unstable training caused by large perturbation of the averaged predicted prob-
ability. As indicated in Table 1, it is noticeable that the utilization of EMA has
resulted in a significant increase (i.e., 3.49%) in model performance. This clearly
demonstrates the advantageous impact of EMA on our SCS.

1.2 Truncated Normal Distribution in SCR.

Considering the confidence of the corrected label of noisy samples, we propose
a dynamic truncated normal distribution as a sample re-weighting function to
mitigate the biased label correction. Samples with higher correction confidence
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Fig. 1: The selection threshold (a-c) and precision (c-d) of different sample selection
methods for each class on CIFAR100N-Sym-50% vs. epochs.

are less likely to be incorrectly labeled compared to those with lower confidence,
thus being assigned larger weights. We further perform an ablation study to ex-
plore the effectiveness of re-weighting corrected labels based on their confidence.
As shown in Table 1, re-weighting corrected labels improves the performance by
0.68% compared to the without-reweighting case.

In our proposed SCR, we employ a dynamic truncated normal distribution,
whose mean and variance values are µt and σt at the t-th epoch, to assign weights
for different samples. Moreover, to enable class-balanced re-weighting and pro-
mote training stability, we propose to estimate µt(c) and σ2

t (c) for each class c
based on their historical estimations using EMA. Table 1 shows that employing
SCR with EMA achieves an additional 0.35% performance gain compared to
SCR without EMA.

1.3 Comparison with existing sample selection methods.

Due to memorization effect [1], prior sample selection methods tend to regard
samples with small losses as clean ones. Some other methods utilize Gaussian
Mixture Model (GMM) to partition losses, as seen in DivideMix [2]. However,
these methods often require proper prior knowledge (e.g., a pre-defined drop rate
or threshold) to achieve effective sample selection. To promote self-adaptivity
and class balance in sample selection, we propose to integrate global and local
thresholds for each category when distinguishing between clean and noisy data
in our SED. Fig. 1 illustrates the selection thresholds and precision of different
sample selection methods (i.e., Small-loss, GMM and ours SED) for each class
on CIFAR100N-Sym-50%.

As shown in Fig. 1 (a-c), thresholds in our SED are class-dependent and
dynamically adjust with epoch progression compared to existing approaches.
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Table 2: Effects of hyper-parameter m for SCS and SCR in test accuracy (%) on
CIFAR100N (noise rate and noise type are 0.5 and symmetric, respectively).

m for SCS and SCR α for the mean-teacher model results

0.85 0.85 57.82
0.90 0.85 57.92
0.95 0.85 59.41
0.99 0.85 62.63
0.999 0.85 61.60

Table 3: Effects of hyper-parameter α for the mean-teacher model on CIFAR100N
(noise rate and noise type are 0.5 and symmetric, respectively).

m for SCS and SCR α for the mean-teacher model results

0.85 0.90 57.73
0.85 0.95 58.04
0.85 0.99 57.46
0.85 0.999 57.86

Fig. 1 (d-f) presents a detailed comparison of the precision between our method
and existing sample selection methods. Clearly, our SED demonstrates a more
balanced selection precision across categories. Furthermore, upon comparing the
selection precision of GMM across different epochs, selection results of our SED
exhibit greater stability.

1.4 Effect of Hyper-parameters in EMA.

Considering that the model is inevitable to fit some noisy samples in the later
stage of training, we resort to the exponential moving average (EMA) to achieve
more reliable sample selection, label correction, and sample re-weighting. EMA
introduces the model’s results in the historical iteration to increase the stability
of the training process.

To dynamically reflect the learning performance changes of the model, we
use EMA to update our global and local thresholds in SCS dynamically and the
truncated normal distribution parameters in SCR. Besides, our mean-teacher
model (θ∗) is also updated in an EMA manner. The exponential moving average
strategy requires a factor (i.e., m for SCS and SCR, α for the mean-teacher
model) to balance the weight of past and current results, thus ensuring the
stability of the training process. As shown in Table 1, employing SCS with EMA
and employing SCR with EMA both achieve nontrivial performance gains.

Table 2 shows the test accuracy of our SED under different m for SCS and
SCR with a fixed α (i.e., 0.85) on CIFAR100N-Sym50%. It can be observed that
the best performance is achieved when m = 0.99. Table 3 further shows the test
accuracy of our SED under different α for the mean-teacher model with a fixed
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Fig. 2: The overall precision of sample selection (%) vs. epochs on CIFAR100N and
CIFAR80N. Experiments are conducted under various noise conditions (“Sym” and
“Asym” denote the symmetric and asymmetric label noise, respectively).

m (i.e., 0.85) on CIFAR100N-Sym50%. As we observe from Table 3, the varying
alpha values have only a minor effect on the performance of our SED. The best
performance is obtained when α = 0.95.

2 Extend Experiment Results

Due to the memorization effect [1] (i.e., models tend to fit clean and simple
samples first and then gradually memorize noisy ones), the network optimization
based on the cross-entropy loss usually leads to an ill-suited solution. During
our experiments, CE refers to the conventional training baseline that utilizes the
entire noisy dataset with the cross-entropy loss. As shown in Fig. (3) (c), the
test accuracy of CE first increases to a certain level and then decreases due to
overfitting. Fig. (3) (c) has already shown that robust methods for noisy labels
like our SED are able to mitigate the impact of overfitting noisy samples in
the later stage of training. The test accuracy of these robust methods increases
monotonously as the training continues.

Fig. 3 further verifies the robustness of our SED as the training processes.
Fig. 3 records the test accuracy of the training process under different noise
conditions (i.e., “Sym” and “Asym” denote the symmetric and asymmetric label
noise, respectively. 20%, 40%, and 80% denote the noise rate.) on CIFAR100N
and CIFAR80N. It can be observed that the test accuracy continues to grow un-
der various noise conditions. This explicitly proves that our method can prevent
the model from overfitting the noisy samples, thereby enhancing its robustness.

To further verify the effectiveness of our proposed SED in practical scenarios,
we conduct experiments on three real-world noisy datasets (i.e., Web-Aircraft,
Web-Car, and Web-Bird [3]), whose training images are crawled from web image
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Fig. 3: The test naccuracy (%) vs. epochs on CIFAR100N and CIFAR80N. Experi-
ments are conducted under various noise conditions (“Sym” and “Asym” denote the
symmetric and asymmetric label noise, respectively).

search engines. Fig. 4, Fig. 5, and Fig. 6 show the comparison of the sample
selection results between our SED and two state-of-the-art (SOTA) methods
(i.e., JoCoR [5] and Co-LDL [4]) on these three real-world datasets. These sam-
ple selection methods primarily seek to split samples into two subsets: a noisy
subset and a clean subset. The samples marked with purple represent the incor-
rectly selected samples. The samples marked with green are the correctly selected
samples. If the sample selection is correctly performed in all three methods, the
corresponding mark is displayed in black. Fig. 4, Fig. 5, and Fig. 6 visually
illustrate the excellent performance of our SED.
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Fig. 4: The comparison of sample selection results with SOTA approaches on Web-
Aircraft. Each row shows seven samples that are randomly selected from the same
fine-grained category. Images in the red box indicate noisy samples.



8 M. Sheng et al.

Web-Bird

F
ri

g
at

eb
ir

d

JoCoR Clean Noisy Clean Clean Noisy Noisy Noisy
Co-LDL Clean Clean Clean Clean Noisy Noisy Clean

Ours Clean Clean Clean Noisy Noisy Noisy Clean

B
an

k
_
S

w
a
ll
o
w

JoCoR Clean Noisy Noisy Noisy Clean Clean Clean
Co-LDL Clean Clean Noisy Noisy Noisy Clean Noisy

Ours Clean Clean Clean Noisy Noisy Clean Noisy

B
la

ck
_
fo

o
te

d
_

A
lb

at
ro

ss

Ours Clean Clean Clean Noisy Noisy Clean Noisy

JoCoR Clean Clean Noisy Clean Clean Noisy Noisy
Co-LDL Clean Clean Clean Noisy Clean Noisy Noisy

M
al

la
rd

JoCoR Clean Clean Clean Clean Clean Clean Noisy
Co-LDL Clean Clean Clean Clean Clean Noisy Noisy

Ours Clean Clean Clean Clean Noisy Noisy Noisy

G
re

at
_
G

re
y
_

S
h
ri

k
e

Noisy Noisy Noisy Clean Clean NoisyCleanJoCoR
Clean Clean Noisy Clean Noisy NoisyCleanCo-LDL
Clean Clean Noisy Noisy Noisy NoisyCleanOurs

H
ee

rm
an

n
_

G
u
ll

JoCoR Clean Clean Noisy Clean Clean Clean Noisy
Co-LDL Clean Clean Clean Clean Noisy Clean Noisy

Ours Clean Clean Clean Clean Noisy Noisy Noisy
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Bird. Each row shows seven samples that are randomly selected from the same fine-
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Fig. 6: The comparison of sample selection results with SOTA approaches on Web-car.
Each row shows seven samples that are randomly selected from the same fine-grained
category. Images in the red box indicate noisy samples.
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