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Abstract. Nucleus instance segmentation in histology images is cru-
cial for a broad spectrum of clinical applications. Current dominant al-
gorithms rely on regression of nuclear proxy maps. Distinguishing nu-
cleus instances from the estimated maps requires carefully curated post-
processing, which is error-prone and parameter-sensitive. Recently, the
Segment Anything Model (SAM) has earned huge attention in medi-
cal image segmentation, owing to its impressive generalization ability
and promptable property. Nevertheless, its potential on nucleus instance
segmentation remains largely underexplored. In this paper, we present
a novel prompt-driven framework that consists of a nucleus prompter
and SAM for automatic nucleus instance segmentation. Specifically, the
prompter is developed to generate a unique point prompt for each nu-
cleus, while SAM is fine-tuned to produce its corresponding mask. Fur-
thermore, we propose to integrate adjacent nuclei as negative prompts
to enhance model’s capability to identify overlapping nuclei. Without
complicated post-processing, our proposed method sets a new state-of-
the-art performance on three challenging benchmarks. Code available at
https://github.com/windygoo/PromptNucSeg.
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1 Introduction

Cancer is one of the leading causes of death worldwide. Over the past decades,
substantial endeavors have been made to detect cancers from histology images
with the aim of improving survival rates through early screening. Identification
of nuclear components in the histology landscape is often the first step toward a
detailed analysis of histology images. Quantitative characterizations of nuclear
morphology and structure play a pivotal role in cancer diagnosis, treatment plan-
ning, and survival analysis, which have been verified by a wide range of studies,
see for example [1]. However, large-scale analysis on the cell level is extremely
labor-intensive and time-consuming since a whole slide image (WSI) typically
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Fig. 1: Pipeline comparison with currently prevailing nucleus instance segmentation
algorithms.

contains tens of thousands of nuclei of various types. Moreover, such subjec-
tive interpretations have been demonstrated to suffer from large inter-and intra-
observer variability [11]. Consequently, there is a compelling pursuit of precise
automatic algorithms for nucleus instance segmentation to aid in histopathologic
cancer diagnosis. Nonetheless, the blurred cell contours, overlapping cell clusters,
and variances in nuclei staining, shape and size, pose substantial challenges for
the developers.

Recent years have witnessed significant advancements in the filed of nucleus
instance segmentation owing to the impressive performances brought by various
methods based on regression of nuclear proxy maps [2–4, 10, 16, 27, 31, 41, 41]
(see Fig. 1 (a)). Regrettably, these methods necessitate carefully crafted post-
processing to derive nuclear instances from the estimated maps. This step de-
mands meticulous hyper-parameter tuning and is vulnerable to noise [37].

Recently, the segment anything model (SAM) has emerged as a generic seg-
mentation network for various image types, whose impressive generalization abil-
ity and versatility can be attributed to its structural design and the strong repre-
sentation learned from 11M images annotated with 1B masks [17]. Several stud-
ies have been undertaken to investigate the zero-shot performance of SAM on
nucleus segmentation [6] or transfer its well-learned representation to boost the
segmentation accuracy [14,36]. Specifically, [14] reuses SAM’s well-trained image
encoder to construct a more powerful regression model and integrates it into the
aforementioned nucleus instance segmentation workflow. Despite the promising
results, we argue that this approach does not fully exploit the knowledge encap-
sulated in the integrated architecture of SAM. Conversely, [36] maintains the
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philosophy of SAM thoroughly. They fine-tune the entire SAM in a one-prompt-
all-nuclei recipe for nucleus semantic segmentation. Nevertheless, this method
expects users to supply precise prompts, which is impractical since crafting such
prompts requires extensive medical expertise. Moreover, it falls short in provid-
ing nucleus instance information.

In this work, we propose to fine-tune SAM in a one-prompt-one-nucleus
regime to fully unleash its potential for nucleus instance segmentation. To elim-
inate the need for crafted prompts during inference, we develop a prompter that
automatically generates nuclei prompts by refining and classifying pre-defined
anchor points on an input image. Specially, we incorporate an auxiliary task
of nuclear region segmentation into prompter learning. This integration guides
the model’s attention towards foreground areas, thereby improving the quality
of generated prompts. During the inference stage, the predicted nuclear region
mask is further utilized to filter out false positive prompts. The consolidation of
the prompter and segmentor (i.e., the fine-tuned SAM) establishes a novel solu-
tion for automatic nucleus instance segmentation. Given their linkage through
nuclei prompts, we designate our approach as PromptNucSeg, and its pipeline
is depicted in Fig. 1 (b). Compared to the currently prevailing methods, our
approach does not require complex post-processing. Moreover, we devise a trick
that treats adjacent nuclei as negative prompts to improve the model’s segmen-
tation of overlapping nuclei.

Our contributions can be summarized as follows:

– We propose PromptNucSeg, which provides a new perspective for nucleus
instance segmentation.

– We develop a prompter for automatic nuclei prompts generation and design
a simple auxiliary task to boost its performance.

– We propose to use adjacent nuclei as negative prompts to promote segmen-
tation of overlapping nuclei.

– Extensive experiments on three challenging benchmarks demonstrate the
advantages of PromptNucSeg over the state-of-the-art counterparts.

2 Related Work

2.1 Utilization of SAM for Medical Image Segmentation

Segment Anything Model (SAM) [17] is the first groundbreaking model for uni-
versal image segmentation. It has achieved impressive results on a wide range of
natural image tasks. Nevertheless, due to the dramatic domain gap between nat-
ural and medical images, SAM’s performance significantly declines when applied
for medical image segmentation [15,24]. To bridge this gap, many studies opt to
fine-tine SAM with meticulously curated medical data [5,19,22,34,35,39]. These
works mainly focus on the segmentation of anatomical structures and organs in
computed tomography, magnetic resonance and ultrasound images.

In terms of histology images, [6] assesses SAM’s performance for tumor, non-
tumor tissue and nucleus segmentation. The results suggest that the vanilla
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SAM achieves remarkable segmentation performance for large connected tissue
objects, however, it does not consistently achieve satisfactory results for dense
nucleus instance segmentation. To tackle this issue, SPPNet [36] fine-tunes a
distilled lightweight SAM [38] in a one-prompt-all-nuclei manner for nucleus se-
mantic segmentation. Despite the improved outcomes, this method depends on
manual prompts and fails to furnish nucleus instance information. Although a
recent study SAC [26] obviates the necessity for manual prompts, it is still con-
fined to nucleus semantic segmentation. CellViT [14] builds a vision transformer-
based U-Net-shaped model, employing SAM’s pre-trained image encoder as its
backbone to better fit the nuclear proxy maps. We argue that this approach
underutilizes the knowledge embedded in SAM’s integrated architecture.

2.2 Nucleus Instance Segmentation

Current methods for nucleus instance segmentation can be divided into two
categories: top-down and bottom-up.

Top-down methods, such as Mask R-CNN [13], first predict nuclei bounding
boxes from a global perspective, and then segment the nucleus instance within
each box. Despite the great progress in natural image segmentation and the po-
tential in dealing with overlapping nuclei, top-down methods have demonstrated
deficiency on nucleus instance segmentation [10, 23, 37], attributed to two pri-
mary factors. First, on the data side, there are many severely overlapping nuclei
in histology images. Consequently, a bounding-box proposal normally contains
multiple nuclei with indistinct boundaries, making the network hard to optimize.
Second, on the model side, top-down methods typically predict segmentation
masks with a fixed resolution (e.g., 28×28 in Mask R-CNN). Subsequently, these
masks undergo re-sampling to match the size of their corresponding bounding
boxes. This re-sampling process might introduce quantization errors [37], posing
challenges for accurately segmenting sinuous nuclear boundaries.

Bottom-up methods, initially regressing various types of nuclear proxy maps
and then grouping pixels into individual instances through meticulous post-
processing, have gained prominence in nucleus instance segmentation owing to
their commendable accuracy. These approaches typically entail regressing a nu-
cleus probability map, where the pixel values signify the presence of nuclei,
along with some auxiliary maps facilitating the identification of nuclei instances.
Specifically, DCAN [2], CIA-Net [41], TSFD-Net [16] and HARU-Net [3] pre-
dict the nuclear contour map. DIST [27] regresses the intra-nuclear distance
map. HoVer-Net [10] predicts horizontal and vertical distances of nuclei pix-
els to their center of mass. StarDist [31] and its extension CPP-Net [4] predict
distances from each foreground pixel to its associated instance boundary along
a set of pre-defined directions. Under the premise of some above frameworks,
other works [7, 14,28,40] put effort into constructing more favorable features or
task-specific loss functions. Overall, while bottom-up methods have exhibited
superior accuracy compared to top-down approaches, their accompanying post-
processing requires tedious hyper-parameter tuning [37], which presents a hurdle
to their practical application.
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Fig. 2: (a) The fine-tuning process of SAM. Mask2Prompt signifies randomly sampling
a positive point prompt from the foreground area of each nucleus mask. (b) The train-
ing procedure of the nucleus prompter. The integration of these two models enables
automatic nucleus instance segmentation, as illustrated in Fig. 1 (b).

Essentially, our proposed PromptNucSeg belongs the top-down family. But
inspired by the promptable property of SAM, we tackle this task from a new per-
spective. Instead of bounding boxes, we utilize center points to represent nuclei,
which are easier to localize and can separate touching objects more precisely. In
comparison with bottom-up methods, PromptNucSeg does not require intricate
post-processing as the prompter generates point prompts for nuclei in a one-
to-one relationship and the segmentor predicts the nuclei mask guided by each
prompt individually.

3 Methodology

3.1 Preliminaries: SAM

SAM [17] consists of three sub-networks, i.e., image encoder F , prompt en-
coder P and mask decoder M. The image encoder transforms an input im-
age I ∈ RH×W×3 into an image embedding. The prompt encoder maps diverse
prompts (e.g ., a set of positive/negative points, a rough box or mask, free-
form text, or combinations thereof) into a compact prompt embedding. Posi-
tive prompts indicate regions representing the region-of-interest (ROI) object,
whereas negative prompts emphasize areas that should be suppressed as back-
ground. Given the image and prompt embedding as input, the mask decoder
generates the mask for the ROI object in conjunction with a confidence score
(i.e., an estimated IoU).

3.2 Adapt SAM for Nucleus Instance Segmentation

Despite SAM’s remarkable segmentation performance across numerous natural
images, recent studies have highlighted its subpar performance on medical images
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due to the significant domain gap [5, 15]. A specific observation worth noting is
that the objects in SAM’s pre-training data are primarily captured in natural
scenes, displaying nicely delineated boundaries, while the boundaries of organs or
nuclei in medical images are often ambiguous [5,36]. To enhance the capability of
SAM for nucleus segmentation, we fine-tune it on nucleus instance segmentation
datasets to incorporate essential domain-specific knowledge into the model.

The fine-tuning procedure is depicted in Fig. 2 (a). Specifically, for each
image-label pair (x, y) in a mini-batch, we randomly select Z nucleus instances
from the instance map y. Subsequently, a positive point prompt is randomly
sampled from the foreground area of each instance. Taking the image x and the
point prompt pz as input, we fine-tune SAM to predict the mask of z-th nucleus
instance.

Õz = M (F (x) ,P ({pz}) , [mask], [IoU]) (1)

where [mask] and [IoU] separately represent the learnable mask and IoU token
pre-set in SAM’s mask decoder. Õz denotes the predicted mask of the z-th
nucleus. We supervise the mask and IoU prediction with the same loss as SAM.

Lsam = ωFL (Õz,Oz) + DL (Õz,Oz) + MSE (ν̃, ν) (2)

where FL, DL and MSE stand for focal loss [21], dice loss [25] and mean-square-
error loss, respectively. Oz is the ground-truth mask of the z-th nucleus, ν̃ and
ν signify the estimated and actual IoU between Õz and Oz, respectively. ω is a
weight term. In this work, we opt to freeze the prompt encoder while updating
the image encoder and mask decoder via gradient descent.

3.3 Learn Prompter

Generating a unique point prompt for each nucleus is de facto a non-trivial
problem. In this study, we choose the nuclear centroid as its prompt for simplicity.
To achieve automatic prompt generation, we draw inspiration from [32] and
develop a prompter to predict nuclear centroid coordinates and categories by
refining and classifying a set of anchor points placed on an input image. In the
following content, we denote the set of anchor points as A = {ai}Mi=1 and the
set of ground-truth points as B = {bi}Ni=1, where bi is extracted from y as the
centroid of the i-th nucleus.

The prompter learning procedure is depicted in Fig. 2 (b). Specifically, we
begin with placing anchor points on an input image x with a step of λ pixels.
Then, an image encoder F ′ is employed to construct hierarchical feature maps
{Pj}Lj=2 from x, where the size of Pj is (H/2j ,W/2j). Following this, we apply
the bilinear interpolation method to extract multi-scale feature vectors {fi,j}Lj=2
for anchor point ai according to its normalized coordinates on the feature pyra-
mid. Finally, we concatenate {fi,j}Lj=2 and fed it into two dedicated MLP heads
for decoding offsets δi and logits qi ∈ RC+1 with respect to ai, where C is the
number of nuclear categories and the extra class is background.
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Since the goal of prompter is to associate a unique point prompt for each
nucleus, which anchor point in A should be chosen as the prompt is the key
in prompter learning. In principal, for any nucleus centroid in B, the anchor
point with lower distance and higher categorical similarity with it is preferred
to be chosen. Consequently, the association can be completed by computing the
maximum-weight matching ϕ = {(aσ(i), bi)}Ni=1 in a weighted bipartite graph
G = (A,B, E), where the weight wi,j of edge connecting vertex ai and bj is
defined as:

wi,j = qi(cj) − α∣∣âi − bj∣∣2 (3)

in which cj is the class of the j-th nucleus, âi = ai + δi represents the refined
position of the i-th anchor point, qi(cj) is the cj-th element of qi, α is a weight
term and ∣∣ ⋅ ∣∣2 denotes l2 distance. We use the Hungarian algorithm [32] to
determine ϕ in this work. As a result, the objective of prompter is concretized as
narrowing the positional and categorical difference between the selected anchor
points and their matched nuclei, while ignoring the unselected anchor points as
background. This objective can be achieved by minimizing the following losses.

Lcls = −
1

M

⎛
⎜
⎝

N

∑
i=1

log qσ(i) (ci) + β ∑
ai∈A′

log qi (∅)
⎞
⎟
⎠

Lreg =
γ

N

N

∑
i=1

∣∣âσ(i) − bi∣∣2

(4)

where A′
⫋ A represents the set of unselected anchor points, ∅ indicates the

background class, β and γ are free parameters used to relieve the class imbalance
and modulate the effect of regression loss, respectively.

Auxiliary task of nuclear region segmentation The training process of
the above prompter only involves the nuclear categorical labels and centroid co-
ordinates. However, in the context of nucleus instance segmentation, the mask
for each nucleus is also available, which provides rich details about nuclear size,
shape and so on. To integrate this valuable information into prompter learning,
we construct a simple auxiliary task of nuclear region segmentation to enhance
the model’s attention to foreground areas and perception of nuclear morpholog-
ical characteristics. Technically, we introduce a mask head structured as Conv-
BN-ReLu-Conv to predict the nuclear probability map Ŝ from P2, informed by
that the high-resolution P2 contains abundant fine-grained features crucial for
medical image segmentation [20]. We apply the focal loss to supervise the learn-
ing of the auxiliary task.

Laux = FL (Ŝ, S) (5)

where the ground-truth mask S is derived from the instance map y via a simple
thresholding operation. The final loss used to optimize the prompter is

Lprompter = Lreg + Lcls + Laux (6)
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Fig. 3: (a) Ground-truth boundary of some overlapping nuclei. (b) Predicted boundary
by prompting each nucleus with a positive prompt inside it. (c) Predicted boundary
by prompting each nucleus with an additional negative prompt inside its overlapping
nucleus. ● Positive prompt ● Negative prompt

Mask-aided prompt filtering Due to insufficient optimization, the prompter
would inevitably produce false positive prompts that actually represent non-
nucleus objects. To mitigate this issue, we utilize the nuclear probability map
predicted by the auxiliary branch to filter out these incorrect predictions. This
is achieved by retaining only those prompts with probability values exceeding
0.5 in the inference stage.

3.4 Use Adjacent Nuclei as Negative Prompts

Distinguishing overlapping nuclei is a long-standing challenge in the community
of nucleus instance segmentation [10,12,14]. Our approach encounters this chal-
lenge as well. Given a fine-tuned SAM, considering a real-world scenario of two
overlapping nuclei in Fig. 3 (a), prompting each nucleus with a single positive
prompt results in an over-segmented mask due to the faint boundary, as depicted
in Fig. 3 (b). An intuitive idea to resolve this problem is to include the overlap-
ping nucleus as negative prompt to suppress excessive segmentation for the ROI
nucleus, as illustrated in Fig. 3 (c).

Nevertheless, the implementation of this idea presents two practical chal-
lenges. (1) In the inference phase, it is unknown which nuclei overlap with a
ROI nucleus. (2) We empirically observe that including negative prompts solely
at test time cannot effectively prevent over-segmented prediction for overlapping
nuclei. The inefficiency stems from that the fine-tuning process involving only
positive prompts (see Eq. 1) causes a catastrophic forgetting about the effect of
negative prompts.

To deal with (1), let p̂z denote the generated point prompt for the z-th
nucleus in a test image, we approximately employ the K points nearest to p̂z
as negative prompts for segmenting this nucleus. To address (2), we incorporate
negative prompts into the fine-tuning stage in a similar way. Specifically, we
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randomly sample a point from each nucleus instance in y and utilize the positive
prompt pz along with its K-nearest points {nz,k}Kk=1 as negative prompts to
predict the mask of the z-th nucleus. As a result, we re-formulate the model’s
forward process described by Eq. 1 as

Õz = M (F (x) ,P ({pz} ∪ {nz,k}Kk=1) , [mask], [IoU]) (7)

4 Experiment

4.1 Experimental Settings

Datasets The experimental evaluation is conducted on three publicly available
nucleus instance segmentation datasets. Kumar [18] consists of 30 H&E stained
images (size: 1000×1000) with 21,623 annotated nuclei. The dataset is split into a
training set of 16 images and a test set of 14 images. CPM-17 [33] is comprised of
64 H&E stained images (size: 500×500 or 600×600) with 7,570 annotated nuclei.
Both the training and test sets contain 32 images. PanNuke [8,9] is considered
one of the most challenging datasets for simultaneous nucleus instance segmen-
tation and classification, containing 7,899 H&E stained images of 256×256 pixels
and 189,744 nuclei, which are classified into five distinct classes. For this dataset,
we adhere to the official three-fold cross-validation protocol [8,9] and report the
averaged results over these three splits.

Evaluation metrics Following preceding studies [10, 14], we employ the Ag-
gregated Jaccard Index (AJI) and Panoptic Quality (PQ) as metrics for com-
parison. Given that AJI suffers from the over-penalization issue in overlapping
regions [10], we designate PQ as the principal metric. For enhanced interpretabil-
ity, PQ can be decomposed into two constituent parts: Detection Quality (DQ)
and Segmentation Quality (SQ).

Implementation details are available in the appendix.

4.2 Comparison with SOTA Methods

We employ PromptNucSeg-B/L/H to distinguish our approach with fine-tuned
SAM-B/L/H as the nucleus segmentor. Tab. 1 shows the quantitative comparison
results of our approach with SOTA methods on the challenging PanNuke dataset.
Without additional techniques such as stain normalization, test-time augmenta-
tion [28], oversampling or adding an auxiliary tissue classification branch [14],
PromptNucSeg-H outperforms the previous best models by 1.1 bPQ and 1.4
mPQ. Moreover, we report the detection and segmentation performance of var-
ious methods for each type of nuclei in Tabs. 2 and 3. In a nutshell, our method
achieves the highest F1 scores across all five classes for nucleus detection and
the highest PQ scores for four out of the five categories in terms of nucleus seg-
mentation. Tab. 4 exhibits the comparison results on the Kumar and CPM-17
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Table 1: Performance comparison on the PanNuke dataset. Following [4, 14], both
binary PQ (bPQ) and multi-class PQ (mPQ) are computed for evaluation. The best
and second-best PQ scores are highlighted in bold and underlined.

Tissue
Mask R-CNN StarDist Hover-Net CPP-Net PointNu-Net CellViT-H PromptNucSeg-H

[13] [31] [10] [4] [37] [14] (Ours)

bPQ mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ mPQ bPQ mPQ
Adrenal 0.5546 0.3470 0.6972 0.4868 0.6962 0.4812 0.7066 0.4944 0.7134 0.5115 0.7086 0.5134 0.7227 0.5128

Bile Duct 0.5567 0.3536 0.6690 0.4651 0.6696 0.4714 0.6768 0.4670 0.6814 0.4868 0.6784 0.4887 0.6976 0.5012
Bladder 0.6049 0.5065 0.6986 0.5793 0.7031 0.5792 0.7053 0.5936 0.7226 0.6065 0.7068 0.5844 0.7212 0.6043
Breast 0.5574 0.3882 0.6666 0.5064 0.6470 0.4902 0.6747 0.5090 0.6709 0.5147 0.6748 0.5180 0.6842 0.5322
Cervix 0.5483 0.3402 0.6690 0.4628 0.6652 0.4438 0.6912 0.4792 0.6899 0.5014 0.6872 0.4984 0.6983 0.5118
Colon 0.4603 0.3122 0.5779 0.4205 0.5575 0.4095 0.5911 0.4315 0.5945 0.4509 0.5921 0.4485 0.6096 0.4690

Esophagus 0.5691 0.4311 0.6655 0.5331 0.6427 0.5085 0.6797 0.5449 0.6766 0.5504 0.6682 0.5454 0.6920 0.5711
Head & Neck 0.5457 0.3946 0.6433 0.4768 0.6331 0.4530 0.6523 0.4706 0.6546 0.4838 0.6544 0.4913 0.6695 0.5104

Kidney 0.5092 0.3553 0.6998 0.4880 0.6836 0.4424 0.7067 0.5194 0.6912 0.5066 0.7092 0.5366 0.7115 0.5786
Liver 0.6085 0.4103 0.7231 0.5145 0.7248 0.4974 0.7312 0.5143 0.7314 0.5174 0.7322 0.5224 0.7372 0.5333
Lung 0.5134 0.3182 0.6362 0.4128 0.6302 0.4004 0.6386 0.4256 0.6352 0.4048 0.6426 0.4314 0.6580 0.4398

Ovarian 0.5784 0.4337 0.6668 0.5205 0.6309 0.4863 0.6830 0.5313 0.6863 0.5484 0.6722 0.5390 0.6856 0.5442
Pancreatic 0.5460 0.3624 0.6601 0.4585 0.6491 0.4600 0.6789 0.4706 0.6791 0.4804 0.6658 0.4719 0.6863 0.4974
Prostate 0.5789 0.3959 0.6748 0.5067 0.6615 0.5101 0.6927 0.5305 0.6854 0.5127 0.6821 0.5321 0.6983 0.5456

Skin 0.5021 0.2665 0.6289 0.3610 0.6234 0.3429 0.6209 0.3574 0.6494 0.4011 0.6565 0.4339 0.6613 0.4113
Stomach 0.5976 0.3684 0.6944 0.4477 0.6886 0.4726 0.7067 0.4582 0.7010 0.4517 0.7022 0.4705 0.7115 0.4559
Testis 0.5420 0.3512 0.6869 0.4942 0.6890 0.4754 0.7026 0.4931 0.7058 0.5334 0.6955 0.5127 0.7151 0.5474

Thyroid 0.5712 0.3037 0.6962 0.4300 0.6983 0.4315 0.7155 0.4392 0.7076 0.4508 0.7151 0.4519 0.7218 0.4721
Uterus 0.5589 0.3683 0.6599 0.4480 0.6393 0.4393 0.6615 0.4794 0.6634 0.4846 0.6625 0.4737 0.6743 0.4955
Average 0.5528 0.3688 0.6692 0.4744 0.6596 0.4629 0.6798 0.4847 0.6808 0.4957 0.6793 0.4980 0.6924 0.5123

Std 0.0076 0.0047 0.0014 0.0037 0.0036 0.0076 0.0015 0.0059 0.0050 0.0082 0.0318 0.0413 0.0093 0.0147

Table 2: Precision (P), Recall (R) and F1-score (F1) for detection and classification
across three folds for each nucleus type. The best F1-score is in bold while the second
best is underlined. Following [10], if a detected nucleus is within a valid distance (≈3µm)
from an annotated nucleus and the nuclear class matches, it is counted as a true positive
(TP), otherwise a false positive(FP).

Method Detection Classification

Neoplastic Epithelial Inflammatory Connective Dead

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Mask-RCNN [13] 0.76 0.68 0.72 0.55 0.63 0.59 0.52 0.52 0.52 0.46 0.54 0.50 0.42 0.43 0.42 0.17 0.30 0.22

DIST [27] 0.74 0.71 0.73 0.49 0.55 0.50 0.38 0.33 0.35 0.42 0.45 0.42 0.42 0.37 0.39 0.00 0.00 0.00
StarDist [31] 0.85 0.80 0.82 0.69 0.69 0.69 0.73 0.68 0.70 0.62 0.53 0.57 0.54 0.49 0.51 0.39 0.09 0.10

Micro-Net [29] 0.78 0.82 0.80 0.59 0.66 0.62 0.63 0.54 0.58 0.59 0.46 0.52 0.50 0.45 0.47 0.23 0.17 0.19
Hover-Net [10] 0.82 0.79 0.80 0.58 0.67 0.62 0.54 0.60 0.56 0.56 0.51 0.54 0.52 0.47 0.49 0.28 0.35 0.31
CPP-Net [4] 0.87 0.78 0.82 0.74 0.67 0.70 0.74 0.70 0.72 0.60 0.57 0.58 0.57 0.49 0.53 0.41 0.36 0.38

CellViT-H [14] 0.84 0.81 0.83 0.72 0.69 0.71 0.72 0.73 0.73 0.59 0.57 0.58 0.55 0.52 0.53 0.43 0.32 0.36
PromptNucSeg 0.82 0.85 0.84 0.70 0.72 0.71 0.73 0.78 0.76 0.58 0.61 0.59 0.55 0.55 0.55 0.44 0.49 0.46

benchmarks. In case of the Kumar dataset, our method outshines the runner-up
by 0.1 points on AJI and 0.7 points on PQ. Moreover, it demonstrates a sub-
stantial improvement on the CPM-17 dataset, exceeding the second-highest AJI
and PQ scores by 1.9 and 2.7 points, respectively. Fig. 4 presents the qualitative
comparison results on three benchmarks.

We further analyze the model size, computational cost and inference effi-
ciency of different methods on the PanNuke dataset in Tab. 5. The counterparts
demonstrate significantly higher MACs since they generally adopt the U-Net [30]
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Table 3: Average PQ across three folds for each nuclear category on the PanNuke
dataset. The optimal results are in bold while the previous best arts are underlined.

Method
Class

Neoplastic Epithelial Inflammatory Connective Dead

Mask-RCNN [13] 0.472 0.403 0.290 0.300 0.069
DIST [27] 0.439 0.290 0.343 0.275 0.000

StarDist [31] 0.547 0.532 0.424 0.380 0.123
Micro-Net [29] 0.504 0.442 0.333 0.334 0.051
HoVer-Net [10] 0.551 0.491 0.417 0.388 0.139
CPP-Net [4] 0.571 0.565 0.405 0.395 0.131

PointNu-Net [37] 0.578 0.577 0.433 0.409 0.154
CellViT-H [14] 0.581 0.583 0.417 0.423 0.149

PromptNucSeg-H 0.598 0.582 0.441 0.433 0.161

Table 4: Performance comparison on Kumar and CPM-17 datasets. The highest AJI
and PQ scores are in bold while the second highest are underlined.

Method Kumar CPM-17
AJI DQ SQ PQ AJI DQ SQ PQ

U-Net [30] 0.556 0.691 0.690 0.478 0.666 0.778 0.734 0.625
DCAN [2] 0.525 0.677 0.725 0.492 0.561 0.732 0.740 0.545

Mask-RCNN [13] 0.546 0.704 0.720 0.509 0.684 0.848 0.792 0.674
DIST [27] 0.559 0.601 0.732 0.443 0.616 0.663 0.754 0.504

Micro-Net [29] 0.560 0.692 0.747 0.519 0.668 0.836 0.788 0.661
CIA-Net [41] 0.620 0.754 0.762 0.577 - - - -
Full-Net [28] 0.601 0.850 0.730 0.620 0.702 0.890 0.771 0.686

Hover-Net [10] 0.618 0.770 0.773 0.597 0.705 0.854 0.814 0.697
Triple U-Net [40] 0.621 - - 0.601 0.711 - - 0.685

FEEDNet [7] 0.616 0.843 0.729 0.613 0.701 0.894 0.787 0.705
HARU-Net [3] 0.613 - - 0.572 0.721 - - 0.701

PointNu-Net [37] 0.606 0.784 0.768 0.603 0.712 0.877 0.804 0.706
PromptNucSeg-B 0.614 0.802 0.773 0.622 0.731 0.892 0.813 0.726
PromptNucSeg-L 0.621 0.803 0.777 0.626 0.734 0.894 0.816 0.730
PromptNucSeg-H 0.622 0.803 0.779 0.627 0.740 0.897 0.816 0.733

architecture with progressive upsampling to regress high-resolution nuclear proxy
maps. Besides, they manifest slower inference speed due to the accompany-
ing CPU-intensive post-processing steps. In comparison, PromptNucSeg is cost-
effective and efficient since it predicts nuclei prompts and their associated masks
directly from hidden features of low resolution.

4.3 Ablation Studies

Effect of our proposed modules On top of PromptNucSeg-H, we ablate the
effect of our proposed modules on the CPM-17 dataset, which involve automatic
nuclei prompts generation (ANPG), fine-tuning SAM (FT), auxiliary task learn-
ing of nuclear region segmentation (AUX), mask-aided prompt filtering (MAPF),
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Fig. 4: Qualitative comparison on three benchmarks. The red dashed boxes highlight
the better detection results achieved by our method.

and incorporation of negative prompts (NP). The experimental results in Tab. 6
demonstrate that all the proposed modules contribute to improving the perfor-
mance of our model.

Effect of the number of negative prompts We examine the impact of dif-
ferent quantities of negative prompts on the performance of PromptNucSeg-H
using the CPM-17 dataset, as detailed in Table 7.

We initially assess the practical performance of our method by feeding pre-
dicted nuclei prompts into the segmentor. The results in Rows 1-3 discover that
adding negative prompts solely in the inference stage cannot enhance the model’s
performance. We speculate that fine-tuning with only positive prompts results in
a catastrophic forgetting about the effect of negative prompts. Comparing Rows
5 and 6, as well as Rows 8 and 9, we find that employing 1 negative prompt yields
better outcomes than using 2 negative prompts. We posit that this discrepancy
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Table 5: Comparison of model size, computational cost, efficiency and performance on
the PanNuke dataset. All metrics are measured on a single NVIDIA RTX 3090 GPU.

Method Params (M) MACs (G) FPS mPQ
StarDist [31] 122.8 263.6 17 0.4744

HoVer-Net [10] 37.6 150.0 7 0.4629
CPP-Net [4] 122.8 264.4 14 0.4847

PointNu-Net [37] 158.1 335.1 11 0.4957
CellViT-B [14] 142.9 232.0 20 0.4923

PromptNucSeg-B 145.6 59.0 27 0.5095

Table 6: Effect of our proposed mod-
ules.

ANPG FT AUX MAPF NP AJI PQ
0.091 0.091

✓ 0.311 0.218
✓ 0.496 0.237

✓ ✓ 0.728 0.723
✓ ✓ ✓ 0.733 0.727
✓ ✓ ✓ 0.734 0.727
✓ ✓ ✓ ✓ 0.737 0.729
✓ ✓ ✓ ✓ 0.737 0.731
✓ ✓ ✓ ✓ ✓ 0.740 0.733

Table 7: Effect of the number of neg-
ative prompts.

Row
# NP Source of Prompts

Train Test Pred GT
AJI PQ AJI PQ

1 0 0 0.737 0.731 0.779 0.772
2 0 1 0.737 0.730 0.794 0.782
3 0 2 0.735 0.729 0.793 0.778
4 1 0 0.737 0.732 0.780 0.772
5 1 1 0.740 0.733 0.804 0.790
6 1 2 0.736 0.729 0.808 0.791
7 2 0 0.739 0.731 0.778 0.769
8 2 1 0.740 0.732 0.804 0.790
9 2 2 0.738 0.729 0.811 0.796

arises from the inherent noise in predicted prompts, the introduction of which is
particularly notable when using two negative prompts.

To verify our suspicions, we further test the "oracle" performance of our
method by using ground-truth nuclear centroids as prompts for the segmentor.
Comparing Rows 2 and 5, we observe that the integration of negative prompts
into the fine-tuning process enhances both practical and "oracle" performance.
This finding confirms the existence of the catastrophic forgetting problem ex-
plained earlier. Examining Rows 4-6 and 7-9, we find that when the prompts
are noise-free, the "oracle" performance continually improves with the number
of negative prompts, which substantiates our second suspicion.

The substantial gaps between practical and "oracle" performance underscore
the impact of prompt quality on the overall system performance. Given that
training the prompter necessitates only nuclei point annotations, it is promising
to improve the nucleus instance segmentation outcomes in a cost-effective scheme
by bolstering the prompter’s accuracy with more budget-friendly point labels.

Which module should undertake the nucleus classification task? An-
swer is the prompter. In prior experiments, we employ the prompter for
nucleus classification. Here we explore the performance of PromptNucSeg when
training the prompter in a class-agnostic manner and transferring the classifi-
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Table 8: Model performance with the prompter and segmentor as nucleus classifier,
respectively.

Classifier Tissue Nucleus
bPQ mPQ Neop. Epit. Infl. Conn. Dead

Prompter 0.692 0.512 0.598 0.582 0.441 0.433 0.161
Segmentor 0.688 0.506 0.587 0.587 0.423 0.431 0.157

Table 9: Effect of training the prompter and segmentor jointly.

Joint training Kumar CPM-17 PanNuke
AJI PQ AJI PQ bPQ mPQ
0.622 0.627 0.740 0.733 0.692 0.512

✓ 0.604 0.605 0.722 0.710 0.477 0.352

cation function to the segmentor. To adapt the class-agnostic SAM for nucleus
classification, we append a [cls] token to the mask decoder and update it in
the same way as the [mask] and [IoU] tokens. Subsequently, the updated [cls]
token is fed into a MLP head to predict the categorical logits. We incorporate
a multi-class focal loss of weight 1 into Eq. 2 to supervise the classification
learning. Tab. 8 displays the performance of PromptNucSeg-H on the PanNuke
dataset when the prompter and segmentor are responsible for nucleus classifica-
tion, respectively. The results suggest a slight performance advantage of using
the prompter for nucleus classification over the segmentor.

Does joint training lead to better performance? Answer is no. We ex-
plore the performance of PromptNucSeg-H when sharing the segmentor’s image
encoder with the prompter and training both models jointly. This adaption ef-
fectively reduces the number of model parameters by 53M but leads to a notable
performance drop, as shown in Tab. 9. The performance degradation could be
attributed to the limited model capacity and heightened optimization difficulty
caused by hyper-parameter coupling.

5 Conclusion

In this paper, we have presented PromptNucSeg, a SAM-inspired method for
automatic nucleus instance segmentation in histology images. Architecturally,
PromptNucSeg consists of two parts: a prompter generating a distinct point
prompt for each nucleus, and a segmentor predicting nuclear masks driven by
these prompts. Extensive experiments across three benchmarks document the
superiority of PromptNucSeg.
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