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Abstract. This paper introduces a novel approach to gaze target de-
tection leveraging a head-local-global coordination framework. Unlike
traditional methods that rely heavily on estimating gaze direction and
identifying salient objects in global view images, our method incorpo-
rates a FOV-based local view to more accurately predict gaze targets.
We also propose a unique global-local position and representation con-
sistency mechanism to integrate the features from head view, local view,
and global view, significantly improving prediction accuracy. Through
extensive experiments, our approach demonstrates state-of-the-art per-
formance on multiple significant gaze target detection benchmarks, show-
casing its scalability and the effectiveness of the local view and view-
coordination mechanisms. The method’s scalability is further evidenced
by enhancing the performance of existing gaze target detection methods
within our proposed head-local-global coordination framework.

Keywords: Gaze Target Detection · Head-Local-Global Coordination ·
Contrastive Learning

1 Introduction

Traditional research in human intention detection has predominantly focused
on estimating eye gaze direction [5, 21, 22, 33, 34]. Determining the precise loca-
tion a person is looking at, referred to as the gaze target, offers a more intu-
itive approach to delve into deeper human intentions. Previous methodologies
often require specialized equipment (e.g ., eye trackers, VR/AR devices, or ex-
pensive RGB-D cameras) or controlled environments (e.g ., restricted subject
placements). Recent advancements, however, have showcased the capability to
estimate gaze targets from more accessible sources in daily life, namely single
images in unconstrained settings, promising greater scalability for the task.

Traditional approaches [2, 6, 7, 10, 16, 19, 23, 25, 27] typically identify salient
objects in input images conditioned on estimated gaze directions. Despite signif-
icant progress, several critical challenges remain. Most existing methods utilize
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Ground-truth Gaze Target Predicted Gaze TargetFig. 1: Failure cases of existing methods [2, 7, 10, 16, 23]. The red dots denote the
predicted gaze target, yellow dots denote the ground truth. While effective in simple
scenes, variations in human head position and gaze direction in unconstrained envi-
ronments limit the efficacy of these approaches. In complex scenes, salient objects may
mislead the network, resulting in erroneous predictions.

the estimated gaze direction to compute a person’s gaze cone, i.e., a cone-shaped
field of view (FOV), emanating from their head position. Each point within this
cone is assigned a weight based on gaze direction, and this weighted gaze cone
map guides image feature extraction. While effective in simple scenes, variations
in human head position and gaze direction in unconstrained environments limit
the efficacy of these approaches. In complex scenes, salient objects may mislead
the network, resulting in erroneous predictions. Fig. 1 shows typical cases.

Building upon this analysis, traditional approaches employ two perspectives
in gaze target detection: extracting facial features from cropped head images
(head view) and estimating gaze direction; extracting scene features from original
images (global view) and inferring gaze targets. However, we posit the existence
of a third valuable perspective. Assuming accurate gaze direction estimation,
the image region within the calculated gaze cone theoretically encompasses all
task-relevant features, including facial features, head position, gaze target fea-
tures, and gaze target position. To effectively utilize this information, we propose
defining the smallest rectangular area encompassing the person’s head position
and entire gaze cone as the local view.

Compared to traditional methods, our novel approach integrates a local view
to aid neural networks in reasoning about gaze targets. Fig. 2 visually delineates
the head view, local view, and global view in gaze target detection. The local
view retains all task-relevant features while minimizing task-irrelevant elements
(e.g ., salient objects outside the gaze cone, complex backgrounds) present in the
global view. In scenarios with diverse human head positions and gaze directions,
the local view effectively guides neural network attention towards the person’s
gaze cone, enhancing prediction accuracy and reliability.

This paper presents a novel gaze target detection method based on head-
local-global coordination. Our approach learns to infer gaze targets from head
view, local view, and global view, coordinating their spatial positions and image
representations. Initially, our network extracts facial features from the head view
and estimates 3D gaze direction. Subsequently, we derive the local view from the
original global view based on head position and calculated gaze cones. Finally,
our method reasons about gaze targets from both the extracted local view and
original global view through a shared network. Additionally, to align spatial
relationships between head view, local view, and global view features in high-
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Fig. 2: Illustration of the head view, local view, global view in gaze target detection.

dimensional spaces, we introduce a global-local position consistency mechanism.
Furthermore, to encourage learning of high-quality consistent features, we in-
troduce a global-local representation consistency mechanism between local view
and global view. Extensive experiments demonstrate that our method achieves
SOTA performance on multiple important gaze target detection benchmarks.

It is noteworthy that our method exhibits strong scalability. By integrating
the additional local view and view-coordination mechanism, existing gaze target
detection methods can be optimized within our head-local-global coordination
framework, enhancing model performance.

In summary, our main contributions are as follows:

– We introduce a FOV-based local view explicitly into gaze target detection.
– We propose a novel gaze target detection method based on head-local-global

coordination, achieving state-of-the-art performance on multiple significant
gaze target detection benchmarks.

– Our head-local-global coordination framework demonstrates strong scalabil-
ity, capable of enhancing performance in existing methods.

2 Related Work

Gaze Target Detection. Gaze target detection provides an intuitive means to
explore human intentions. Recasens et al . [25] pioneered this field by introduc-
ing the GazeFollow dataset, a substantial collection of images annotated with
head positions and corresponding gaze targets. Lian et al . [19] augmented view-
point supervision using a multi-scale field of view attention mechanism. Chong
et al . [7] extended the task by introducing a video dataset and addressing out-
of-frame scenarios. Fang et al . [10] incorporated monocular depth estimation
as supplementary prior information, while Bao et al . [2] leveraged intricate an-
alytical calculations of 3D geometry. Most existing methods primarily rely on
searching for potential gaze targets in the global view.

Gaze Estimation. Appearance-based gaze estimation has long been a focal
point in computer vision [5,11,21,22,33,34]. However, the majority of available
gaze estimation datasets [18, 26, 32] are obtained within controlled laboratory
environments, involving meticulous configurations of multi-view cameras, 3D
positions of human subjects, and designated gaze targets. Consequently, these
datasets consist solely of single face images from a limited range of scenes. Zhang
et al . [31] introduced a high quality multi-face parsing dataset MPSGaze, which
contains full images of multiple people with 3D gaze ground truth.
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Fig. 3: Overall architecture of our proposed gaze target detection method based on
head-local-global coordination framework. The complete method consists of a head
view branch (top) and a head-local-global coordination network (bottom). Our head
view branch extracts facial features, encodes the 3D gaze direction, extracts the FOV-
based local view, and encodes the local-view/global-view head attention maps. Our
head-local-global coordination network is designed to detect potential gaze targets
from both the extracted local view and original global view. Please note that, the parts
within the dashed box are only executed during the training phase.

Contrastive Learning. Contrastive learning has demonstrated remarkable
efficacy in self-supervised and semi-supervised learning scenarios. It involves ac-
quiring representations by contrasting multi-views of samples as positive pairs
against different negative samples [3, 13]. Another interpretation involves maxi-
mizing mutual information between latent representations [1, 15]. He et al . [14]
extended the utilization of negative samples from mini-batches to a memory bank
with substantial momentum updates. Chen et al . [4] highlighted the significance
of a non-linear projection head and the benefits of a large batch size.

3 Method

The overall architecture of our proposed gaze target detection method is depicted
in Fig. 3. It comprises a head view branch and a head-local-global coordination
network. The head view branch (Sec. 3.1) extracts facial features from the head
view image and encodes the 3D gaze direction. Subsequently, we calculate the 3D
field of view (FOV) based on the gaze direction and scene depth information. The
local view is then extracted from the global view based on the head position and
3D FOV. We introduce a head attention module to fuse facial features with the
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Fig. 4: Local view extracted from the global view.

local-view and global-view head positions, respectively, and encode the resulting
head attention maps.

Next, we utilize the head-local-global coordination network (Sec. 3.2) to de-
tect the gaze target from both the extracted local view and original global view.
The RGB image, head position map, and 3D FOV map from these two views
are concatenated as inputs for the corresponding branches, respectively. Scene
features are extracted from both two views through a shared backbone, and then
fused with their corresponding head attention maps to maintain position consis-
tency. Furthermore, we introduce a global-local contrastive learning method to
enhance representation consistency between these two views. Afterwards, we se-
quentially integrate the facial features, local-view scene features and global-view
scene features together. The fused features are subsequently decoded to predict
potential gaze target heatmaps. To enhance supervision for the learning process
of local view and global view, we also decode the potential gaze targets from
these two views separately in a supervised manner during the training phase.

3.1 Head View Branch
Gaze estimation. The head view branch first extracts a 1024×7×7 dimensional
facial feature map Fh from the head view image Ih through a separate feature
extractor Bh(·). It then encodes the 3D gaze direction [ĝx, ĝy, ĝz] using a multi-
layer perceptron (MLP) network Mh(·).

Fh = Bh(Ih), [ĝx, ĝy, ĝz] = Mh(Fh). (1)

Local View Extraction. The gaze cone is calculated based on the global-
view head position and estimated 2D gaze direction, generating a weighted 2D
FOV map. Specifically, we compute the angle ε(x,y) between the 2D gaze direc-
tion [ĝx, ĝy] and the vector [vx, vy] from the person’s head center (xc, yc) to any
point (x, y) in the global-view image,

[vx, vy] =
[x− xc, y − yc]√

(x− xc)2 + (y − yc)2
, (2)

ε(x,y) = arccos([vx, vy] · [ĝx, ĝy]), (3)
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Since the gaze target is more credible to be in a neighbour region of the gaze,
we assign more weights to points with smaller ε. This will produce the weighted
2D FOV map M

(x,y)
gf as follows,

M
(x,y)
gf = max(1− α

ε(x,y)

π
, b). (4)

Here, ε(x,y) ∈ [0, 180◦]. All points with M
(x,y)
gf > b form a conical region, which

is the gaze cone mentioned above. α decides the half-angle of gaze cone, b is a
positive weight offset. We empirically set α = 3.0 and achieve a 30◦ half-angle of
gaze cone. We also set b = 0.5 as the weight of all points outside the gaze cone,
to improve the robustness of the 2D FOV map.

Meanwhile, a depth-channel FOV is obtained. Specifically, we use a well-
generalized monocular depth estimation model MiDaS [24] to recover the scene
depth information D from the global-view image Ig. Subsequently, we produce
the depth-channel FOV M

(x,y)
gd based on the relative depth relationship between

the person’s head center (xc, yc) and any point (x, y) in the global-view image,
and the depth-channel gaze direction ĝz,

M
(x,y)
gd =

{
1, if (D(x,y) −D(xc,yc)) · ĝz >= 0;

0, otherwise.
(5)

Afterwards, we calculate the global-view 3D FOV map Mg based on the
weighted 2D FOV map Mgf and depth-channel FOV map Mgd,

M (x,y)
g =

{
1, if M

(x,y)
gf > b

⋂
M

(x,y)
gd = 1;

0, otherwise.
(6)

We set the smallest rectangular area bl in the global view based on the global-
view head position Mgh and 3D FOV map Mg, as the local view,

bl = [min(x),min(y),max(x),max(y)], M (x,y)
g = 1

⋃
M

(x,y)
gh = 1. (7)

Finally, this rectangular area bl is used to crop the global-view RGB image Ig,
head position map Mgh, 3D FOV map Mg to obtain the local-view RGB image
Il, head position map Mlh, 3D FOV map Ml, respectively. All these global-view
and local-view images are resized to 224× 224 dimensions, serving as inputs to
our network. The process of local view extraction is illustrated in Fig. 4.

Head Attention Module. We introduce a head attention module to fuse
the extracted facial features with the local-view head position map and global-
view head position map separately, then encode the local-view head attention
map and global-view head attention map, respectively. Specifically, we first per-
form average pooling on Fh across the channel dimension to obtain a 1024 di-
mensional embedding vector fh. Then, the head position maps Mlh and Mgh

are resized to 28× 28 dimensions separately and flattened into 784 dimensional
head position vectors vlh and vgh, respectively. Subsequently, vlh and vgh are
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Fig. 5: Global-local contrastive learning method between the local view and global
view to enhance their representation consistency. We crop out the feature patches Pgs

corresponding to the local-view rectangular area bl from the global-view scene feature
maps Fgs. Subsequently, we set a contrastive learning objective Lctr between Pgs and
the local-view scene feature maps Fls to maximize their mutual information.

concatenated with fh across the channel dimension separately and fed into an
FC layer Fh(·) to encode the 1 × 7 × 7 dimensional local-view head attention
map Alh and global-view head attention map Agh, respectively.

3.2 Head-Local-Global Coordination Network

Scene Feature Extraction from Local View/Global View. We propose a
novel head-local-global coordination network to detect the gaze target from both
the local view and global view. For the local view branch, we concatenate the
local-view RGB image Il, head position map Mlh and 3D FOV map Ml along
the channel dimension and feed them into a shared backbone Bs(·) to extract
the 1024×7×7 dimensional local-view scene features Fls. We perform the same
operation on the global view branch as well,

Fls = Bs(Il ⊕Mlh ⊕Ml), Fgs = Bs(Ig ⊕Mgh ⊕Mg). (8)

Global-Local Position Consistency. To maintain position consistency
between the local view and global view, we multiply the extracted scene feature
maps Fls and Fgs with the corresponding head attention maps Alh and Agh

along the channel dimension, separately, to obtain the 1024× 7× 7 dimensional
weighted feature maps F̃ls and F̃gs, respectively.

Global-Local Representation Consistency. Subsequently, to encourage
the shared backbone Bs(·) to better learn task-consistent image features from
both the local view and global view, we introduce a self-supervised contrastive
learning method between these two views to enhance their representation con-
sistency. Considering the diversity of human head position and gaze direction in
the input image from the original global view, the gaze cone may only occupy
a small part of the geometric space of the global-view image. Therefore, the
global-view image may contain a large number of task-irrelevant features (i.e.,
noises), making it difficult for the network to learn high-quality representations
in the high-dimensional feature space. Based on the local view extraction method
above, we crop out the feature patches Pgs corresponding to the local-view rect-
angular area bl from the global-view scene feature maps Fgs. Pgs contains all
task-consistent features in the high-dimensional feature space extracted from the
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global view inputs. Subsequently, we set a contrastive learning objective Lctr be-
tween Pgs and the local-view scene feature maps Fls to maximize their mutual
information. Fls and Pgs are projected into the same high-dimensional embed-
ding space through an averaging pooling operation on the channel dimension,
resulting in the query qls and key kgs, respectively. This process is shown in Fig.
5. The global-local contrastive loss function can be calculated as follows,

Lctr = −log
exp(qls(kgs)

T /τ)

ΣN
i=1exp(qls(k

i
gs)

T /τ)
, (9)

where i ∈ {1, ..., N}, denoting all images in the sample batch. τ is a temper-
ature hyper-parameter (set as 0.1 in our experiments). By training with Lctr,
the shared backbone Bs(·) is encouraged to learn high-quality task-consistent
representations from both the local view and global view.

Head-Local-Global Feature Fusion. We sequentially fuse the extracted
facial features Fh, the weighted local-view scene features F̃ls, and the weighted
global-view scene features F̃gs together to decode a potential gaze target heatmap
Ĥgl. First, the 1024× 7× 7 dimensional F̃ls and 1024× 7× 7 dimensional F̃gs

are concatenated on the channel dimension. These are then fed into a 1×1 CNN
layer Es(·) to encode a 1024 × 7 × 7 dimensional feature map F̃es. Next, the
encoded scene feature maps F̃es are concatenated with the facial feature maps
Fh, and fed into a CNN-based decoder Ds(·) comprising a 1× 1 CNN layer and
three D-CNN layers. This decodes a 1×64×64 dimensional gaze target heatmap
Ĥgl. Additionally, the concatenated feature maps are fed into an MLP network
and a softmax classifier to predict a confidence score ŷgl used to identify the
out-of-frame target. We set the heatmap regression loss for Ĥgl and the clas-
sification loss for ŷgl to supervise the learning process of the head-local-global
coordination network.

Independent Supervision of Local View/Global View. To further
strengthen the supervision of predicting the gaze target from both the local view
and global view, we decode potential gaze targets from these views separately
and set corresponding heatmap regression losses during training. Specifically,
for the local view branch, we concatenate the weighted local-view scene feature
maps F̃ls with the facial feature maps Fh. These are fed into the shared decoder
Ds(·) to decode a 1 × 64 × 64 dimensional local-view gaze target heatmap Ĥl.
Similarly, the same operation is performed on the global view branch to obtain
a 1× 64× 64 dimensional global-view gaze target heatmap Ĥg. We set heatmap
regression losses for Ĥl and Ĥg, respectively. For the classification task, we no
longer introduce additional supervision due to its relative simplicity compared
to heatmap regression.

3.3 Overall Loss Function

Our overall learning objective can be formulated as follows:

L = Lang([ĝx, ĝy, ĝz], [gx, gy, gz]) + Lcls(ŷgl, yg) + Lreg(Ĥgl,Hg)

+ µLreg(Ĥl,Hl) + νLreg(Ĥg,Hg) + λLctr,
(10)
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where [gx, gy, gz] denotes the ground truth 3D gaze direction. yg represents the
ground truth out-of-frame category. Hg and Hl denote the heatmaps gener-
ated from the ground truth gaze target positions from the global view and
local view, respectively. Lang stands for the angle error loss. Lcls denotes the
out-of-frame-target classification loss using the softmax loss function. Lreg rep-
resents the heatmap regression loss using the mean square error loss function.
Lreg(Ĥgl,Hg) denotes the heatmap regression loss of head-local-global coordi-
nation prediction. Lreg(Ĥl,Hl) denotes the heatmap regression loss of local-view
prediction. Lreg(Ĥg,Hg) denotes the heatmap regression loss of global-view pre-
diction. Lctr represents the global-local contrastive loss function, as expressed in
Eq. (9). The hyper-parameters µ, ν, and λ are set as 0.5, 0.5, and 1.0 respectively
in our experiments to balance the different losses.

3.4 Inference Method
In the inference phase, we commence by extracting facial features and estimating
3D gaze direction from the head view image using the head view branch. Sub-
sequently, leveraging the head position and gaze direction, we extract the local
view from the original global view. Ultimately, employing the head-local-global
coordination network, we detect the gaze target from both the extracted local
view and the original global view.

4 Experiments

Datasets. In this study, we utilized the well-established gaze target detection
datasets GazeFollow [7] and VideoAttentionTarget [7]. GazeFollow is a com-
prehensive gaze-tracking dataset, comprising 130,339 individuals across 122,143
images sourced from diverse existing datasets such as ImageNet [8], COCO [20],
PASCAL [9], SUN [30], etc.. Following dataset partitioning, 4,782 annotated in-
dividuals from GazeFollow were allocated for testing purposes, with the remain-
der serving for training. Notably, each person in the test images underwent 10
human annotations to assess human performance. VideoAttentionTarget extends
the task to out-of-frame scenarios. This dataset encompasses 1,331 video clips
procured from various sources on YouTube, accompanied by 164,541 frame-level
head bounding box annotations. Additionally, we utilized several gaze estima-
tion datasets to pretrain our head view branch, including Gaze360 [18], ETH-
XGaze [32], and MPSGaze [31]. MPSGaze is a high-quality multi-face parsing
dataset containing full images of multiple people with 3D gaze ground truth.

Evaluation metrics. The evaluation of our method was conducted using
the following metrics: L2 Distance: This metric quantifies performance by eval-
uating the L2 distance between the predicted gaze target point and the corre-
sponding ground truth annotation. Angle Error: We computed the angle error
between the predicted gaze direction and the ground truth gaze vector from the
face location to the gaze point. Out-of-frame AP: The accuracy of identifying
out-of-frame instances was assessed through the utilization of average precision
(AP). AUC: We also employed the area under curve (AUC) criteria proposed
by Judd et al . [17] to assess the confidence of the predicted heatmap.



10 Y. Yang and F. Lu

Methods Views GazeFollow VideoAttentionTarget
AUC↑ Min. L2↓ Avg. L2↓ Angle↓ AUC↑ Dist.↓ AP↑

Chong et al . [6] G 0.896 0.112 0.187 - 0.830 0.193 0.705
Lian et al . [19] G - 0.906 0.145 17.6° - - -
VideoAtt [7] G 0.921 0.077 0.137 - 0.860 0.134 0.853
Fang et al . [10] G 0.922 0.067 0.124 14.9° 0.905 0.108 0.896
ESCNet [2] G 0.928 - 0.122 14.6° 0.885 0.120 0.869
Tu et al . [29] G 0.917 0.069 0.133 - 0.904 0.126 0.854
Jin et al . [16] G 0.923 0.064 0.120 14.8° 0.900 0.104 0.895
Miao et al . [23] G 0.934 0.065 0.123 - 0.917 0.109 0.908
Tafasca et al . [27] G 0.936 0.064 0.125 - 0.914 0.109 0.834
Ours-g G 0.927 0.071 0.129 14.5° 0.908 0.113 0.894
Ours-l L 0.933 0.065 0.122 13.1° 0.914 0.107 0.905
Ours G+L 0.939 0.059 0.114 12.4° 0.920 0.101 0.916

Human 0.924 0.040 0.096 11.0° 0.921 0.051 0.925

Table 1: Quantitative comparisons on GazeFollow [25] and VideoAttentionTarget [7]
benchmarks. G: global view. L: local view. Ours-g: our method w/o local view. Ours-l:
our method w/o global view. Ours: our complete method. The best results are given
in red and the second best results are given in blue.

Implementation Details. Our method was implemented using PyTorch.
All inputs were resized to 224 × 224, and all backbones utilized the ResNet-50
network. Due to the lack of annotations for 3D gaze direction in gaze target
detection datasets, we pretrained our head view branch on multiple gaze esti-
mation datasets, including Gaze360, ETH-XGaze, and MPSGaze, to improve its
generalization ability on gaze target detection datasets. Our monocular depth es-
timation module utilized the pretrained well-generalized model Midas [12]. Our
network was trained on two NVIDIA Titan Xp GPUs, using a mini-batch size
of 32 and an initial learning rate of 0.0001. We employed SGD as our optimizer,
with a weight decay of 0.0001 and a momentum factor of 0.9. The entire training
phase spanned 70 epochs on the GazeFollow dataset and was completed within
approximately 18 hours, with the learning rate being scaled down by a factor of
0.1 at both the 50th and 60th epochs. Our complete method achieved an image
inference time of approximately 22ms on a single NVIDIA Titan Xp GPU.

4.1 Comparison with Existing Methods

We compared our method with all recent gaze target detection methods, includ-
ing Chong et al . [6], Lian et al . [19], VideoAtt [7], Fang et al . [10], ESCNet [2],
Tu et al . [29], Jin et al . [16], Miao et al . [23], Tafasca et al . [27], Tonini et al . [28].
All existing methods predict gaze targets from the original global view only. It
is worth noting that the method [28] relied on an additional object detector to
obtain the object position and category priors. Furthermore, the experimental
settings in [28,29], referred to as ‘Real’, differed significantly from the standard
settings in all other methods. Therefore, it was unfair to directly compare the
experimental results in [28] with our method and other existing methods.
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Fig. 6: Qualitative comparisons between our proposed method (3rd row) and the ex-
isting SOTA method [10] (2nd row). Faced with the diversity of human head position
and gaze direction, our method more accurately predicted the true gaze target through
the coordination of both the extracted local view and original global view, as demon-
strated in the qualitative results.

Methods FPS GFLOPs Avg. L2↓
VideoAtt [7] 67 9.4 0.137
Tu et al . [29] 16 79.7 0.133
Ours 45 13.3 0.114

Table 2: FLOPs and FPS comparison
on a NVIDIA Titan Xp GPU.

Methods L2 Distance ↓
GF VAT

Global-local fusion 0.138 0.121
Head-global fusion 0.129 0.113
Head-local fusion 0.122 0.107

Ours 0.114 0.101

Table 3: Ablation of head-local-global
feature fusion.

Quantitative Comparisons. Tab. 1 shows the quantitative results on the
GazeFollow benchmark [25] and VideoAttentionTarget benchmark [7]. Our method
achieved the state-of-the-art (SOTA) performance on the GazeFollow benchmark
in terms of all evaluation metrics. Compared to existing SOTA methods [2,16,27]
which also rely on scene depth prior and 3D gaze direction, our method exhib-
ited a relative improvement of 5.0% on average L2 distance metric, 7.8% on
minimum L2 distance metric, and 15.1% on angle error metric. It is worth not-
ing that the variant of our method (‘Ours-l’), which detects gaze targets solely
from the local view, has achieved almost the same good performance as exist-
ing SOTA methods. Additionally, our method also achieved SOTA performance
on the VideoAttentionTarget benchmark. Compared to existing SOTA meth-
ods [16,23], our method achieves a relative improvement of 2.9% on L2 distance
metric. These results quantitatively demonstrate the effectiveness of the local
view we introduced and head-local-global coordination we proposed. We also
provide the FLOPs and inference speed comparison in Tab. 2.

Qualitative Comparisons. Figure 6 visualizes the qualitative comparisons
between our proposed method (3rd row) and the existing SOTA method [10]
(2nd row). The 1st row shows the original global-view image and the ground-
truth gaze target. Faced with the diversity of human head position and gaze
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Methods GazeFollow VideoAttentionTarget
Angle Error ↓ Average L2 ↓ Angle Error ↓ L2 Distance ↓

Gaze360 16.7° 0.132 14.4° 0.115
ETH-XGaze 15.9° 0.126 13.8° 0.110
MPSGaze 14.8° 0.118 12.9° 0.104
Ours 14.2° 0.114 12.4° 0.101

Table 4: Ablation of gaze estimation module (‘Angle Error’) and its impact on gaze
target detection (‘L2’ Distance).

Methods L2 Distance (Average) ↓
GazeFollow VideoAttentionTarget

W/o position consistency 0.192 0.183
W/o representation consistency 0.123 0.108

Ours 0.114 0.101

Table 5: Ablation of global-local position and representation consistency.

direction, our method more accurately predicted the true gaze target through
the coordination of both the extracted local view and original global view, as
demonstrated in the qualitative results. These qualitative demonstrate the effec-
tiveness of the local view and head-local-global coordination we introduced.

4.2 Ablation Study

Ablation of Head-Local-Global Feature Fusion. We evaluated the effec-
tiveness of the head-local-global feature fusion in our network by implementing
several variants, as shown in Tab. 3. Among them, ‘head-local fusion’ means fus-
ing facial features and local-view features only. ‘Head-global fusion’ means fusing
facial features and global-view features only. ‘Global-local fusion’ means fusing
global-view features and local-view features only. ‘Ours’ represents our complete
head-local-global feature fusion. These results quantitatively demonstrated that
the proposed feature fusion strategy effectively improved the network’s perfor-
mance in predicting the gaze target.

Ablation of Gaze Estimation. We evaluated the effectiveness of gaze es-
timation in our head view branch by implementing several variants, as shown
in Tab. 4. Among them, ‘Gaze360’, ‘ETH-XGaze’ and ‘MPSGaze’ represent
pretraining our head view branch on the Gaze360 dataset [18], ETH-XGaze
dataset [32] and MPSGaze dataset [31] respectively. ‘Ours’ represents our com-
plete cross-dataset pretraining method, i.e. pretraining the model together on
these three datasets. Our cross-dataset pretrained model exhibited better gener-
alization performance of 3D gaze estimation on gaze target detection datasets.

We also validated the impact of gaze estimation accuracy on the performance
of our method in gaze target detection, as shown in Tab. 4. These results demon-
strated that the more accurate the gaze direction, the better the performance of
our method in gaze target detection. This phenomenon may be due to the fact
that the accuracy of gaze direction affects both the accuracy of FOV calculation
and the accuracy of local view extraction.
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Fig. 7: Visualizing the sub-modules of our head-local-global coordination network.

Methods L2 Distance (Average) ↓
GazeFollow VideoAttentionTarget

W/o Lreg(Ĥl,Hl) & Lreg(Ĥg,Hg) 0.126 0.110

Ours 0.114 0.101

Table 6: Ablation of independent supervision of local view/global view.

Ablation of Position/Representation Consistency. We evaluated the
effectiveness of the proposed global-local position consistency and representa-
tion consistency by implementing several variants, as shown in Tab. 5. Among
them, ‘w/o position consistency’ means abandoning the head attention mecha-
nisms in both the local view branch and global view branch. ‘W/o representation
consistency’ means abandoning the global-local contrastive learning mechanism
between the local-view scene features and global-view scene features. These re-
sults demonstrated that our proposed position consistency and representation
consistency mechanisms significantly contributed to the network’s ability to align
spatial relationships and learn high-quality image representations between the
local-view features and global-view features in high-dimensional feature spaces.

Ablation of Independent Supervision of Local View/Global View.
We evaluated the effectiveness of the heatmap regression loss Lreg(Ĥl,Hl) for
local-view prediction and Lreg(Ĥg,Hg) for global-view prediction by implement-
ing the variant abandoning both of them, as shown in Tab. 6. The introduction
of these losses effectively strengthened the supervision of the learning process
for predicting the gaze target in our head-local-global coordination network.

4.3 Module Visualization

Fig. 7 visualizes the sub-modules of our head-local-global coordination net-
work, including the original global-view image, the extracted local-view image
(pink bounding box), the global-view prediction, the local-view prediction (pink
bounding box), the head-local-global coordination prediction, the predicted gaze
target (red point) and ground-truth gaze target (yellow point). These outcomes
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Methods Origin Head-Local-Global Coordination
AUC↑ Min. L2↓ Avg. L2↓ AUC↑ Min. L2↓ Avg. L2↓

VideoAtt [7] 0.921 0.077 0.137 0.932 0.065 0.122

Fang et al . [10] 0.922 0.067 0.124 0.936 0.062 0.117

Table 7: Evaluation of the scalability of our head-local-global coordination framework
on the GazeFollow dataset [25].

qualitatively demonstrate the effectiveness of our proposed gaze target detection
method based on head-local-global coordination.

4.4 Evaluation of Framework Scalability

To evaluate the scalability of the head-local-global coordination framework we
proposed, we optimized the existing methods [7,10] by introducing the local view
and view-coordination mechanism, as shown in Tab. 7. Among them, ‘Origin’
represents the original method. ‘Head-Local-Global Coordination’ represents the
optimized method. These results quantitatively demonstrated that by integrat-
ing the additional local view and view-coordination mechanism, existing gaze
target detection methods can be optimized within our head-local-global coordi-
nation framework, enhancing model performance.

5 Limitation and Feature Work

Due to the fact that the extraction of local view in our method relies on accurate
gaze direction, our method may produce erroneous predictions in the cases of
low facial visibility leading to significant errors in gaze estimation.

Besides, most existing datasets in this task have limited ecological validity,
since they have no ground truth gaze data but are photo collections that humans
have annotated the gaze target with their best guesses. As a result, the manual
annotations are not entirely accurate. Researchers in this new research field are
conducting continuous works for better datasets and it takes time.

6 Conclusion

Our research presents a significant advancement in the field of gaze target detec-
tion. By introducing a FOV-based local view and employing a head-local-global
coordination approach, we address the limitations of traditional gaze target de-
tection methods. Our novel framework not only improves accuracy in identify-
ing gaze targets but also demonstrates strong scalability by enhancing existing
methods. The extensive experimental results confirm our method’s superior per-
formance on key benchmarks. Despite its reliance on accurate gaze direction es-
timation, which could be a limitation in cases of low facial visibility, our method
marks a substantial step forward in understanding and interpreting human gaze
in unconstrained environments. Future work will focus on overcoming these lim-
itations and exploring the integration of more robust gaze estimation techniques
to further enhance the method’s applicability and performance.



Gaze Target Detection 15

References

1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximiz-
ing mutual information across views. Advances in neural information processing
systems 32 (2019) 4

2. Bao, J., Liu, B., Yu, J.: Escnet: Gaze target detection with the understanding of
3d scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 14126–14135 (2022) 1, 2, 3, 10, 11

3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International conference on machine
learning. pp. 1597–1607. PMLR (2020) 4

4. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised
models are strong semi-supervised learners. Advances in neural information pro-
cessing systems 33, 22243–22255 (2020) 4

5. Cheng, Y., Zhang, X., Lu, F., Sato, Y.: Gaze estimation by exploring two-eye
asymmetry. IEEE Transactions on Image Processing 29, 5259–5272 (2020) 1, 3

6. Chong, E., Ruiz, N., Wang, Y., Zhang, Y., Rozga, A., Rehg, J.M.: Connecting
gaze, scene, and attention: Generalized attention estimation via joint modeling of
gaze and scene saliency. In: Proceedings of the European conference on computer
vision (ECCV). pp. 383–398 (2018) 1, 10

7. Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets
in video. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 5396–5406 (2020) 1, 2, 3, 9, 10, 11, 14

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 9

9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International journal of computer vision 88(2),
303–338 (2010) 9

10. Fang, Y., Tang, J., Shen, W., Shen, W., Gu, X., Song, L., Zhai, G.: Dual attention
guided gaze target detection in the wild. In: Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition. pp. 11390–11399 (2021) 1, 2,
3, 10, 11, 14

11. Fischer, T., Chang, H.J., Demiris, Y.: Rt-gene: Real-time eye gaze estimation in
natural environments. In: Proceedings of the European conference on computer
vision (ECCV). pp. 334–352 (2018) 3

12. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: Proceedings of the IEEE/CVF in-
ternational conference on computer vision. pp. 3828–3838 (2019) 10

13. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in-
variant mapping. In: 2006 IEEE computer society conference on computer vision
and pattern recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006) 4

14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 9729–9738 (2020) 4

15. Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P.,
Trischler, A., Bengio, Y.: Learning deep representations by mutual information
estimation and maximization. arXiv preprint arXiv:1808.06670 (2018) 4

16. Jin, T., Yu, Q., Zhu, S., Lin, Z., Ren, J., Zhou, Y., Song, W.: Depth-aware gaze-
following via auxiliary networks for robotics. Engineering Applications of Artificial
Intelligence 113, 104924 (2022) 1, 2, 10, 11



16 Y. Yang and F. Lu

17. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans
look. In: 2009 IEEE 12th international conference on computer vision. pp. 2106–
2113. IEEE (2009) 9

18. Kellnhofer, P., Recasens, A., Stent, S., Matusik, W., Torralba, A.: Gaze360: Physi-
cally unconstrained gaze estimation in the wild. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 6912–6921 (2019) 3, 9, 12

19. Lian, D., Yu, Z., Gao, S.: Believe it or not, we know what you are looking at! In:
Asian Conference on Computer Vision. pp. 35–50. Springer (2018) 1, 3, 10

20. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014) 9

21. Lu, F., Okabe, T., Sugano, Y., Sato, Y.: Learning gaze biases with head motion
for head pose-free gaze estimation. Image and Vision Computing 32(3), 169–179
(2014) 1, 3

22. Lu, F., Sugano, Y., Okabe, T., Sato, Y.: Adaptive linear regression for appearance-
based gaze estimation. IEEE transactions on pattern analysis and machine intelli-
gence 36(10), 2033–2046 (2014) 1, 3

23. Miao, Q., Hoai, M., Samaras, D.: Patch-level gaze distribution prediction for gaze
following. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. pp. 880–889 (2023) 1, 2, 10, 11

24. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
IEEE transactions on pattern analysis and machine intelligence 44(3), 1623–1637
(2020) 6

25. Recasens, A., Khosla, A., Vondrick, C., Torralba, A.: Where are they looking?
Advances in neural information processing systems 28 (2015) 1, 3, 10, 11, 14

26. Sugano, Y., Matsushita, Y., Sato, Y.: Learning-by-synthesis for appearance-based
3d gaze estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1821–1828 (2014) 3

27. Tafasca, S., Gupta, A., Odobez, J.M.: Childplay: A new benchmark for under-
standing children’s gaze behaviour. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 20935–20946 (2023) 1, 10, 11

28. Tonini, F., Dall’Asen, N., Beyan, C., Ricci, E.: Object-aware gaze target detection.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 21860–21869 (2023) 10

29. Tu, D., Min, X., Duan, H., Guo, G., Zhai, G., Shen, W.: End-to-end human-gaze-
target detection with transformers. In: 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2192–2200. IEEE (2022) 10, 11

30. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale
scene recognition from abbey to zoo. In: 2010 IEEE computer society conference
on computer vision and pattern recognition. pp. 3485–3492. IEEE (2010) 9

31. Zhang, M., Liu, Y., Lu, F.: Gazeonce: Real-time multi-person gaze estimation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4197–4206 (2022) 3, 9, 12

32. Zhang, X., Park, S., Beeler, T., Bradley, D., Tang, S., Hilliges, O.: Eth-xgaze: A
large scale dataset for gaze estimation under extreme head pose and gaze variation.
In: European Conference on Computer Vision. pp. 365–381. Springer (2020) 3, 9,
12

33. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: Appearance-based gaze estimation in
the wild. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4511–4520 (2015) 1, 3



Gaze Target Detection 17

34. Zhang, X., Sugano, Y., Fritz, M., Bulling, A.: It’s written all over your face: Full-
face appearance-based gaze estimation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition workshops. pp. 51–60 (2017) 1, 3


	Gaze Target Detection Based on Head-Local-Global Coordination

