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Abstract. In this study, we introduce the 3D space attention module
(3DSA) as a novel approach to address the drawback of multi-view 3D
human pose estimation methods, which fail to recognize the object’s sig-
nificance from diverse viewpoints. Specifically, we utilize the 3D space
subdivision algorithm to divide the feature volume into multiple regions.
Predicted 3D space attention scores are assigned to the different regions
to construct the feature volume with space attention. The purpose of the
3D space attention module is to distinguish the significance of individual
regions within the feature volume by applying weighted attention adjust-
ments derived from corresponding viewpoints. We conduct experiments
on existing voxel-based methods, VoxelPose and Faster VoxelPose. By
incorporating the space attention module, both achieve state-of-the-art
performance on the CMU Panoptic Studio dataset.
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1 Introduction

Estimating multiple 3D human poses simultaneously from multiple camera views
is an enduring challenge in computer vision. The aim is to determine the 3D
locations of the body joints for all people present in a scene. It is a task that
offers benefits to numerous real-world applications, including intelligent sports
analysis [5] and retail monitoring [35].

In 2D-3D lifting approaches [9,10,42], a monocular pose estimator identifies
2D bounding boxes and 2D poses for individuals in each view. A multi-view
matching algorithm then establishes consistent correspondences between the 2D
poses across different views. Finally, the matched 2D poses are lifted to 3D using
geometry models such as triangulation [15] or Pictorial Structure Models [2,3,14].

As shown in Fig. 1(a), the voxel-based method [35] constructs the discretized
feature volume from the detected heatmaps through 2D-3D projection. Based
on the identified per-person proposal, the 3D pose for each person is individ-
ually estimated by feeding the feature volume into 3D-CNNs. To reduce the
computational cost, another voxel-based approach [38] re-projects the feature
volume to three two-dimensional coordinate planes and replaces the 3D-CNNs
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Fig. 1: Comparison between our method and the existing voxel-based method. The
primary distinction is that: (a) The existing method simply projects heatmaps into 3D
space. (b) We enhance feature volumes using space attention, maintaining 3D informa-
tion, and emphasizing critical regions within the feature volume.

with 2D-CNNs, which increases inference speed. The existing direct prediction
method [40] uses the Transformer architecture to regress multi-person 3D poses
directly, bypassing the need for intermediate tasks. However, owing to the con-
straints of the transformer architecture, the inference speed of the method still
falls behind the Voxel-based 2D-CNNs method [38].

Existing multi-view approaches often fail to consider an important visual
phenomenon: the visible parts of the same object should differ when observed
from various angles. As depicted in Fig. 2, the four people in the scene are visible
in Views 1 to 4. However, in View 5, only three are visible in the image due to
obstruction by one of the people. To address this issue, we propose the 3D space
attention module (referred to as 3DSA) and apply it to two open-source voxel-
based methods [35,38]. Fig. 1(b) shows the overview of our proposed method. We
added the space attention layers to the end of backbone network to predict the
space attention scores. Directly estimating the importance of each voxel within
the feature volume could lead to excessive computational demands. Therefore, we
employed the 3D space subdivision algorithm to divide the feature volume into
multiple regions. The voxels within each region were treated as a group, and the
space attention scores were assigned to the group, representing the importance
of the region. Finally, the feature volume with space attention was constructed,
retaining the 3D information and paying more attention to crucial regions.

We have conducted extensive experiments on the 3D human pose bench-
mark, Panoptic [21], to evaluate the efficacy of our space attention module. By
applying the space attention module into the VoxelPose [35] and Faster Vox-
elPose [38] methods, our models show significant improvements of 20.93% and
20.32% in MPJPE respectively, both models achieve the state-of-the-art results.
The voxel-based methods undermine their performance on the AP25 metric when
compared to other multi-view methods. Our space attention module addresses
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Fig. 2: The visual phenomenon in the 3D space. Due to differences in camera viewing
angles and obstruction issues, the visibility of the same person changes across different
viewpoints. As shown by the red arrow in the figure, we can clearly observe the person
in the images from Views 1 to 4, but they are not visible in View 5. This visual
phenomenon is commonly encountered in multi-view human pose estimation tasks.

this weakness, resulting in our model achieving 94.2% and 94.22% on the metric.
Compared to the baseline model [35, 38], these scores demonstrate a significant
improvement, surpassing all existing multi-view approaches.

Our contributions are summarized as follows: (1)We proposed the 3D space
attention module (3DSA), which addresses the drawbacks of the existing multi-
view 3D human pose estimation methods and validates its effectiveness on ex-
isting voxel-based methods [35, 38]. (2)We introduced a 3D space subdivision
algorithm to reduce the computational complexity of the module. (3)By incor-
porating our space attention module into existing voxel-based methods [35, 38],
both models achieve state-of-the-art results on the Panoptic benchmark, demon-
strating the effectiveness of this attention mechanism.

2 Related work

2.1 Multi-view 3D human pose estimation

Unlike monocular 3D human pose estimation [8, 13, 33, 34], multi-view human
pose estimation leverages image information from different viewpoints. This ap-
proach not only effectively overcomes challenges such as occlusion and depth
ambiguity but also ensures a richer and more accurate depiction of the 3D pose.
Existing methods can be categorized into three types: (1)2D to 3D lifting meth-
ods [1–3,5,9,10,18,25,42] (2)Voxel-based methods [6,7,19,20,27,30,32,35,38,41]
(3)Direct regression method [40].

2D to 3D lifting method Firstly, a monocular pose estimator is utilized to
estimate the 2D joints of each person in each view, through triangulation [15] and
a 3D pictorial model [14], the 3D pose of each person is reconstructed from the
associated 2D poses. Dong et al . [9,10] propose MvPose. MvPose utilizes a human
pose detector to generate and cluster 2D bounding boxes and associated poses for
each view. Each cluster represents the same person from different views. The 3D
pose of each person is then reconstructed from these clusters using triangulation
and a 3D pictorial model. The drawback of this 2D to 3D pose lifting method
is its significant dependence on the preceding steps of 2D pose estimation and
cross-view matching, as their quality directly influences the results.

Voxel-based method In contrast to the 2D to 3D lifting methods, which
require establishing cross-view correspondence based on noisy and incomplete 2D
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pose estimates, the voxel-based method directly operates in the 3D space and
therefore avoids making incorrect decisions in each camera view. Tu et al . [35]
propose VoxelPose, the method that discretizes the 3D space into voxels and
uses 2D heatmaps to construct a 3D feature volume. 3D-CNNs process this
volume to locate human proposals and regress the 3D joint. Since the voxel-
based method heavily relies on 3D convolutions, it requires higher computational
cost and inference time to predict 3D joints. To enhance the model efficiency,
Ye et al . [38] proposed Faster VoxelPose, an optimization method based on
orthographic projection. This method projects the 3D feature volume to three
mutually perpendicular planes and then utilizes 2D-CNNs to locate the center
proposal and regress the 3D joint. By doing this, it eliminates the need for
time-consuming 3D convolutions. Choudhury et al . [7] proposed TEMPO, which
utilizes temporal context to enhance pose estimation, delivering smoother and
more accurate human poses by integrating spatiotemporal information.

It has been observed that the voxel-based methods generally yield lower
scores on the AP25 metric in Panoptic datasets when compared to other meth-
ods. In this paper, we introduce a novel 3D space attention module, which applies
weighted attention adjustments to the feature volume from corresponding view-
points. This attention mechanism guides the network to focus more effectively on
crucial feature regions and yields significant improvements in the AP25 metric.

Direct regression method In contrast to previous methods, Zhang et
al . [40] proposed MvP, which leverages the Transformer architecture to regress
multi-person 3D poses directly, thus eliminating the need for intermediate tasks.
MvP achieved impressive results on the Panoptic [21] datasets. It showed sig-
nificant progress (8%) on the most stringent AP25 compared to the Voxel-based
methods [35, 38] and is more robust and accurate than previous models. How-
ever, due to the limitations of the transformer architecture, the inference speed
of MvP still can’t compete with 2D CNN-based voxel method [38], which is not
conducive to its deployment in practical applications.

2.2 Multi-view 3D body mesh estimation

Multi-view 3D body mesh estimation [11, 20, 24, 31, 39] is a task closely related
to 3D pose estimation. Instead of directly estimating joint positions, this task in-
volves predicting the parameters of SMPL [26] or employing a fitting method [4]
to align the SMPL model with detected joint positions. Yu et al . [39]use neu-
ral networks to directly predict local attention, assigning importance to visual
features across views. Our method focuses on using space subdivision and space
attention to address the varying importance of different viewpoints in the same
3D space. Directly predicting the space attention and projecting to the 3D space
will result in equal attention values along the projection ray, which prevents the
model from accurately identifying depth information.
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2.3 Attention mechanisms

The methodology of predicting attention scores from input features and then
using these scores to enhance discriminative feature learning has been adopted
by numerous studies [17, 23, 36]. The most famous is SENet proposed by Hu et
al . [17], which employs attention mechanisms to adaptively recalibrate channel-
wise features by modeling inter-channel dependencies. Ma et al . proposed global
attention in ContextPose [28], which focus on features within each voxel by es-
timating confidence scores for each joint, effectively reducing interference from
non-human body voxels and improving joint estimation accuracy. Regarding
merging 3D features extracted from different 2D viewpoints, the inherent physi-
cal characteristics of imaging result in varying importance of different viewpoints
for the same 3D space. Therefore, we introduced the space attention module to
solve this problem in a voxel-represented 3D space.

3 Method

3.1 The drawback of existing multi-view 3D human pose method

Despite the impressive achievements of the existing multi-view 3D human pose
methods, they ignore an important visual phenomenon: the visible parts of an
object could vary when observed from different viewpoints. Specifically, an ob-
ject’s visibility can differ dramatically across various viewpoints, for instance, an
object may be distinctly visible from viewpoint A, yet as we transition to view-
point B, its visibility may diminish or even vanish due to interposing obstacles
or occluded persons.

In this work, we introduce the space attention module to address the draw-
back, and we validate its effectiveness on existing voxel-based methods [35, 38].
The existing methods merely project heatmaps into 3D space. As depicted in
Fig. 1(b), our approach leverages the space attention module to enhance feature
volumes. This not only preserves 3D information but also emphasizes crucial
regions inside the feature volume. The objective of this attention mechanism is
to focus on significant regions within the feature volume, by applying weighted
attention adjustments to the feature volume from corresponding viewpoints.

3.2 Network architecture

Heatmap and space attention prediction. As shown in Fig. 3 (a), our
model adopts a simple multi-layer design with a backbone and two additional
layers. In the heatmap layer, the probability of a 2D pose heatmaps for the
corresponding view is predicted. Meanwhile, in the space attention layer, the
attention scores of the feature volume are determined. The attention scores are
dynamically adjusted based on the input image, emphasizing regions with higher
visibility in the 3D space.
Space attention with person proposal generation. As shown in Fig. 3 (b),
by projecting the output heatmaps to the 3D space, the discretized feature vol-
ume

{
G ∈ R80×80×20

}
is constructed. Following [35], the 3D space is discretized
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Fig. 3: Overview of network architecture. (a) Given the multi-view image as input, the
backbone network predicted both the heatmaps and the space attention scores for each
view. Each heatmap is projected to a 3D space, which is physically shared but inde-
pendent for each view, constructing the feature volume. The space attention scores for
each view are assigned to the different regions in the shared 3D space. (b) By perform-
ing an element-wise multiplication of the raw feature volume with the space attention
scores, we produce a feature volume infused with spatial attention. Subsequently, this
attention-enhanced feature volume is fed into 3D-CNNs to locate the per-person pro-
posal. (c) A more detailed feature volume corresponding to the proposal was generated.
By calculating the spatial relationship between the proposal and the feature volume,
space attention scores for the proposal were sampled from the attention in 3D space.
Finally, the human pose was estimated.

into X×Y ×Z locations. Based on observations from the space [2,21],X, Y and
Z are set to be 80, 80, and 20 respectively to maintain a good balance between
speed and precision. Let the 2D heatmap of a view be denoted as Mv ∈ RK×w×h,
where K is the number of person’s joints. For each voxel location GX,Y,Z , the
projected location in 2D view V is represented as PX,Y,Z

v . The heatmap values
at PX,Y,Z

v is denoted as MX,Y,Z
v ∈ RK .v ∈ RV represents one view from total

V views.

Directly predicting the importance of each voxel in the feature volume would
result in an overwhelming computational burden(Given that the output dimen-
sion of the model equals the number of voxels in the feature volume, which is
128,000). To reduce computational complexity, we use a 3D space subdivision
algorithm to divide the feature volume

{
GV ∈ R80×80×20

}
from each view, V

,into several regions
{
DivGV ∈ R80×80×20

}
. Subsequently, the space attention

scores predicted from the model are assigned to each region in the divided feature
volume to compute the attention of the feature volume

{
V X,Y,Z
v ∈ R80×80×20

}
,

which represents the attention scores for view v.



3DSA 7

After that, an element-wise multiplication is performed between the space
attention {Vv} and the raw feature volume {Mv} to obtain a feature volume
with space attention on view v, denoted as MVv. Following this, the feature
volumes (with space attention) constructed from multi-view images are fused on
average to obtain the aggregated feature volume

{
F ∈ R80×80×20

}
:

F =
1

V

V∑
v=1

Mv (1)

where V represents the number of cameras. F represents the likelihood of K
joints in G. Through applying space attention to the feature volume, 3D infor-
mation is retained while emphasizing important voxels. Finally, the aggregated
feature volume F is input into the 3D convolutional network to determine the
per-person likelihood in the 3D discretized feature volume.
Space attention with per-person pose regression. In the final step, the
completed 3D human pose corresponding to the proposal is predicted, as illus-
trated in Fig. 3 (c). For a fair evaluation of the effect of the space attention
module, [35] is adopted to build an individual fine-grained feature volume cen-
tered at each predicted proposal. The size of the fine-grained feature volume
is set to be 2000mm × 2000mm × 2000mm, and the feature volume is divided
into a discrete grid with X ′ × Y ′ × Z ′ voxel where X ′, Y ′, Z ′ equal to 64. Each
feature volume under a particular perspective will only have one space attention
score to indicate its importance. In this work, we sample the attention score for
each proposal by analyzing the spatial relationship between the proposal and
the feature volume. Then, we employ a nearest neighbor sampling method to
precisely calculate the attention scores for each proposal. The aggregated fine-
grained feature volume is computed based on the descriptions from the previous
stage. Finally, the 3D heatmap is estimated and the complete 3D human poses
of the persons in the space are regressed.

3.3 3D space subdivision algorithm

As mentioned in Sec. 3.2, the 3D space subdivision algorithm is crucial to the
implementation of our space attention module. Computational challenges arise
when directly predicting the significance of each voxel in the feature volume.
Inspired by Lai et al . [22] utilizing the cell subdivision search algorithm to re-
duce the computational complexity associated with searching through a large
amount of data points, we employ a 3D space subdivision algorithm to divide
the feature volume into distinct regions. Specifically, the voxels within each re-
gion are considered as a group, and attention scores are assigned to these groups
to signify the importance of each region. Through the backbone network, the
weight of each region is predicted, representing the importance of corresponding
areas within the same viewpoint in the feature volume. If voxels within a specific
region exhibit higher confidence levels, this indicates their relative importance.
Conversely, lower confidence levels in voxels, caused by obstructions, occlusion,
or other factors, suggest that they are less significant within that region. As
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Fig. 4: Subdivision of the voxel within the feature volume. We utilize a 3D space
subdivision algorithm to partition the feature volume into separate regions, with the
voxels in each region being treated as a group.

Fig. 4 depicts, the feature volume in 3D space G is divided into several cells
along the x, y, and z axes. Assume li, i ∈ {x, y, z} represents the length, width,
and height of the feature volume, while δi, i ∈ {x, y, z} represents the cell length
along a particular axis. The relationship between li and δi can be expressed as
follows:

δi = int
(

li
ni

)
+ 1 i ∈ {x, y, z} (2)

where ni represents the number of regions divided along the i-axis. The total
number of regions ntotal in the 3D space is given by the product of

nTotal = nx × ny × nz (3)

Let the position vector of a voxel be V = [vx, vy, vz]
⊤. Then, the region that V

resides in can be computed using the following equation:

ij = floor
(
(vj − jmin)

δj

)
+ 1 j ∈ {x, y, z} (4)

where ij represents the indices of the voxel in x, y, z directions, floor() is used
to round down to integer representation, and jmin represents the minimum coor-
dinates in x, y and z directions of the voxel within the feature volume. Finally,
the region id of the voxel ( V oxelid) within the feature volume can be calculated
by the following formula:

Voxelid = iz × (nx × ny) + iy × nx + ix (5)

The ID of each voxel can be calculated according to the formulas, however,
in practical applications, the total number of voxels in the feature volume is
substantial, which could lead to excessive computation times. To tackle this
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Fig. 5: Detailed architecture of space attention module.

challenge, we have optimized the weight assignment process within the space
attention module, adopting the following Python code (Algorithm 1). Compared
Eq. (2) to Eq. (5), our approach is better adapted to practical applications,
achieving the same objectives and results more efficiently.

Algorithm 1 Weight assignment algorithm
# Suppose we have 3 intervals along x, y, and z axis
x, y, z = [0, 27, 54, 80], [0, 27, 54, 80], [0, 7, 14, 20]
# Assign space attention value to the tensor for one view
subdivision num = 0
for i in range (3):

for j in range (3):
for k in range (3):

space attention[ x [i]: x [i+1],y [j]: y [j+1],z [k]: z [k+1]]
= attention value[subdivision num]
subdivision num = subdivision num+1

3.4 Implementation of space attention module

In implementations, only the following adjustments were made: (1) A simple
branch was derived from the backbone network [16] to predict the space attention
scores. (2) We executed an element-wise multiplication of the raw feature volume
with the space attention scores calculated by Algorithm 1. (3)The attention
scores of the proposal are computed by analyzing the positional relationship
between the proposal and the feature volume.



10 Chen et al.

The space attention module can be easily applied to existing multi-person
voxel-based human pose methods [7, 35, 38, 41]. However, since some of these
methods are not open-sourced, it prevents us from performing validation. Conse-
quently, we chose to validate our method using the two open-sourced voxel-based
methods [35,38].

It is important to emphasize that for a fair evaluation of the impact of the
space attention module on existing voxel-based methods [35,38], the network ar-
chitecture [29] used for locating the person proposal and regressing the 3D pose
remained unaltered. For the model’s loss function and hyperparameter configu-
ration, the original design proposed by [35,38] has remained.

The architecture of the space attention layer is presented in Fig. 5. It is a
straightforward and lightweight design, which uses a simple convolutional block
followed by global average pooling and the sigmoid activation function to es-
timate the space attention scores of the corresponding image. The purpose of
the global average pooling is to replace the traditional fully connected layers,
thereby reducing the number of parameters. The output dimensions of the space
attention layer are equal to the number of regions in the feature volume. The
space attention scores S ∈ Rn represent the n space attention values, indicating
that the feature volume is divided into n regions.

4 Experiments

4.1 Implementation detail

Training and evaluation datasets. CMU Panoptic [21] is a 3D dataset
with multi-view images. To evaluate and analyze our approach, we conducted
extensive experiments on the Panoptic dataset. Following VoxelPose [35], the
same data sequences were used for both training and evaluating our model. Our
experiments were conducted using five HD cameras with camera IDs 3, 6, 12, 13,
23. Shelf and Campus [2] are two datasets that are commonly used in multi-view
and multi-person research. We evaluated our method using the same data setup
as in [35].

Evaluation metric. For the Panoptic datasets [21], we adopt the Average
Precision (APK) and Mean Per Joint Position Error (MPJPE ) as metrics that
demonstrate the robustness and accuracy of multi-person 3D pose estimation. To
assess the influence of the space attention module on model size and computa-
tional complexity, we consider key metrics such as MACs and model parameters.
For both the Campus and Shelf datasets, we present the results in terms of the
Percentage of Correct Parts (PCP).

Training details. For the Panoptic datasets, we use an off-the-shelf pose
estimation model constructed based on ResNet-50 [16] to extract features from
multi-view images. The difference from VoxelPose [35] is that since our backbone
network needs to predict the space attention scores, the parameters of the model
are updated throughout the training iteration.

Due to the incomplete data annotation in the Campus and Shelf datasets [2],
Tu et al . [35] use synthetic 3D poses to train the network. To implement the
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space attention module, we use the synthetic heatmap as the input feature to
predict the space attention scores. In summary, the space attention module has
two modes: the first predicts the space attention scores from the ground truth
multi-view image, referred to as Image-based input; the second predicts the
space attention scores from the synthetic heatmaps, referred to as Heatmap-
based input.

4.2 Comparisons to Existing Methods

Panoptic. We first evaluate our model on the Panoptic dataset [21] and compare
it with the state-of-the-art model. As illustrated in Tab. 1, by incorporating the
space attention module( 10× 10× 3 configuration) with two voxel-based meth-
ods, VoxelPose [35] and Faster VoxelPose [38], our model achieves 94.2% and
94.22% on the most strict evaluation metric AP25, outperforming the trans-
former model MvP [40]. Our proposed method shows inferior performance in
terms of AP@50,100,150 when compared to VoxelPose, and this 0.5% perfor-
mance gap is generally attributed to model variation. It particularly emphasizes
that in terms of the AP25 metric, our method has significantly improved, out-
performing VoxelPose by 12.69% and Faster VoxelPose by 10.56%. Remarkably,
both methods achieved much lower MPJPE with values of 13.98 and 14.55, out-
performing the TEMPO [7] and achieving the SOTA records. This demonstrates
the effectiveness of our space attention module.

Table 1: Comparison with existing methods on the Panoptic datasets.

Method AP25 AP50 AP100 AP150 MPJPE

VoxelPose [35] 83.59 98.33 99.76 99.91 17.68mm
Faster VoxelPose [38] 85.22 98.08 99.32 99.48 18.26mm
PlaneSweep Pose [25] 92.12 98.96 99.81 99.84 16.75mm

RPGN [37] – – – – 15.84mm
MvP [40] 92.28 96.6 97.45 97.69 15.76mm

TEMPO [7] 89.01 99.08 99.76 99.93 14.68mm
VoxelPose + 3DSA 94.2 98.49 99.21 99.31 13.98mm

Faster VoxelPose + 3DSA 94.22 98.65 99.49 99.75 14.55mm

Campus and Shelf. The quantitative evaluation results on Shelf and Cam-
pus datasets [2] are presented in Tab. 2. Our proposed method (VoxelPose [35]
with space attention,10 × 10 × 3 configuration) remains competitive on both
datasets. The performance of space attention is not as outstanding on Panoptic
datasets [21], and we believe this is related to the Heatmap-based input. Since
the heatmap lacks image information, the model is hard to determine the im-
portance of different regions in 3D space from the heatmap. We will detail our
research on this issue in the subsequent ablation study.
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Table 2: Quantitative results on Shelf and Campus datasets.

Method
Shelf Campus

Actor1 Actor2 Actor3 Average Actor1 Actor2 Actor3 Average

Ershadi et al. [12] 93.3 75.9 94.8 88 94.2 92.9 84.6 90.6
Dong et al. [10] 98.8 94.1 97.8 96.9 97.6 93.3 98 96.3

MvP [40] 99.3 94.1 97.8 97.4 98.2 94.1 97.4 96.6
TEMPO [7] 99.3 95.1 97.8 97.4 97.7 95.5 97.9 97.3

Faster VoxelPose. [38] 99.4 96 97.5 97.6 96.5 94.1 97.9 96.2
VoxelPose [35] 99.3 94.1 97.6 97 97.6 93.8 98.8 96.7

Ours 99.4 95.4 97.6 97.5 98 93.4 98.6 96.7

Table 3: Space subdivision and efficiency analysis on the Panoptic dataset

VoxelPose incorporate with space attention

Space subdivision AP25 AP100 MPJPE MACs(G) Parameter(M)

Tu et al . [35] 83.59 99.76 17.68 178.88 40.62
3× 3× 3 92.73 99.58 14.78 179.09 40.64
7× 7× 3 93.71 99.33 14.41 180.04 40.77

10× 10× 3 94.2 99.21 13.98 181.24 40.92
15× 15× 6 94.33 99.1 13.97 193.24 42.47
20× 20× 9 94.44 99.44 13.94 221.58 46.15

Faster VoxelPose incorporate with space attention
Space subdivision AP25 AP100 MPJPE MACs(G) Parameter(M)

Ye et al . [38] 85.22 99.32 18.26 106.87 36.37
3× 3× 3 92.57 99.61 15.54 107.08 36.39
7× 7× 3 93.75 99.54 14.88 108.03 36.52

10× 10× 3 94.22 99.49 14.55 109.23 36.67

4.3 Ablation studies

In this section, we conduct ablative experiments to analyze a variety of factors
within our approach.

Individual contributions of the space attention module and the
3D space subdivision algorithm. By comparing the results in Tab. 3, we
can see that the finer the subdivision of the 3D space, the model’s accuracy and
precision improve correspondingly. However, the model’s performance tends to
converge after subdividing into 10× 10× 3 regions. The result demonstrates the
critical importance of the space subdivision algorithm within the space atten-
tion module. The direct prediction of all voxels does not result in significant
improvements in performance.

Efficiency analysis. In this work, we focus on comparing our method with
existing voxel-based methods [35, 38]. Tab. 3 demonstrates that incorporating
the space attention module into the voxel-based approach resulted in a slight
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increase in the model’s complexity. Regarding the model we eventually selected(
VoxelPose with 10× 10× 3 space attention module), MACs increased by 1.32%
and parameters by 0.74% when compared to the VoxelPose method. As previ-
ously mentioned, excessively increasing the number of spatial subdivisions does
not enhance performance but significantly increases the model’s complexity. For
instance, subdividing the space into 20× 20× 9 regions resulted in a 23.8% in-
crease in the model’s MACs and a 13.6% increase in parameters. This further
demonstrates the importance of the space subdivision algorithm in improving
the efficiency of the space attention module. To strike a balance between perfor-
mance and efficiency, we adopt the 10× 10× 3 space attention configuration on
VoxelPose [35] to study the impact of the individual factors.

Number of cameras. We compared our method with existing 3D Pose
methods [7, 35, 38, 40] . Tab. 4 shows that the feature volume representation
is diminished with fewer camera views, leading to a drop in accuracy. The im-
provement in both AP and MPJPE metrics over other models, as the number
of cameras increases, underscores the significance of multi-view images for en-
hancing the space attention module’s performance.

Image-based input /Heatmap-based input. To further validate the
impact of different inputs on the space attention module, we conducted exper-
iments on the Panoptic dataset [2]. As shown in Tab. 5, although the space
attention with Heatmap-based input shows an improvement compared to the
baseline model [35], it is noticeably inferior to the space attention with Image-
based input. We consider that this disparity occurs because heatmaps lack spatial
and depth information in comparison to images.

Table 4: Number of cameras analysis on the Panoptic dataset

Method Cam AP25 AP50 AP100 AP150 MPJPE
Faster VoxelPose [38]

4

73.95 97.02 99.21 99.35 21.12
MvP [40] 84.1 – 96.7 – 19.3

TEMPO [7] – – – – 17.34
ours 88.4 98.1 99.59 99.7 16.78

VoxelPose [35]

3

58.94 93.88 98.45 99.32 24.29
Faster VoxelPose [38] 53.68 91.89 97.4 98.3 26.13

MvP [40] 71.8 – 95.1 – 21.1
TEMPO [7] – – – – 19.22

ours 73.06 95.23 98.64 99.25 19.03

MvP [40]
2

37.7 – 93 – 34.8
TEMPO [7] – – – – 32.13

ours 47.95 88.74 97.84 98.8 27.35
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Table 5: Effect of different inputs on space attention module

Image-based input / Heatmap-based input
Input AP25 AP50 AP100 AP150 MPJPE
Image 94.2 98.49 99.21 99.31 13.98

Heatmap 86.97 98.3 99.29 9 9.38 17.21

4.4 3D space attention visualization

In Fig. 6, we provide the space attention visualization results on Panoptic datasets.
Red regions indicate attention scores above 0.8, while blue for below 0.8. Observ-
ing the spatial distribution of attention in 3D space (1st row), most key attention
areas are focused where people are present. In view 5, an obscured person is not
visible from that angle, resulting in lower attention scores in that area. This re-
sult aligns with our hypothesis, confirming that the space attention mechanism
discriminates the importance of different regions in the feature volume based on
visibility. More visualization results are provided in the supplementary material.

Camera #1 Camera #2 Camera #3 Camera #4 Camera #5

Fig. 6: 3D space attention visualization. We marked areas with scores above 0.8 (red
regions) in 3D space (1st row) and projected them onto the corresponding 2D image
(2nd row).

5 Conclusion

In this paper, we present the novel space attention module for the voxel-based
multi-view 3D pose estimation method. We learn the space attention scores from
the input image and utilize the 3D space subdivision algorithm to divide the fea-
ture volume, finally constructing the feature volumes with space attention. By
integrating our space attention module into two existing voxel-based methods,
both models achieve the state-of-the-art results on the panoptic benchmarks.
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