
1

1 Supplementary Results

The anonymous homepage for our project can be found here.

1.1 Supplementary results of diffusion-based data amplifier

As illustrated in Fig. 2, the diffusion-based data amplifier can learn five distinct
makeup styles, each with its characteristic LoRA. It can apply makeup styles
with stable and high quality to non-makeup images while retaining the facial
features of the original portrait.
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Fig. 1: Visual comparison of TineBeauty and competing methods on the
FFHQ [4] image, in Style4 and Style5.

1.2 Supplementary facial makeup results on the FFHQ dataset

Results from our lightweight makeup model and competing methods for Style4
and Style5 on the FFHQ [4] dataset are displayed in Fig. 1. Our method ex-
hibits notable advantages over prior approaches along three primary dimensions.
Firstly, makeup around the eye region is applied with heightened precision by
our TinyBeauty. Secondly, TinyBeauty possesses the capability to color and de-
fine eyebrow regions realistically. Thirdly, delicate cosmetic effects such as blush
and contouring are delineated with accurate localization.

1.3 Supplementary facial makeup results on the MT dataset

While our model training utilized solely the FFHQ dataset due to the con-
strained size of the MT dataset, we performed supplementary testing of our
FFHQ-trained model on the MT dataset, as depicted in Fig. 7, to conduct a
fairer comparative assessment of TinyBeauty against preceding techniques. Ob-
servation of the results indicates that regardless of the exclusion of the MT
dataset from training, the generated makeup outputs produced by our approach
still surpass those of previous methods in visual quality. This suggests that the
representation of facial attributes learned from FFHQ enabled our solution to
more precisely depict makeup allocation, demonstrating its ability to generalize
to other face image domains beyond the dataset it was exclusively trained on.

https://anonymous.4open.science/w/TinyBeauty-7A4F/
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Fig. 2: Additional results generated by diffusion-based data amplifier.

1.4 Facial makeup results on high-resolution images.

Prior generative networks adopted an approach with direct mapping from in-
put non-makeup portraits to output makeup depictions. This paradigm necessi-
tates substantial computational costs for high-resolution cosmetic transfer due
to processing the entire face image. Additionally, such transformations may in-
duce unintended alterations to facial content properties during image synthesis.
To circumvent these limitations, our lightweight model is formulated to yield
residual representations specific to sole makeup attributes rather than fully re-
constructed portraits.

Specifically, prior techniques exclusively operated on facial portraits resized
to 256×256 pixels. To conduct makeup transfer at larger 1024×1024 resolutions,
their networks would either necessitate retraining with enlarged 1024×1024 in-
puts, drastically increasing computational overhead, or rely on upsampling 256×256
outputs to 1024x1024 pixels, incurring information loss. In contrast, our Tiny-
Beauty model retains a 256×256 input dimension, requiring only resizing its
makeup residual layers to 1024×1024 before reconstructing the final output by
summation with the original 1024×1024 non-makeup portrait. This avoids re-
training demands and precludes the degradation in granularity associated with
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Fig. 3: Facial makeup results on high-resolution (1024×1024) images.

resizing low-resolution generation results. Critically, it maintains computational
efficiency equal to 256×256 processing since the primary network architecture
undergoes no modification to accommodate higher resolutions.

1.5 Facial makeup results on hard cases.

To further evaluate TinyBeauty’s tolerance to challenging input deviations, sup-
plementary comparisons against BeautyREC [7] were conducted on irregular
example portraits. Situations explored included: (a) a non-ideal centered face,
(b) a face partially captured outside the bounds of the image, and (c) an oc-
cluded face. These archetypes simulate varied real-world acquisition scenarios
undermining standard assumptions.

As shown in Fig. 4, TinyBeauty can successfully apply makeup without pre-
requisite face detection or localization pre-processing, unlike BeautyREC which

Table 1: Results of TinyBauty and competing methods on FFHQ and MT datasets,
in Style2.

Method FFHQ MT

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

BeautyGAN [5] 25.95 45.38 0.0595 25.84 31.44 0.0537
PSGAN [3] 25.31 35.88 0.0624 26.99 18.31 0.0419
SCGAN [1] 26.84 38.24 0.0527 25.61 35.96 0.0572
EleGANt [8] 29.34 26.16 0.0441 30.47 13.83 0.0296

BeautyREC [7] 24.09 28.32 0.0591 25.46 23.24 0.0508

TinyBeauty 33.331 10.327 0.0258 32.445 11.313 0.0335
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Fig. 4: Visual comparison of TineBeauty and BeautyREC [7] on challenging
out-of-distribution examples: (a) a non-ideal centered face, (b) a face par-
tially captured outside the bounds of the image, and (c) an occluded face.

failed to properly segment features. This validates TinyBeauty’s end-to-end gen-
eration ability from raw inputs alone and TinyBeauty’s superior tolerance to
input variations.

1.6 Supplementary quantitative results.

In addition to the quantitative analyses on Style 1 reported in the primary
manuscript, equivalent objective assessments were performed for the remain-
ing four makeup styles. As depicted in Tab. 1, Tab. 2, Tab. 3, Tab. 4, our
approach achieves favorable performance as evaluated by PSNR, FID [2], and
LPIPS [9] on both the FFHQ and MT datasets, surpassing prior cosmetic trans-
fer techniques by a substantial margin according to each numerical metric. Our
lightweight model consistently outperforms predecessors across all styles assessed
and datasets, as evidenced by higher PSNR and lower FID and LPIPS scores.
These results substantiate TinyBeauty’s demonstrated superior makeup simula-
tion ability and position it as the current leading solution among facial makeup
models.
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Table 2: Results of TinyBauty and competing methods on FFHQ dataset and MT
dataset, in Style3.

2*Method FFHQ MT

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

BeautyGAN [5] 26.41 48.67 0.0645 27.51 47.55 0.0628
PSGAN [3] 25.67 38.97 0.0677 27.71 38.10 0.0518
SCGAN [1] 27.65 44.52 0.0541 27.17 53.16 0.0598
EleGANt [8] 29.91 30.55 0.0483 32.06 37.20 0.0368

BeautyREC [7] 24.55 33.12 0.0626 26.62 42.22 0.0601

TinyBeauty 34.72 11.14 0.0288 33.788 12.029 0.0233

Table 3: Results of TinyBauty and competing methods on FFHQ dataset and MT
dataset, in Style4.

Method FFHQ MT

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

BeautyGAN [5] 26.75 44.73 0.0568 27.65 28.96 0.0467
PSGAN [3] 25.68 35.69 0.0607 27.94 14.49 0.0345
SCGAN [1] 27.97 35.35 0.0453 27.29 30.68 0.0615
EleGANt [8] 30.05 24.18 0.0404 32.22 10.86 0.0200

BeautyREC [7] 24.83 27.02 0.0546 27.00 19.78 0.0424

TinyBeauty 34.737 9.29 0.0225 33.658 10.756 0.0378

1.7 Comparison of convergence curves.

To further validate that TinyBeauty’s training procedure is simpler than pre-
vious methods, we compared the rising PSNR curves of TinyBeauty and Beau-
tyREC [7] during 50 epochs of training on 200 images. Specifically, as shown
in Fig. 5, TinyBeauty approached convergence within 15 training iterations,
while BeautyREC did not approach convergence until 40 iterations. Addition-
ally, TinyBeauty’s final PSNR score far exceeded that of BeautyREC. These
optimization results quantitatively demonstrate that TinyBeauty requires sub-
stantially fewer parameter updates than BeautyREC but reaches both fast con-
vergence and superior performance, benefiting from direct L1 loss.

2 Additional Losses

Perceptual Similarity Loss. To maintain visual fidelity between the input
face image and synthesized makeup result, we introduce a perceptual similarity
loss Lper following previous works [3, 5, 7]. This loss measures the Euclidean
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Table 4: Results of TinyBauty and competing methods on FFHQ dataset and MT
dataset, in Style5.

2*Method FFHQ MT

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

BeautyGAN [5] 26.47 46.20 0.0617 27.21 28.87 0.0519
PSGAN [3] 25.57 36.31 0.0646 27.70 18.47 0.0388
SCGAN [1] 26.97 42.62 0.0572 26.60 31.32 0.0515
EleGANt [8] 29.88 27.27 0.0442 32.50 14.28 0.0266

BeautyREC [7] 24.46 29.72 0.0590 26.38 22.45 0.0503

TinyBeauty 35.652 9.18 0.0143 34.684 9.28 0.0216

Fig. 5: Comparison of PSNR convergence curves between TinyBeauty and
BeautyREC during training.

distance in feature space between the conv4 layer activations of the input and
output images when fed through a pre-trained VGG-19 network [6]:

Lper = ||ϕvgg(x)− ϕvgg(y
′)||2, (1)

where ϕvgg denotes the convolutional features extracted from the conv4 layer
before activation. By minimizing this loss, our model generates makeup results
that align with the input face image semantically.

Adversarial Loss. To help the makeup model generate realistic makeup
outputs, we incorporate global and local adversarial losses to further constrain
the makeup outputs. The ultimate formulation of the adversarial loss is:

Ladv = Lglobal
adv + Leyes

adv + Leyebrows
adv + Lskin

adv + Llips
adv , (2)
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Fig. 6: Architecture of TinyBeauty Model.

where Ladvglobal penalizes deviations from the ground truth makeup style glob-
ally across the entire facial region. The localized losses Ladveyes, Ladveyebrows,
Ladvskin, and Llips

adv further optimize consistency specifically within semantically
meaningful regions. Through this formulation, we aim to refine the makeup trans-
fer at both global and localized levels, enforcing fine-grained fidelity to the target
style distribution over key facial components.

Total Loss. The total loss is a combination of the above-mentioned losses
and losses in the main paper, which can be expressed as:

Ltotal = Lrec + Ls + λperLper + λadvLadv, (3)

where λper = 0.005 and λadv = 0.5 are the corresponding weights for balancing
the magnitudes of losses.

3 Structure of TinyBeauty Model

To show the network structure of our TinyBeauty model more clearly, we drew
the structural configurations of the convolutional layers comprising the network,
as shown in Fig. 6. Particularly, we employ ReLU as an activation layer after each
convolutional stage for nonlinear mapping, alongside Instance Normalization to
regulate the distribution of input features. By leveraging such operation-efficient
modules, our model achieves markedly expedited inference amenable to deploy-
ment on mobile devices with constrained computational budgets.
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Fig. 7: Visual comparison of TineBeauty and competing methods on the
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