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Abstract. Contrastive Language Image Pre-training (CLIP) has re-
cently demonstrated success across various tasks due to superior feature
representation empowered by image-text contrastive learning. However,
the instance discrimination method used by CLIP can hardly encode the
semantic structure of training data. To handle this limitation, cluster dis-
crimination has been proposed through iterative cluster assignment and
classification. Nevertheless, most cluster discrimination approaches only
define a single pseudo-label for each image, neglecting multi-label signals
in the image. In this paper, we propose a novel Multi-Label Cluster Dis-
crimination method named MLCD to enhance representation learning. In
the clustering step, we first cluster the large-scale LAION-400M dataset
into one million centers based on off-the-shelf embedding features. Con-
sidering that natural images frequently contain multiple visual objects or
attributes, we select the multiple closest centers as auxiliary class labels.
In the discrimination step, we design a novel multi-label classification
loss, which elegantly separates losses from positive classes and negative
classes, and alleviates ambiguity on decision boundary. We validate the
proposed multi-label cluster discrimination method with experiments on
different scales of models and pre-training datasets. Experimental results
show that our method achieves state-of-the-art performance on multiple
downstream tasks including linear probe, zero-shot classification, and
image-text retrieval.

Keywords: Visual Representation Learning, Instance Discrimination,
Cluster Discrimination, Multi-label Learning

1 Introduction

Language-supervised visual pre-training, e.g ., CLIP [34] and ALIGN [19], has
been established as a simple yet effective methodology for visual representation
learning. Empowered by image-text contrastive learning, pre-trained CLIP mod-
els exhibit remarkable versatility and transferability across various downstream
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tasks (e.g ., linear probe, zero-shot classification, and image retrieval). As illus-
trated in Fig. 1a, CLIP aligns the visual and textual signals of each instance
into a unified semantic space by cross-modal instance discrimination. Neverthe-
less, the instance discrimination method used by CLIP can hardly encode the
semantic structure of training data, because instance-wise contrastive learning
always treats two samples as a negative pair if they are from different instances,
regardless of their semantic similarity. When a large number of instances are se-
lected into the mini-batch to form the contrastive loss, negative pairs that share
similar semantics will be undesirably pushed apart in the embedding space.

To handle the limitations of instance discrimination, cluster discrimination
methods (e.g ., DeepCluster [7], SeLa [5], ODC [48], SwAV [8], CoKe [33], and
UNICOM [4]) have been proposed for deep unsupervised learning through jointly
learning image embeddings and cluster assignments. Learning representations
with clusters will pull similar instances together, which is beneficial for captur-
ing semantic structures in data. However, most cluster discrimination approaches
only define a single pseudo-label for each image as depicted in Fig. 1b. By con-
trast, natural language supervision proposed in CLIP can provide richer forms of
labels for a single image, e.g ., objects, scenes, actions, and relations, at multiple
levels of granularity.

As can be seen from Fig. 2, a web image frequently contains multiple classi-
fication targets, such as objects [44] or attributes [32]. The existence of multiple
objects in the image requires laborious cropping [2, 23] to construct single-label
annotations, while some scenario elements and attributes in the image are hard
to disentangle to obtain single-label instances [32, 51]. These real-world chal-
lenges pose so-called multi-label classification where an image is equipped with
multiple labels beyond a single label.

In this paper, we aim to boost the visual representation power of the CLIP
model by introducing a novel Multi-Label Cluster Discrimination (MLCD) ap-
proach. In the clustering step, we follow UNICOM [4] to conduct one step of
offline clustering by using the features predicted by a pre-trained CLIP model.
Due to the limited discrimination power of the CLIP model [34], the single
pseudo-label may not cover all of the visual signals (e.g ., objects or attributes)
in the image. To this end, we further perform a similarity-based sorting against
k class centers and select the top l class centers as the positive class centers for
that image. In the discrimination step, we follow the Circle loss [40] to design
a multi-label loss to effectively deal with multiple labels. The vanilla version
of the multi-label loss exploits relative similarity comparisons between positive
and negative classes. More specifically, the optimization seeks to narrow the gap
between the intra-class similarities {si} and the inter-class similarities {sj} by
reducing all possible (sj−si). However, optimizing (sj−si) usually leads to a de-
cision boundary allowing ambiguity [40]. To this end, we introduce another two
optimization targets (i.e., decreasing sj and increasing si) into the loss function.
Introducing the additional two items enables an elegant separation of positive
class loss and negative class loss (Eq. 5), which can alleviate the ambiguity on
the decision boundary. To alleviate inter-class conflict and save the computation
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time on the classifier layer, we also employ PartialFC [3] and randomly sample
part of the negative class centers during each iteration.

The main contributions of our paper are the following:

1. We propose a novel multi-label cluster discrimination method for visual rep-
resentation learning on large-scale data. In the clustering step, we employ
one step of offline k-means to predict multiple labels for each training sam-
ple. In the discrimination step, we explore multi-label classification, which
considers multiple supervision signals for a single image and learns better
semantic structure in data.

2. To avoid ambiguity during the optimization of (sj − si), we add additional
optimization targets by maximizing the within-class similarity si, as well as
to minimizing the between-class similarity sj . By doing so, the loss from
positive class labels and negative class labels can be elegantly separated.

3. The proposed multi-label cluster discrimination significantly boosts the rep-
resentation power compared to the instance discrimination-based model (e.g .,
OpenCLIP [11] and FLIP [24]) and the cluster discrimination-based model
(e.g ., UNICOM [4]) on the downstream tasks (e.g ., linear probe, zero-shot
classification, zero-shot retrieval).

2 Related Work

Visual Representation Learning. Visual representation pre-training meth-
ods can be mainly divided into three categories: (1) supervised learning by using
manually annotated class labels (e.g ., ImageNet-1K/-21K [13] and JFT-300M/-
3B [15,46]), (2) weakly-supervised learning by employing hashtags [29,38] or text
descriptions [19,24,34], and (3) unsupervised learning [7,9,18] by designing ap-
propriate pretext tasks (e.g ., solving jigsaw puzzles [31], invariant mapping [10],
and masked image inpainting [17]). Even though fully supervised pre-training can
learn a strong semantic signal from each training example, manual label annota-
tion is time-consuming and expensive thus supervised learning is less scalable. In
this paper, we focus on annotation-free pre-training which can be easily scaled
to billions of web images to learn visual representation for downstream tasks.
Instance and Cluster Discrimination. Instance discrimination [9, 18, 34]
is usually implemented by the contrastive loss to pull images from the same
instance as well as push away images from different instances. Among these
instance discrimination methods, language-supervised visual pre-training, e.g .,
CLIP [16, 34, 45], is a simple yet powerful approach to take advantage of rich
forms of labels at multiple levels of granularity for a single image. Even though
CLIP [34] has recently demonstrated impressive success, instance-wise contrastive
learning always treats different instances as negative pairs thus it can hardly cap-
ture the full semantic information from the training data.

To explore potential semantic structures in the training data, cluster discrim-
ination [5, 7, 8, 22, 33, 48] is proposed with two iterative steps: (1) the clustering
step to assign a single class label for each sample, and (2) the classification step
to learn a classifier to predict the assigned pseudo label. In cluster discrimination
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methods, each cluster contains more than one instance, visually similar instances
will be pulled closer and thus cluster discrimination can better capture semantic
structures from data. However, multiple visual elements can exist in one single
image and the single label used by cluster discrimination may not cover all visual
signals.
Multi-label Classification. Multi-label classification [41, 49] assigns a set of
multiple labels for each instance. Compared with single-class classification, where
each instance is assigned with a single label, multi-label classification [43,44,50]
is more challenging [27, 28]. Considering multiple labels are drawn from k cat-
egories, the multi-label classification can be decomposed into k binary classi-
fication tasks. However, the binary cross-entropy loss involves issues regarding
imbalance [35]. Through analyzing the intrinsic loss functions of the classification
loss and the metric loss [42], Sun et al . [40] formulate a unified multi-label loss
function to exploit relative comparison between positive and negative classes.
Nevertheless, the relative comparison (sj −si) allows ambiguity for convergence.
Su et al . [39] introduce a threshold into the multi-label loss and design the
Threshold-bounded Log-sum-exp and Pairwise Rank-based (TLPR) loss, hop-
ing that the logits of positive categories will be larger than the threshold and
the logits of negative categories will be smaller than the threshold. However, the
TLPR loss is only designed for clean multi-label datasets and is not suitable for
large-scale multi-label datasets with heavy noises. In this paper, we only employ
one step of offline clustering to predict multiple labels for each image and then
design a robust multi-label classification disambiguation loss to achieve good
feature representation when training on the automatically clustered large-scale
data.

3 Method

Given a training set X = {x1, x2, ..., xn} including n images, visual representa-
tion learning aims at learning a function f that maps images X to normalized
embeddings E = {e1, e2, ..., en} with ei = f(xi), such that embeddings can de-
scribe the semantic similarities between different images.

3.1 Preliminaries

Instance Discrimination achieves semantic embedding by minimizing a con-
trastive loss function represented as:

LID = − log
exp(e′Ti ei)∑k
j=1 exp(e

′T
j ei)

, (1)

where exp(·) denotes the exponential function, and ei and e′i denote the normal-
ized image and text embeddings for the instance i in CLIP [34]. Meanwhile, e′j
contains one positive text representation for i and (k−1) negative text represen-
tations sourced from different instances. As illustrated in Fig. 1a, the instance
discrimination based CLIP model jointly trains an image encoder and a text
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Fig. 1: Comparisons of instance discrimination, cluster discrimination, and the pro-
posed multi-label cluster discrimination. (a) Instance discrimination treats each image-
text pair as a unique instance, failing to capture the semantic structure within the
training data. (b) Cluster discrimination improves the semantic embedding by group-
ing similar instances but struggles with multi-label signals in a single image. (c) The
proposed multi-label cluster discrimination addresses this challenge by assigning mul-
tiple class labels to each sample, capturing different granularities of visual signals (e.g .,
objects or attributes) in one image.

encoder to predict the correct image-text pairings from a batch of training ex-
amples.
Cluster Discrimination is composed of two primary stages: the clustering pro-
cess and the discrimination process. During the clustering phase, every instance
is assigned one pseudo-class label. This label is later employed as a guiding factor
for training a classifier in the subsequent discrimination phase. For the normal-
ized embedding feature ei = f(xi), the clustering process determines a centroid
matrix W ∈ Rd×k and assigns the cluster label yi for each image xi. This is
achieved by

min
W∈Rd×k

1

n

n∑
i=1

min
yi∈{0,1}k

∥ei −Wyi∥22 s.t. y⊤i 1k = 1, (2)

where n is the number of training samples, ei is the normalized feature embed-
ding obtained by using the image encoder f , and the centroid wi belonging to
centroid matrix W ∈ Rd×k is considered the normalized prototype of i-th cluster.
yi, falling within the set {0, 1}k, stands as a single label assignment restricted
by the condition y⊤i 1k = 1, where 1k is 1-vector with a length of k.

Then, the training data, denoted as {xi}ni=1, is divided into k classes repre-
sented by prototypes W = {wi}ki=1. Utilizing the pseudo labels and centroids
derived from the clustering phase, the process of cluster discrimination can be
executed by minimizing a conventional softmax classification loss, formulated as:
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Fig. 2: Illustration of the multiple visual elements (e.g ., objects or attributes) in images
from the automatically clustered LAION-400M dataset.

LCD = − log
exp(wT

yi
ei)∑k

j=1 exp(w
T
j ei)

= − log
exp(si)∑k
j=1 exp(sj)

= log(1 +

k∑
j=1,j ̸=i

exp(sj − si)), (3)

where ei is the normalized embedding corresponding to the image xi, and xi is
categorized under the class symbolized by the normalized prototype wyi

. For a
more straightforward representation, we define the intra-class similarity wT

yi
ei,

and the inter-class similarity, wT
j ei as si and sj , respectively. Based on Eq. 3,

in the discrimination phase that employs classification, sj and si are paired
to optimize the reduction of the difference (sj − si). As depicted in Fig. 1b,
the cluster discrimination based UNICOM model [4] trains an image encoder
to predict the one-hot pseudo label for each image from a batch of training
examples.

3.2 Multi-label Cluster Discrimination

Clustering. Considering the time consumption of iterative clustering and dis-
crimination [7], An et al . [4] implemented a single step of offline clustering with
the aid of the pre-trained CLIP model (i.e., ViT-L/14) and efficient feature
quantization [20]. On the large-scale LAION-400M dataset, it only takes around
10 minutes to cluster one million classes. Despite the straightforwardness of
the clustering step, the automatically clustered large-scale dataset inevitably
confronts intra-class purity and inter-class conflict problems due to the specific
definition of class granularity.

In the realm of clustering algorithms, there often exists a trade-off between
maintaining high within-class purity and ensuring low inter-class conflict. In the
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Fig. 3: Intra-class and inter-class similarity score comparisons between MLC and
MLCD. Here, MLC and MLCD are trained on the LAION-400M dataset with the
ViT-B/32 as the backbone and a batch size of 32K. (a) and (b) showcase histograms
that compare the distributions of positive cosine similarities {si} between MLC and
MLCD, with MLCD clearly showing tighter sample alignment to positive class centers.
(c) demonstrates that MLCD consistently achieves higher mean positive cosine values
than MLC over iterations, indicating enhanced intra-class compactness. (d) demon-
strates MLCD’s effectiveness in reducing mean negative cosine values compared to
MLC, which indicates a more orthogonal relationship between samples and their neg-
ative class centers. This greater orthogonality facilitated by MLCD contributes to en-
hanced class separability. These figures highlight MLCD’s advanced capability in re-
fining feature spaces for more distinct representation compared to MLC.

context of contrastive learning, the issue of inter-class conflict can be significantly
alleviated by reducing the number of sampled negative instances within the mini-
batch and adopting a suitable semi-hard mining technique. In this paper, we
follow UNICOM [4] to prioritize intra-class purity (i.e., clustering one million
level classes from 400 million images) and employ margin-based PatialFC [3,14]
to alleviate inter-class conflict (i.e., randomly sampling part of the negative class
centers during each iteration).
Multi-label Classification. As illustrated in Fig. 2, a single image can encom-
pass several visual components (e.g ., objects or attributes). This implies that
the single-class label may not cover all visual cues present in the image. To con-
sider the different granularities of visual information for each sample, we perform
a similarity-based sorting against one million class centers, selecting the top l
class centers as the positive class centers for that sample. During training, this
sample will be directed to move closer to these l positive class centers, while
simultaneously distancing from the other k − l negative class centers. As shown
in Fig. 1c, our method assigns multiple class labels to each training example,
capturing different granularities of visual signals in one image.

The corresponding similarity scores are represented as {si} (i = 1, 2, · · · , l)
and {sj} (j = 1, 2, · · · , k−l), respectively. To minimize each sj (∀j ∈ {1, 2, · · · , k−
l}) as well as to maximize si (∀i ∈ {1, 2, · · · , l}), we employ a multi-label classi-
fication strategy [25,40]. This is achieved by

LMLC = log(1 +
k−l∑
j=1

l∑
i=1

exp(sj − si))︸ ︷︷ ︸
contrastive

) = log(1 +
∑
j∈Ωn

exp(sj)
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
contrastive

), (4)
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where Ωn and Ωp denote the negative and positive class set to simplify the rep-
resentation. Eq. 4 iterates through every similarity pair to reduce (sj−si). To al-
leviate inter-class conflict as in [3,4], we also employ negative class sampling into
Eq. 4. Therefore, the loss is changed from log(1+

∑
j∈Ωn

exp(sj)
∑

i∈Ωp
exp(−si))

to log(1+
∑

j∈Ω′
n
exp(sj)

∑
i∈Ωp

exp(−si)), where |Ω′
n| = |Ωn|∗r, and r ∈ [0, 1] is

the negative class sampling ratio. Ω′
n is a subset of Ωn that is randomly sampled

during each loss calculation step.
Multi-label Classification Disambiguation. Optimizing (sj − si) usually
leads to a decision boundary of sj − si = m (m is the margin). However, this
decision boundary allows ambiguity as indicated in Circle loss [40]. For example,
{sj , si} = {0.1, 0.4} and {s′j , s′i} = {0.5, 0.8} both achieve the margin m = 0.3.
However, the gap between si and s′j is only 0.1, compromising the separability
of the feature space.

As we expect to maximize the within-class similarity si and to minimize
the between-class similarity sj , we further introduce these two items into the
multi-label classification loss:
LMLCD = log(1 +

∑
j∈Ω′

n

exp(sj)
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
contrastive

+
∑
j∈Ω′

n

exp(sj)︸ ︷︷ ︸
negative

+
∑
i∈Ωp

exp(−si)︸ ︷︷ ︸
positive

)

= log(1 +
∑
i∈Ωp

exp(−si)) + log(1 +
∑
j∈Ω′

n

exp(sj)), (5)

where Ωp symbolizes the collection of positive class labels for each sample, si en-
capsulates the score associated with each positive class, Ω′

n denotes the collection
of negative class labels for each sample, and sj corresponds to the score for each
negative class. In Eq. 5, loss from positive class labels log(1 +

∑
i∈Ωp

exp(−si))

and loss from negative class labels log(1 +
∑

j∈Ω′
n
exp(sj)) are elegantly sepa-

rated. In Fig. 3a and Fig. 3b, we compare the dynamic distributions of si of
MLC (Eq. 4) and MLCD (Eq. 5) during training steps. Besides, Fig. 3c illus-
trates the average si from MLC and MLCD during training. As we can see,
the item designed for maximizing the within-class similarity si in Eq. 5 can sig-
nificantly increase the intra-class cosine similarities, enhancing the intra-class
compactness. In Fig. 3d, the item designed for minimizing the between-class
similarity sj can effectively suppress the inter-class cosine similarities, enforcing
the inter-class discrepancy.

4 Experiments

4.1 Experimental Setting

Our models are pre-trained on the LAION-400M dataset [36] with the same
model configurations as CLIP. The training process consists of 32 epochs, utiliz-
ing a batch size of 32K on 80 NVIDIA A100 GPUs. To expedite the training, we
employ mixed-precision computation [30] and flash attention [12], while leverag-
ing the DALI library for efficient data loading and pre-processing. We use the
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Table 1: Linear probe performance of various pre-trained models on 26 datasets. †:
Results reported in CLIP paper. ‡: Results we reproduced. Entries in green are the best
results using LAION-400M. Here, all methods employ the same backbone of ViT-L/14.
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CLIP† WIT-400M 95.2 98.0 87.5 77.0 81.8 90.9 69.4 89.6 82.1 95.1 96.5 99.2 99.2 72.2 99.8 98.2 94.1 92.5 64.7 42.9 85.8 91.5 72.0 57.8 76.2 80.8 84.2
CLIP‡ WIT-400M 95.3 98.1 87.2 77.8 81.5 90.7 68.0 89.7 80.9 94.9 96.0 99.2 99.2 72.3 99.8 96.7 94.5 92.9 65.9 41.9 85.3 91.0 70.6 59.6 61.8 79.8 83.5
OPNCLIP‡ LAION-400M 93.3 97.9 87.9 78.0 81.0 93.6 64.4 91.7 83.0 93.3 95.5 98.8 99.2 66.5 99.2 97.1 92.4 92.5 77.5 32.5 84.3 88.1 64.0 59.8 57.6 71.9 82.3
UNICOM LAION-400M 93.4 98.5 90.8 82.4 80.0 94.6 74.5 91.4 82.2 94.2 95.7 99.3 99.2 68.7 98.5 96.7 92.6 92.7 77.8 33.4 85.4 87.4 66.7 60.3 57.4 72.4 83.3
Ours LAION-400M 94.3 98.9 92.0 83.4 82.1 94.8 79.6 92.5 84.6 95.3 97.2 99.3 99.3 72.4 99.3 99.1 94.7 92.5 78.2 34.5 86.0 90.0 68.5 60.1 57.9 73.4 84.6

AdamW optimizer with a learning rate of 0.001 and weight decay of 0.2. To as-
sess the performance of zero-shot classification and zero-shot image-text retrieval
tasks, we employ contrastive learning to train a text encoder from scratch for 32
epochs with a frozen image encoder following Locked-image Tuning (LiT) [47].
The structure of the text encoder is also identical to CLIP. In the following ex-
periments, unless otherwise specified, the model used is ViT-L/14, the number
of classes (k) is one million, the ratio of sampled negative class centers (r) is 0.1,
and the number of positive labels (l) assigned to each image is 8.

4.2 Linear Probe

Following the same evaluation setting as CLIP, we report the linear probe perfor-
mance of our method on 26 datasets. As depicted in Tab. 1, inherent biases exist
in different pre-training data. The WIT dataset is beneficial for action-related
datasets (e.g ., Kinetics700, UCF101), while LAION exhibits superior proficiency
in object datasets (e.g ., Cars, Birdsnap). Nevertheless, our method still achieves
an average improvement of 1.1% compared to CLIP. To isolate the confound-
ing effects of pre-training data, we compare our model with OPENCLIP and
UNICOM by using the LAION-400M dataset as the training data. As shown
in Fig. 4a, our method outperforms OPENCLIP on 25 datasets, demonstrat-
ing an average improvement of 2.3%. In Fig. 4c, our model surpasses UNICOM
on 23 datasets and achieves an average improvement of 1.3%, confirming the
effectiveness of the proposed multi-label loss.

4.3 Zero-shot Classification

In Tab. 2, we present a comparison of our method with state-of-the-art ap-
proaches in zero-shot classification on 25 datasets. The prompt templates and
class names are consistent with previous works [24]. As depicted in Fig. 4b,
our method surpasses OpenCLIP on 23 datasets with 3.9% average performance
improvement. Although FLIP uses masking to save memory footprint to learn
more samples per iteration, our method demonstrates better results on 15 out
of 25 datasets in Tab. 2 and achieves a significant performance boost of 1.5% on
average.
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Table 2: Zero-shot classification performance on 25 datasets. †: Results reported in
CLIP paper. ‡: Results reported in FLIP paper. Entries in green are the best results
using LAION-400M. Here, all methods employ the same backbone of ViT-L/14.
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CLIP‡ WIT-400M 91.0 95.2 75.6 51.2 66.6 75.0 32.3 83.3 55.0 93.6 92.4 77.7 76.0 99.3 62.0 71.6 51.6 26.9 30.9 51.6 76.1 59.5 22.2 55.3 67.3 65.6
OpenCLIP‡ LAION-400M 87.4 94.1 77.1 61.3 70.7 86.2 21.8 83.5 54.9 90.8 94.0 72.1 71.5 98.2 53.3 67.7 47.3 29.3 21.6 51.1 71.3 50.5 22.0 55.3 57.1 63.6
FLIP‡ LAION-400M 89.3 97.2 84.1 63.0 73.1 90.7 29.1 83.1 60.4 92.6 93.8 75.0 80.3 98.5 53.5 70.8 41.4 34.8 23.1 50.3 74.1 55.8 22.7 54.0 58.5 66.0
Ours LAION-400M 90.3 95.3 83.7 62.9 72.1 90.1 39.4 84.5 62.3 93.7 93.9 79.4 78.5 99.1 59.7 69.9 50.7 28.7 27.9 53.7 75.7 57.7 22.2 58.4 57.9 67.5

(a) MLCD vs. OpenCLIP on linear (b) MLCD vs. OpenCLIP on zero-shot (c) MLCD vs. UNICOM on linear

Fig. 4: Linear probe and zero-shot comparisons on different downstream datasets. The
Y-axis shows the performance difference. Green bars indicate our model outperforms
the baselines, while the orange bars depict our model is surpassed by the baselines.

4.4 Zero-shot Retrieval

Tab. 3 reports zero-shot image-text retrieval results on Flickr30k and MSCOCO.
In comparison to OpenCLIP, our model achieves 60.8%/44.5% I2T/T2I retrieval
Recall@1 on the MSCOCO dataset, which is 2.8%/3.2% higher than OpenCLIP.
Similarly, our model demonstrates significant improvements of 1.8%/3.9% on the
Flickr30k dataset. Furthermore, compared to FLIP, our model exhibits either
competitive or superior retrieval performance.

4.5 ImageNet Classification and Robustness Evaluation

We evaluate performance on ImageNet [13] under three distinct settings: fine-
tuning, linear probe, and zero-shot. As shown in Tab. 4, our ViT-L/14 model
achieves better performance on all settings, outperforming OpenCLIP by 0.9%
under the finetuning setting, and surpassing FLIP by 1.0% under the zero-shot
setting. These improvements indicate that multi-label cluster discrimination can
better encode the semantics of data than instance discrimination. Following
FLIP [24], we conduct a robustness evaluation as shown in Tab. 4. In comparison
to the models pre-trained on LAION, our method demonstrates superior robust-
ness compared to both OpenCLIP and FLIP. It is worth noting that the perfor-
mance gap between our model pre-trained on LAION and CLIP pre-trained on
WIT arises from the statistical differences in pre-training data.
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Table 3: Zero-shot image-text retrieval on the test splits of Flickr30k and MSCOCO.
‡: Results reported in FLIP paper. Entries in green are the best results using LAION-
400M. Here, all methods employ the same backbone of ViT-L/14.

Text retrieval Image retrieval
Flickr30k MSCOCO Flickr30k MSCOCO

CASE DATA R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP‡ WIT-400M 87.8 99.1 99.8 56.2 79.8 86.4 69.3 90.2 94.0 35.8 60.7 70.7
OpenCLIP‡ LAION-400M 87.3 97.9 99.1 58.0 80.6 88.1 72.0 90.8 95.0 41.3 66.6 76.1
FLIP‡ LAION-400M 89.1 98.5 99.6 60.2 82.6 89.9 75.4 92.5 95.9 44.2 69.2 78.4
Ours LAION-400M 89.1 98.4 99.5 60.8 83.2 91.3 75.9 93.1 96.8 44.5 69.6 79.9

Table 4: ImageNet results under finetuning, linear probe, zero-shot, and zero-shot
robustness evaluation settings. ‡: Results reported in FLIP paper. Entries in green are
the best results using LAION-400M. Here, all methods employ the same backbone of
ViT-L/14.

CASE DATA Finetune Linear Probe Zero Shot IN-V2 IN-A IN-R ObjectNet IN-Sketch

CLIP‡ WIT-400M - 83.9 75.3 69.5 71.9 86.8 68.6 58.5
OpenCLIP‡ LAION-400M 86.2 82.1 72.8 64.0 48.3 84.3 58.8 56.9
FLIP‡ LAION-400M - - 74.6 66.8 51.2 86.5 59.1 59.9

Ours LAION-400M 87.1 84.6 75.6 68.9 56.4 85.1 62.7 60.4

4.6 Ablation Study

Number of Classes. The number of classes (k) plays a crucial role in balancing
inter-class conflict and intra-class purity. In Tab. 5a, we observe that as the
number of classes increases from 100K to 1M, there is a gradual increase in
intra-class purity, leading to an improved performance on ImageNet. However,
as the number of classes continues to increase from 1M to 5M, inter-class conflicts
gradually escalate, resulting in a deteriorated performance.
Inter-class sampling Ratio. The inter-class sampling ratio (r) influences the
number of negative samples and directly affects the likelihood of encountering
inter-class conflicts. A sample ratio of 0.01 yields a linear probe performance
of only 73.4% due to the limited number of negative samples, which adversely
affects the representation learning. Conversely, a sample ratio of 1.0 substantially
increases the probability of encountering inter-class conflicts. Tab. 5b presents
that the superior linear probe performance of 75.2% is achieved when employing
a sample ratio of 0.1.
Multi-label Assignment. We explore two different approaches to obtain multi-
labels. Firstly, we artificially assign a predetermined number of labels to each
sample. Tab. 5c presents linear probe results on ImageNet with different num-
bers of positive centers. Consequently, we observe a gradual improvement in
performance as the number of positive centers increases from 1 to 8. How-
ever, as the number of positive centers continues to increase, the inclusion of
excessive positive centers introduces noise labels, leading to a degradation in
performance. Additionally, we have also investigated the use of sample-cluster
similarity thresholds to obtain multiple labels. This approach results in varying
numbers of positive centers associated with each sample. However, as shown in
Tab. 5d, the performance of applying adaptive positive centers is generally lower
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Table 5: Ablation experiments. The model backbone used here is ViT-B/32. Pre-
training is executed on the LAION-400M dataset for a duration of 5 epochs. Perfor-
mance assessment is undertaken using a linear probe on the ImageNet validation set.

Num Classes 100K 200K 500K 1M 2M 5M

IN1K 66.9 71.1 74.4 75.2 74.9 74.7

(a) The number of classes in training set.

Sampling Ratio 0.01 0.05 0.1 0.2 0.5 1.0

IN1K 73.4 75.1 75.2 74.9 68.3 63.2

(b) The ratio of negative class centers.

Positive Centers 1 2 4 8 16 32

IN1K 71.4 72.9 73.2 75.2 72.1 68.7

(c) The effect of multi labels per sample.

Positive Threshold 0.95 0.93 0.91 0.89 0.87 0.85

IN1K 72.2 72.7 73.3 72.4 68.7 63.2

(d) The effect of positive thresholds.

Table 6: Ablation experiments of the proposed contrastive loss decomposition. Pre-
training is executed on the LAION-400M dataset by 32 epochs. The model backbone
used here is ViT-B/32. Results are reported on the ImageNet validation dataset.

CASE DATA Finetune Linear Probe Zero Shot

MLC LAION-400M 80.9 76.9 63.9
MLCD LAION-400M 81.2 78.1 64.5

compared to that of using fixed assignment of positive centers (Tab. 5c). This
indicates that the global similarity threshold is hard to search while the fixed
assignment strategy benefits from the prior that the daily image statistically
contains several visual concepts.
Effectiveness of MLCD Compared to MLC. In Tab. 6, we compare the
performance of the vanilla MLC (Eq. 4) and the proposed MLCD (Eq. 5) on
the ImageNet. Both MLC and MLCD employ the negative class center sampling
with a ratio of 0.1. MLCD outperforms MLC in all three settings, confirming
the effectiveness of the two additional optimization targets.
Scalability. In Fig. 5a and Fig. 5b, we validate the scalability of our method.
Scaling up the ViT model and incorporating more data can significantly enhance
our model’s performance.
Effectiveness of MLCD on Different Training Data. In Tab. 7, we compare
the linear probe performance of the proposed multi-label cluster discrimination
approach (i.e., MLCD) and the single-label cluster discrimination method (e.g .,
UNICOM) on LAION-400M and COYO-700M. The hyper-parameter settings
on COYO-700M follow the best settings on LAION-400M as explored in Tab. 5.
As we can see from the results, the proposed MLCD consistently outperforms
UNICOM by 2.2% and 1.6% when using LAION-400M and COYO-700M as the
training data. In addition, the COYO-700M supports superior performance on
action-related evaluation, achieving 3.3% improvement on Kinetics700 by using
MLCD.
Effectiveness of MLCD in Vision Language Model. Tab. 8 compares the
performance of replacing the vision tower in LLaVA-1.5 [26] from the CLIP
model with our MLCD model. We validate the effectiveness of our MLCD under
both Qwen2-7B and Qwen2-72B [1, 6] settings across 14 test datasets. To align
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(a) Performance vs. Epochs (b) Performance vs. Num examples

Fig. 5: (a) The convergence curves of different ViTs. (b) The scalability curves of
different ViTs under varying dataset scales. Larger ViTs and datasets lead to better
model performance.

Table 7: Comparisons of linear probe performance across 26 different datasets for
models trained on LAION-400M and COYO-700M datasets. Here, all methods employ
the same backbone of ViT-B/32.
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UNICOMLAION-400M 85.8 96.8 86.6 70.2 74.6 93.3 70.7 88.3 78.0 93.1 94.6 98.5 98.7 64.3 97.8 96.8 90.6 90.0 76.4 22.5 82.9 84.2 57.2 52.6 52.4 62.1 79.2
MLCD LAION-400M 87.8 97.5 88.2 72.4 77.6 93.8 71.4 91.9 80.4 93.2 96.9 98.8 99.3 66.4 98.6 98.6 92.1 90.5 77.7 30.9 83.4 86.3 60.9 54.1 57.9 70.4 81.4

UNICOMCOYO-700M 88.1 95.4 85.8 71.4 76.6 93.1 72.7 88.1 81.7 93.3 95.6 97.5 99.3 70.3 98.7 97.8 91.5 89.9 76.7 30.4 82.1 86.3 61.8 57.4 64.3 69.1 81.3
MLCD COYO-700M 90.2 96.9 86.8 72.1 77.4 93.5 74.7 90.4 83.5 93.6 97.7 98.8 99.3 70.9 99.1 99.0 92.7 90.1 77.5 33.7 84.4 87.5 64.2 59.2 68.4 73.4 82.9

the experimental settings as in LLaVA-1.5, our model is fine-tuned for one epoch
at a resolution of 336 × 336 after training at a resolution of 224 × 224. It can
be observed that our method, MLCD, outperforms CLIP on most of the test
datasets. However, there is a noticeable drop in performance on OCR-related
benchmarks, such as TextVQA [37] and AI2D [21], under both 7B and 72B
settings. To this end, we will incorporate additional OCR models for clustering
to enhance our OCR capabilities in the future.

Semantic Visualization. In Fig. 6, we show the results of the Principal Com-
ponent Analysis (PCA) performed on the patch features extracted by our MLCD
model. We fine-tune our ViT-L/14 model on the LAION-400M dataset by one
epoch using the resolution of 448 × 448. As the patch size is 14 × 14, we can
obtain 32× 32× 1024 spatial-wise tokens for each image. Then, we build a PCA
projection from 32×32×1024 to 32×32×3. After we threshold the first compo-
nent, we only keep patches with a positive value. As we can see from Fig. 6, the
unsupervised foreground/background detector, based on detecting the highest
variance direction, can separate the salient objects from the background. After-
ward, we map the three PCA projection parameters into three different colors
(i.e., [R, G, B]). As shown in Fig. 6, objects from the same category exhibit color
consistency, and objects from different categories present distinguishable colors,
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Table 8: Evaluation of different visual towers (i.e., CLIP and MLCD) used in VLM.
The evaluation settings and test datasets align with LLaVA-1.5. The MLCD model
(ViT-L/14) used here has employed training data from both LAION-400M and COYO-
700M.

LLM Vision Tower
VQAv2 GQA VisWiz SQA TVQA L-Wild AI2D MathV HBI MMMU cMMMU MMBench SEED-Bench MME

Val Eval Val Img Val Test Test Mini ALL Val Val EN CN All Img Vid Per Cog

Qwen2-7B CLIP 77.99 62.66 48.58 72.24 48.98 58.70 64.86 33.60 39.96 40.70 33.70 72.03 70.29 64.25 69.40 44.72 1512 335
Qwen2-7B Ours 78.32 63.56 46.27 74.22 42.52 58.90 62.82 33.60 39.46 42.30 33.10 73.88 71.47 65.79 71.05 45.89 1558 384
Qwen2-72B CLIP 79.47 63.81 67.14 76.10 62.31 65.41 72.41 38.30 45.10 39.70 37.45 76.63 75.39 66.54 72.28 44.71 1596 378
Qwen2-72B Ours 79.51 66.80 67.37 74.69 57.32 66.00 71.41 46.5 45.21 44.70 41.20 78.59 77.24 68.67 76.53 45.91 1633 383

Fig. 6: PCA visualization of patch features extracted by our MLCD model. We fine-
tuned the ViT-L/14 model on LAION-400M for one epoch at the resolution of 448×448,
which allows each image to have 32×32 tokens for visualization. For each image, PCA
is conducted on the extracted patch features to three principal components, which are
subsequently normalized to the range of [0, 255] and mapped into the RGB space.
Patches displaying similar colors indicate semantic similarities, reflecting that they
embody analogous elements or attributes.

which indicates that the proposed multi-label cluster discrimination method can
effectively capture multiple semantic signals from one image.

5 Conclusions

In this paper, we propose a novel multi-label cluster discrimination method to
cope with multiple visual signals existing in one image. Compared to the vanilla
version of the multi-label loss, which seeks to narrow the relative gap between
inter-class similarities and intra-class similarities, our method introduces another
two optimization targets (i.e., decreasing inter-class similarities and increasing
intra-class similarities) into the loss function. Introducing these two items enables
the elegant separation of losses from positive and negative classes and alleviates
the ambiguity on the decision boundary. Extensive experimental results show
that the proposed multi-label cluster discrimination loss is effective for providing
better transferrable features on multiple downstream tasks than both instance
and cluster discrimination methods.
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