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Fig. 1: Targeted transferability comparison of our CGNC and C-GSP [10] on different
victim models under various input processing defenses.

A Additional Experiments

We present additional experimental results to conduct a comprehensive compar-
ison and in-depth analysis. Similarly, we follow [2, 10] and adopt their used 8
classes as our target categories and compute the average attack success rates
(ASR) on the 8 target classes as metrics. Unless stated otherwise, we use the
ImageNet-NeurIPS (1k) dataset [6] to evaluate the attack performance.

†Equal contribution.
#Corresponding author.
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Table 1: Attack success rates (%) for multi-target attacks against regularly trained
models on ImageNet validation set. * represents white-box attacks.

Source Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121 GoogleNet VGG-16

Inc-v3 C-GSP 84.25∗ 45.34 35.99 36.70 57.29 41.88 48.54
CGNC 96.59∗ 57.82 46.84 44.13 65.90 53.40 56.27

Res-152 C-GSP 34.92 33.18 18.43 88.65∗ 62.61 41.41 44.55
CGNC 56.00 50.37 32.26 96.44∗ 86.69 63.84 63.90

Table 2: Comparison results on three black-box models under different perturbation
budgets ϵ. The surrogate model is Res-152.

Method VGG-16 Inc-v3 DN-121

8/255 12/255 16/255 8/255 12/255 16/255 8/255 12/255 16/255

Logit 2.71 5.91 9.20 1.65 4.70 10.10 2.86 6.62 12.70
SU 3.55 9.13 14.28 2.34 6.59 12.36 3.95 9.62 16.13

C-GSP 15.48 32.11 45.90 10.43 23.98 37.70 31.66 56.79 64.20
Ours 21.46 46.28 63.36 15.04 37.35 53.39 45.83 73.05 85.66

A.1 Evaluation under Input Processing Defenses

As mentioned before, we provide results on more victim models to compare
our method and C-GSP [10] under various input processing defenses. Figure
1 verifies that our CGNC consistently surpasses C-GSP under the considered
defense strategies, revealing the effectiveness of our CLIP-empowered network.

A.2 Evaluation on ImageNet Validation Set

For a more overall analysis, we compare our proposed CGNC and C-GSP [10] on
the whole ImageNet [1] validation set (50k samples). The experimental results are
shown in Table 1. Evidently, our method stably achieves better transferability,
with average improvements of 19.66% and 9.77% in black-box ASR using Res-152
and Inc-v3 as surrogate models respectively.

A.3 Evaluation on Different Perturbation Budget ϵ

We then explore attacks under different ϵ values. Specifically, we additionally
consider smaller ϵ values of 8/255 and 12/255, where the adversarial perturba-
tions are more imperceptible. The experimental results in Table 2 reveal that
our proposed network outperforms both the powerful iterative attacks Logit [11],
SU [9], and the state-of-the-art (SOTA) multi-target generative attack C-GSP.

A.4 Ablation analysis of CGNC

In this section, we use Res-152 as the substitute model and present additional
ablative experiments concerning our proposed CGNC to verify the contribution
of each technique and investigate the influence of certain hyper-parameters.
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Table 3: ASR of CGNC and its three variants. ∗ denotes white-box attacks.

Architecture VGG-16 GoogleNet Inc-v3 Res-152 DN-201

CGNC 63.36 62.23 53.39 95.85∗ 82.69
CGNC-P 49.84 47.76 44.15 91.18∗ 71.09
CGNC-F 56.85 54.80 52.14 96.45∗ 82.19
CGNC-t 50.55 50.49 44.55 91.30∗ 73.38
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Fig. 2: ASR on three target
models with various numbers
of cross-attention modules.
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Fig. 3: Comparison of our single-target variant CGNC†

with the SOTA single-target attacks under various in-
put processing defenses. The victim model is VGG-16.

The effect of VL-Purifier. We first explore the influence of the VL-Purifier
module. Specifically, we design CGNC-P that removes the VL-Purifier from the
CGNC network. From Table 3, we find that directly incorporating CLIP’s text
embedding into the generator leads to serious performance degradation, which
confirms the importance of this purifier module.
The effect of feature fusion. To verify the effectiveness of feature fusion
operation in the F-Encoder, we introduce a variant CGNC-F which cancels the
concatenate operation for feature fusion. The experimental results in Table 3
validate the significance of the multi-modal feature fusion process.
The effect of CLIP’s text embedding. We analyze the effect of the text
embedding by implementing a version CGNC-t that replaces all the text inputs
with one-hot labels. The remarkable improvement from CGNC-t to CGNC shown
in Table 3 directly confirms the effectiveness of incorporating text information
into the generator’s architecture.
Numbers of the cross-attention modules. We analyze the impact of the
number of cross-attention modules on the attack performance. As illustrated in
Fig. 2, the generator exhibits optimal performance across all considered target
models when employing two cross-attention modules. Consequently, we integrate
two cross-attention modules into the backbone of the CA-Decoder.
Scales of training data. We adopt the same settings as previous generative
attacks (e.g ., CD-AP [4], TTP [5], C-GSP [10], and DGTA-PI [2]) and thus use
the whole ImageNet training set to train generators. To investigate the influence
of amount of training data, we further conduct training with different numbers
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Table 4: ASR under various proportions of ImageNet training set.

Datset proportion 1/4 1/2 3/4 1

C-GSP (Res-152) 25.65 28.99 38.21 40.52
CGNC (Res-152) 37.88 45.79 51.20 58.40

of images. Tab. 4 shows that the scale of the training set indeed has a notable
influence on the performance and our CGNC always outperforms C-GSP [10].

A.5 More Comparison with Single-Target Attacks

We provide more experimental results regarding Res-152 as the surrogate model
to compare the single-target variant CGNC† obtained through masked fine-
tuning (MFT) with SOTA single-target methods, including GAP [7], CD-AP [4],
TTP [5], and DGTA-PI [2].
Comparison under Defense Strategies. We consider the same defense strate-
gies discussed in the main body of this manuscript. On attacking the adversari-
ally robust model, our method achieves a notable average improvement of 4.37%
across six target models as shown in Table 5, demonstrating the excellent gen-
eralization ability of the proposed CGNC†.

For input defense strategies, Fig. 3 shows that our CGNC† also outperforms
other methods when targeting models equipped with such defenses, especially for
the input smoothing operations. It is also noteworthy that our method, which
initially lags behind DGTA-PI [2] when attacking normally trained VGG-16,
achieves a comprehensive lead after applying the smoothing operations and
JPEG compression, highlighting the robustness and superiority of CGNC† in
handling various input-based defenses.

These results again indicate that although CGNC is designed for multi-target
attacks, it can achieve better performance than these powerful single-target at-
tack methods by simply fine-tuning it with a mask operation, revealing its great
potential and scalability.

Table 5: Comparison of the proposed CGNC† with existing single-target attacks
against target models with robust training mechanisms.

Method Inc-v3adv IR-v2ens Res50SIN Res50IN Res50fine Res50Aug

GAP 5.72 4.51 7.33 71.04 83.64 52.07
CD-AP 3.77 6.48 7.09 63.72 76.79 49.67
TTP 27.99 26.08 24.61 72.47 74.51 70.96

DGTA-PI 31.10 30.07 27.70 77.13 80.55 76.78
CGNC† 31.55 33.63 33.31 88.34 89.74 72.96

Ablation analysis of the masked fine-tuning. To further verify the ef-
fectiveness of the proposed mask fine-tuning mechanism, we conduct ablation
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Table 6: ASR of 8 different target classes. We compare the normal fine-tuning and
our masked fine-tuning technique (i.e., CGNC†) for single-target attacks.

Source Method Target class id

150 426 843 715 952 507 590 62

Res-152
CGNC 72.10 46.02 60.08 50.97 60.63 54.78 47.03 75.58

Fine-tuning 73.63 56.43 71.57 45.78 70.82 59.25 45.97 75.43
MFT 78.38 63.32 76.12 56.47 78.40 64.18 49.65 84.20

Inc-v3
CGNC 64.27 46.17 47.78 38.82 60.32 52.65 51.05 61.63

Fine-tuning 70.23 61.72 72.43 48.30 64.43 68.12 42.65 56.03
MFT 81.63 72.20 81.82 52.38 77.52 73.07 49.13 72.22

Table 7: ASR on ViT-based models. The surrogate is Res-152.

Method ViT-B/16 CaiT-S/24 Visformer-S DeiT-B LeViT-256 TNT-S
C-GSP [10] 11.78 32.00 36.60 35.58 37.85 31.00

CGNC 19.46 54.56 58.70 59.90 57.53 48.40

experiments and calculate the average ASR for each target class across the six
black-box models. The results in Table 6 illustrate the significance of both fine-
tuning and patch-wise mask operation.

A.6 Attacks on Transformer-based models.

We also evaluate on six ViT-based models in Tab. 7. The results reveal that
our CGNC also consistently exhibits better performance than C-GSP [10] on
Transformer-based models.

B Limitations & Future work.

In this paper, we adopt a simple yet effective text template "a photo of a {class}"
recommended by CLIP [8], which has been proven effective in a variety of tasks.
However, due to the excessive reliance [3] on the statistical features of ’photo’,
this text template may limit the transferability performance to a certain ex-
tent, particularly for target datasets with stylized images. Future research can
consider introducing more accurate or detailed text as the description of the
target class, such as the recommended list of eighty templates of text prompt
by CLIP [8], e.g ., "a sculpture of a {}", "an art of {}". They can use some
of their averaged representations as the generic representations of the target
class. Another promising approach is to choose a related pre-training task (e.g .,
classification) and use prompt learning [12] to acquire the representation of the
target category. These learned prompts can better represent the target class and
distinguish features from different categories.
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C More Visualization

We provide more visualization results of generated perturbations and adversarial
samples in Fig. 4. The generated perturbations carry rich semantic patterns
of the target class, and as we change the input text condition, the generated
patterns vary accordingly to the target class. This once again demonstrates the
effectiveness of our method in modeling the target features, as well as the success
of conditioning the generator with CLIP’s text embeddings.

Original A photo of a porcupine A photo of a gorilla A photo of a sturgeon 

Fig. 4: Visualization of the generated perturbations and adversarial samples.
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