
Flash Cache: Reducing Bias in Radiance Cache
Based Inverse Rendering Supplement

Benjamin Attal1, Dor Verbin2, Ben Mildenhall2, Peter Hedman2, Jonathan T.
Barron2Matthew O’Toole1, and Pratul P. Srinivasan2

1 Carnegie Mellon University
2 Google Research

1 Overview

In Section 2, we provide additional implementation details regarding the cost of
the fast cache, the cost of the NeRF radiance cache, and the cost and implemen-
tation of the physically-based model. We also provide additional details about
training, evaluation, and the losses that we use. In Section 3 we prove the unbi-
asedness of our control variate scheme and our estimator for volume rendering
quadrature. In Section 4 we clarify some details regarding our ablations, and
provide additional ablations for different values of K for our volume rendering
quadrature estimator. Finally, in Section 5, we provide additional result figures
and per-scene quantitative metrics. Please see our supplemental website for more
results and videos.

2 Additional Implementation Details

2.1 Fast Cache

Rendering a single ray with our fast cache requires:

1. Querying the distance NGP grid once.
2. Querying the feature NGP grid 8 times.
3. Querying the deferred shading MLP once.
4. Querying the environment color once.

We additionally predict the sum of rendering weights for an incoming ray, which
is supervised to match the sum of the rendering weights from the NeRF cache.
This prevents us from having to query the NeRF cache before blending the fast
cache color with the environment color. The full cost of casting a secondary ray
(steps 1-4 above) is 0.128 sec for the fast cache (per million rays).

2.2 NeRF Radiance Cache

The cost of rendering a ray from the NeRF radiance cache requires:

1. Querying the first proposal NGP 64 times.

./results.html

2 B. Attal et al.

2. Querying the second proposal NGP 64 times.
3. Querying the density NGP 32 times.
4. Querying diffuse color cd and specular color cs at each of the final 32 sample

points, where the specular color is produced using the same architecture as
the fast cache.

5. Querying environment color once.

The full cost of casting a secondary ray (steps 1-5 above) is 1.574 sec for the
NeRF cache (per million rays).

2.3 Physically-Based Model

For ablations that do not use the fast cache, we use 16 samples from the NeRF
cache. For models and ablations that use the fast cache, when rendering from the
physically-based model, we use 64 samples to estimate incoming L̂fast

o from the
fast cache, and 16 samples for both the fast cache and NeRF cache to estimate
∆L̂o.

2.4 Training Details

Cache training: In the first stage of training, we optimize the Zip-NeRF-based
radiance cache with a batch size of 16384 rays for 100,000 iterations using the
Charbonnier loss as in [1]. We use a learning rate schedule that warms up from
0 to 0.01 over the first 10,000 iterations, and then decreases linearly to 0.001 for
the remaining 90,000 iterations. Training for 100,000 iterations takes 5.5 hours
on a single A100.

Joint training: In the second stage of training, we optimize the physically-
based model, environment map, fast cache, NeRF-cache, and occlusion-aware
importance sampler. We use a batch size of 1024 rays for 40,000 iterations for
the TensoIR-synthetic dataset and 100,000 iterations for the Open Illumina-
tion dataset, with 64 secondary rays for the fast cache, and 16 rays for the
NeRF-cache. We use a learning rate of 1.5625 × 10−4 for the fast cache and
occlusion aware importance sampler. For everything else, we use a learning rate
of 3.125×10−5. Training for 100,000 iterations takes 6.5 hours on a single A100.

Photometric loss: For the physically-based model, instead of the Charbonnier
loss we use a variant of the RawNeRF [7] loss. For a given ray (o,ωo), predicted
color Li(o,ωo; Φ) and ground truth I(o,ωo), we would like to minimize:

Lphotometric =

∥∥∥I(o,ωo)− E
[
L̂i(o,ωo; Φ)

]∥∥∥2
stopgrad

(
Lcache
i (o,ωo; Φ)

) (1)

where E
[
L̂i(o,ωo; Φ)

]
is the expected value of the estimator for radiance L̂i.

However, we cannot minimize this loss directly, since we do not have access to

Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering 3

an analytic expression for the expected value. Instead, we apply the gradient
trick [3], which gives correct gradients through this loss in expectation for the
physically-based model. More concretely, we minimize:

Lphotometric =
2
(
I(o,ωo)− L̂i(o,ωo; Φ)

)
stopgrad

(
I(o,ωo)− L̂i(o,ωo; Φ)

)
stopgrad(L̂cache

i (o,ωo; Φ))
(2)

where the stopgrad(·) operator treats its argument as a constant in the compute
graph, and the first and second differences in the numerator are estimated using
independent secondary samples.

2.5 Evaluation Details

During evaluation we use 64 secondary rays, but render the predicted color
image 32 times and average the results in order to reduce Monte Carlo noise.
We noticed that TensoIR renderings still contain some noise, and acknowledge
that different sample counts and different importance sampling schemes could
impact relative PSNR, but note that we outperform TensoIR in terms of albedo
metrics, which is not affected by noise, and relighting by a fairly large margin.

2.6 BRDF Model

As we discuss in the main text, we use the Disney-GGX BRDF [2], which is
comprised of three terms: albedo a(x), metalness m(x), and roughness r(x).
This BRDF can be written as:

f(ωi,ωo,x) = fdiffuse(x) + fspecular(ωi,ωo,x) (3)

fdiffuse(x) =
(1−m(x))a(x)

π
(4)

fspecular(ωi,ωo,x) =
DFG

4(n · ωi)(n · ωo)
(5)

We refer readers to Burley [2] and Liu et al . [6] for definitions of (D,F,G) —
the normal distribution function (NDF), Fresnel, and geometry terms. We use
the Trowbridge-Reitz distribution function [8] for the NDF D.

2.7 Importance Sampling

For both the fast and NeRF caches, we split secondary samples evenly between
the diffuse color (due to the diffuse BRDF component fdiffuse) and the specular
color (due to the specular BRDF component fspecular). For the diffuse color, we
leverage multiple importance sampling [8] with half of the samples coming from
the occlusion-aware importance sampler and half of the samples coming from
cosine-weighted hemisphere sampling. For the specular color, we importance
sample according to the distribution function D [8].

4 B. Attal et al.

2.8 Normal Loss

As discussed in the paper, we emit predicted normals from the density NGP.
Similar to Ref-NeRF [9] and TensoIR [4], we constrain our predicted normals to
match the negative gradient of the density field with an L2 loss:

Lnormals = Cnormals

∑
k

wk

∥∥∥npred
k − nderived

k

∥∥∥2 (6)

where wk are the render weights for a given ray, and

nderived
k = − ∇σ(xk)

∥∇σ(xk)∥
(7)

The loss weight Cnormals varies per-dataset. For the Open Illumination dataset,
we use Cnormals = 1.0. For the TensoIR-synthetic dataset, we linearly interpolate
Cnormals from 0.0001 to 1.0 from iteration 20,000 to iteration 40,000.

2.9 Cache Consistency Loss

To allow the physically-based model to constrain the appearance of the NeRF-
cache, we supervise the diffuse and specular colors from the cache ccache

d (x) and
ccache
s (x,ωi) to match the diffuse and specular colors from the physically-based

model cphys
d (x) and cphys

s (x,ωi). We further predict an additional output from
the cache cirradiance(x,ωo), which is supervised to match the irradiance from
the physically-based model (computed by setting the BRDF to be perfectly
Lambertian with a(x) = 1). For all of the above, we use the same Raw-NeRF
loss as in Equation 2.

2.10 Smoothness Loss

To enforce BRDF smoothness we use a variant of TensoIR’s smoothness loss:

LBRDF = CBRDF

∑
k

wk

∣∣∣∣ β(xk)− β(xk + ξ)

max(β(xk), β(xk + ξ))

∣∣∣∣λ(x,x+ ξ) (8)

λ(x,x+ ξ) = |apseudo(xk)− apseudo(xk + ξ)| ξ ∼ N (0, ϵI) (9)

Where apseudo(xk) is the “pseudo-albedo” at point xk:

apseudo(xk) =
c(x,ωo)

cirradiance(x,ωo)
(10)

For the TensoIR dataset, we set ϵ = 0.01 with CBRDF = 0.05, and for other
datasets we set ϵ = 0.005 with CBRDF = 0.001.

Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering 5

3 Proofs

3.1 Control Variates

Here we show that Equation 9 in the main paper is an unbiased estimator of the
rendering equation (provided that incoming illumination from the NeRF cache
is correct):

E
[
L̂o

]
= E

[
L̂fast
o

]
+ E

[
∆L̂o

]
(Eq. 9)

=

∫
Ω

f(x(t),ωi,ωo)L̂
NeRF
i (x,ωi)(n · ωi) dωi (unbiasedness of Eq. 5)

+

∫
Ω

f(x(t),ωi,ωo)
(
L̂NeRF
i − L̂fast

i

)
(x,ωi)(n · ωi) dωi

=

∫
Ω

f(x(t),ωi,ωo)L̂
NeRF
i (x,ωi)(n · ωi) dωi □

3.2 Volume Rendering

Here we show that Equation 11 is an unbiased estimator for volume rendering
quadrature (e.g . its expected value is equal to Equation 3):

E
[
L̂i(o,ωo)

]
= E

[
1

K

K∑
k=1

Lo(x(tjk),ωo)

]
(Eq. 11)

=
1

K

K∑
k=1

E[Lo(x(tjk),ωo)] (jk ∼ Cat(w1, . . . , wN))

=
1

K

K∑
k=1

N∑
j=1

wjLo(x(tj),ωo)

=

N∑
j=1

wjLo(x(tj),ωo) □

where (w1, . . . , wN) are render weights for the ray (o,ωo).

4 Additional Ablations

All ablations are evaluated in the single-light setting of the TensoIR-synthetic
dataset.

6 B. Attal et al.

Table 1: Sample Number Ablations

Method NVS PSNR↑ Albedo PSNR↑ MAE↓

(a) K = 1 (Ours) 34.915 30.345 3.355
(b) K = 2 34.913 30.208 3.354
(c) K = 4 34.850 30.275 3.356
(d) K = 8 34.778 30.059 3.355

4.1 Secondary Sample Ablations

We report aggregate novel view synthesis PSNR, albedo PSNR, and normal
MAE for three additional ablations in Table 1 as we vary the value of K in
Equation 11. In practice, we find that K = 1 provides the best results.

We expect that K = 1 will do worse on complex datasets with “more vol-
umetric” geometry or partial transparencies, although we note that for any K,
Equation 11 is still an unbiased estimator for volume rendering quadrature.

5 Additional Results

5.1 Per-Scene Results for TensoIR

We provide per-scene results for both the TensoIR-Synthetic dataset in Table 2.
We additionally provide results for the multi-light TensoIR setting.

5.2 Per-Scene Results for Open Illumination

We provide per-scene results for both the Open Illumination dataset in Table 3.
We label each scene as diffuse or specular. The dataset provides both single-light
data (with the object illuminated under a single lighting condition) and multi-
light data (with the object illuminated under many different lighting conditions).
We perform evaluation in the single-light setting for novel view synthesis, and
in the multi-light setting for relighting, as no relighting metrics are provided in
the original Open Illumination paper for the single-light setting.

5.3 Qualitative Results

Find additional qualitative results in Figures 1, 3, an 4as well as our videos on
our supplemental website.

References

1. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF:
Anti-Aliased Grid-Based Neural Radiance Fields. ICCV (2023)

2. Burley, B., Studios, W.D.A.: Physically-Based Shading at Disney. ACM Trans.
Graph. (2012)

./results.html

Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering 7

Table 2: Per-Scene TensoIR-Synthetic Dataset [4] Results.

Method Normal Albedo Novel View Synthesis Relighting
MAE↓ PSNR↑ SSIM↑LPIPS↓ PSNR↑ SSIM↑LPIPS↓ PSNR↑ SSIM↑LPIPS↓

A
rm

ad
il
lo

NeRFactor 3.467 28.001 0.946 0.096 26.479 0.947 0.095 26.887 0.944 0.102
InvRender 1.723 35.573 0.959 0.076 31.116 0.968 0.057 27.814 0.949 0.069
TensoIR 1.950 34.360 0.989 0.059 39.050 0.986 0.039 34.504 0.975 0.045

Ours 1.564 34.832 0.960 0.082 39.313 0.977 0.043 34.809 0.959 0.058
TensoIR multi-light 1.550 34.270 0.989 0.057 38.230 0.984 0.043 34.941 0.977 0.043

Ours multi-light 1.427 35.921 0.961 0.079 39.097 0.978 0.042 35.937 0.965 0.052

F
ic

us

NeRFactor 6.442 22.402 0.928 0.085 21.664 0.919 0.095 20.684 0.907 0.107
InvRender 4.884 25.335 0.942 0.072 22.131 0.934 0.057 20.330 0.895 0.073
TensoIR 4.420 27.130 0.964 0.044 29.780 0.973 0.041 24.296 0.947 0.068

Ours 2.709 28.337 0.972 0.048 30.380 0.976 0.036 26.286 0.960 0.052
TensoIR multi-light 4.060 26.220 0.952 0.054 28.640 0.967 0.050 24.622 0.949 0.068

Ours multi-light 2.689 28.137 0.971 0.046 30.175 0.976 0.037 26.730 0.964 0.049

H
ot

do
g

NeRFactor 5.579 24.654 0.950 0.142 24.498 0.940 0.141 22.713 0.914 0.159
InvRender 3.708 27.028 0.950 0.094 31.832 0.952 0.089 27.630 0.928 0.089
TensoIR 4.050 30.370 0.947 0.093 36.820 0.976 0.045 27.927 0.933 0.115

Ours 2.882 30.832 0.966 0.073 36.966 0.961 0.095 29.241 0.941 0.104
TensoIR multi-light 3.220 31.240 0.958 0.080 35.670 0.973 0.048 28.952 0.939 0.110

Ours multi-light 2.741 31.180 0.968 0.077 36.036 0.958 0.097 29.050 0.942 0.103

Le
go

NeRFactor 9.767 25.444 0.937 0.112 26.076 0.881 0.151 23.246 0.865 0.156
InvRender 9.980 21.435 0.882 0.160 24.391 0.883 0.151 20.117 0.832 0.171
TensoIR 5.980 25.240 0.900 0.145 34.700 0.968 0.037 27.596 0.922 0.095

Ours 6.265 27.097 0.922 0.137 32.973 0.945 0.081 28.560 0.917 0.105
TensoIR multi-light 5.370 25.560 0.905 0.146 34.350 0.967 0.038 27.517 0.922 0.091

Ours multi-light 5.713 27.735 0.917 0.143 31.942 0.942 0.083 28.286 0.918 0.102

3. Gkioulekas, I., Zhao, S., Bala, K., Zickler, T., Levin, A.: Inverse volume rendering
with material dictionaries. ACM Trans. Graph. (2013)

4. Jin, H., Liu, I., Xu, P., Zhang, X., Han, S., Bi, S., Zhou, X., Xu, Z., Su, H.: TensoIR:
Tensorial Inverse Rendering. CVPR (2023)

5. Liu, I., Chen, L., Fu, Z., Wu, L., Jin, H., Li, Z., Wong, C.M.R., Xu, Y., Ramamoor-
thi, R., Xu, Z., et al.: OpenIllumination: A Multi-Illumination Dataset for Inverse
Rendering Evaluation on Real Objects. NeurIPS (2024)

6. Liu, Y., Wang, P., Lin, C., Long, X., Wang, J., Liu, L., Komura, T., Wang, W.:
NeRO: Neural Geometry and BRDF Reconstruction of Reflective Objects from Mul-
tiview Images. ACM Trans. Graph. (2023)

7. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.:
NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images.
CVPR (2022)

8. Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory to
implementation. MIT Press (2023)

9. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.:
Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR
(2022)

8 B. Attal et al.

Table 3: Per-Scene Open Illumination dataset [5] Results.

Scene Method PSNR ↑
NVS Relit.

D
iff

us
e

Egg TensoIR 34.88 31.99
Ours 34.48 30.76

Stone TensoIR 29.96 31.07
Ours 30.52 30.55

Pumpkin TensoIR 28.20 27.16
Ours 27.64 26.58

Hat TensoIR 31.96 32.38
Ours 31.02 30.41

Sponge TensoIR 32.49 30.86
Ours 32.14 28.87

Banana TensoIR 34.77 32.13
Ours 34.89 30.90

Sp
ec

ul
ar

Bird TensoIR 30.21 30.16
Ours 29.92 30.19

Box TensoIR 26.80 27.57
Ours 26.40 28.93

Cup TensoIR 22.13 22.96
Ours 21.84 23.35

Bucket TensoIR 29.32 27.13
Ours 30.55 28.77

Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering 9

Normal Albedo Roughness Relighting 1 Relighting 2

Si
ng

le
L
ig

ht
M

ul
ti

L
ig

ht
G

T
Si

ng
le

L
ig

ht
M

ul
ti

L
ig

ht
G

T

Fig. 1: Additional TensoIR-Synthetic Results [4] Results.

10 B. Attal et al.

Normal Albedo Roughness Relighting 1 Relighting 2

Si
ng

le
L
ig

ht
M

ul
ti

L
ig

ht
G

T
Si

ng
le

L
ig

ht
M

ul
ti

L
ig

ht
G

T

Fig. 2: Additional TensoIR-Synthetic Results [4] Results.

Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering 11

Normal Albedo Roughness Relighting 1 Relighting 2

B
ir

d
B

ox
B

uc
ke

t
B

an
an

a

Fig. 3: Additional Open Illumination [5] Results.

12 B. Attal et al.

GT NDRMC NeILF NeRO Ours

T
B

el
l

C
at

P
ot

io
n

L
uy

u

Fig. 4: Glossy Synthetic [6] Results. Note that our results are relit with direct light
only (our codebase only supports direct relighting), while the other methods are relit
using blender with exported meshes.

	Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering Supplement

