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Abstract. Recent Blind Image Super-Resolution (BSR) methods have
shown proficiency in general images. However, we find that the efficacy
of recent methods obviously diminishes when employed on image data
with blur, while image data with intentional blur constitute a substantial
proportion of general data. To further investigate and address this issue,
we developed a new super-resolution dataset specifically tailored for blur
images, named the Real-world Blur-kept Super-Resolution (ReBlurSR)
dataset, which consists of nearly 3000 defocus and motion blur image
samples with diverse blur sizes and varying blur intensities. Furthermore,
we propose a new BSR framework for blur images called Perceptual-Blur-
adaptive Super-Resolution (PBaSR), which comprises two main modules:
the Cross Disentanglement Module (CDM) and the Cross Fusion Mod-
ule (CFM). The CDM utilizes a dual-branch parallelism to isolate con-
flicting blur and general data during optimization. The CFM fuses the
well-optimized prior from these distinct domains cost-effectively and effi-
ciently based on model interpolation. By integrating these two modules,
PBaSR achieves commendable performance on both general and blur
data without any additional inference and deployment cost and is gen-
eralizable across multiple model architectures. Rich experiments show
that PBaSR achieves state-of-the-art performance across various met-
rics without incurring extra inference costs. Within the widely adopted
LPIPS metrics, PBaSR achieves an improvement range of approximately
0.02-0.10 with diverse anchor methods and blur types, across both the
ReBlurSR and multiple common general BSR benchmarks. Code here.
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1 Introduction

Blind Image Super-Resolution (BSR) [6, 7, 9, 10, 37, 48, 52, 65, 75, 84] aims to
realistically reconstruct High-Resolution (HR) images from Low-Resolution (LR)
images with unknown degradation. Benefiting from the construction of various
benchmarks [2,3,21,38,44,68,74], the BSR technique has achieved considerable
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Fig. 1: Recent BSR methods’ performance on blur data. Left: Examples of real images
with blur. Right: LPIPS on blur and non-blur images in DIV2K-Val.

success in the field of general images [20, 27, 28, 37, 50, 64] as well as in various
specific image categories, such as face images [4,34,35], cartoon images [68], text
images [8, 53,79], and remote sensing images [18,69].

Blurring, a prevalent form of image degradation, is influenced by factors such
as aperture size and exposure time, manifesting in actual images with different
visual perceptions. Previous research on blur often treated it negatively, focusing
on its detection [29,60] and removal [1,11]. However, upon investigation [19,62],
we found that blurring is also a commonly used visual perception enhancement
photography technique. Take the real sample from DIV2K [2] in Fig. 1a as an
example, it accentuates the foreground squirrel by defocusing the background.
In addition, this type of technique is broadly utilized in numerous commercial
multimedia editing platforms, evidenced by the ‘Blur’ features within the basic
‘Filter’ menus of Adobe Photoshop, Krita, and LunaPic. Therefore, we believe
that the intentionally set blur should be preserved rather than entirely removed
during the BSR process, which has not been paid much attention to yet. As
shown in Fig. 1a, recent methods over-enhance the blur region despite the over-
all high PSNR/SSIM, which impairs the actual perception quality. To quanti-
tatively verify our surmise, we also used a more reasonable perceptual metric,
LPIPS [77], for a brief evaluation on the DIV2K-Val [2] benchmark (100 samples)
and split it into samples with blur vs. those without blur. As shown in Fig. 1b, the
LPIPS of blur samples generally decreases by 0.01∼0.06 across different methods
compared to the fully-focused samples without blur. To further investigate this
neglected problem, we develop a new super-resolution benchmark specifically
tailored for the restoration of images with blur, named the Real-world Blur-kept
Super-Resolution (ReBlurSR) dataset. It contains 2,931 high-quality (HQ) im-
ages with diverse blur sourced from the existing super-resolution (e.g., DIV2K,
DIV8K [21], Flickr2K [38]), blur-related datasets (e.g., CUHK [57], EBD [30])
and web images. We meticulously labeled and categorized the blur data among
various characteristics, such as types, sizes, and intensities.

Except for the ReBlurSR dataset, we argue that an optimal blur BSR frame-
work should adaptively handle blur images and enhance their restoration perfor-
mance without affecting general image processing quality. Furthermore, it should
integrate easily with existing SOTA models, with minimal additional inference
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costs. In response to these criteria, we propose the Perceptual-Blur-adaptive
Super-Resolution (PBaSR), the first blur-adaptive BSR framework. The PBaSR
framework consists of two main modules: the Cross Disentanglement Module
(CDM) and the Cross Fusion Module (CFM). On the one hand, the CDM, with
its branch tailored for blur, separates blur from non-blur data for focused learning
and reduces conflicts in uniform training. On the other hand, the CFM utilizes
adaptive cross-branch weight interpolation, fostering the exchange of informa-
tion between branches while keeping feature spaces aligned. This setup allows
for the effective fusion of optimal priors from each branch in its respective do-
mains through cost-efficient weight averaging, thereby handling both blur and
non-blur data well without adding any inference or deployment costs. By syner-
gizing these modules, PBaSR substantially elevates the performance of various
recent mainstream BSR methods on blur data. Comprehensive testing on Re-
BlurSR and several general BSR benchmarks with various quantitative metrics
shows that PBaSR achieves state-of-the-art performance in blur image blind
super-resolution and matches recent top-performing methods for general data
processing. PBaSR consistently enhances performance across different percep-
tual metrics, suitable for various methods and blur types, showing a 0.02 to 0.10
improvement in LPIPS without any additional inference costs. In summary, our
main contributions are as follows:

– We observed that recent BSR methods ignore the treatment of images with
intentional blur, and have limitations on the preservation of blur regions.

– In response to this phenomenon, we propose the Real-world Blur-kept Super-
Resolution (ReBlurSR) dataset for blur image blind super-resolution. It con-
tains 2,931 high-quality images with diverse blur regions, nearly three times
the size of the commonly used SR benchmark DIV2K.

– We validate the limitations of current methods on blur BSR, and propose
the new Perceptual-Blur-adaptive Super-Resolution (PBaSR) framework for
blur BSR. Extensive experiments on multiple benchmarks show that PBaSR
effectively improves BSR performance on blur data while maintaining com-
mendable performance on general data, with no additional inference cost.

2 Related Work

2.1 Single Image Super-Resolution

Since the advent of SRCNN [15], many CNN-based super-resolution frame-
works [14,32,58] have been developed. EDSR [38] and RDN [78] improved SISR
using Residual Dense Blocks [25]. Recently, frameworks using VQVAE [6,52,83]
and Transformer [37, 39, 54, 84] have shown better results. BSR is particularly
challenging due to diverse degradation, leading many to use GANs [45, 66, 85]
for enhancing texture and incorporating well-designed degradation synthesis pro-
cesses [65,75] with high-quality datasets. As noted in Sec. 1, intentional blur can
improve visual perception [19,62]. Fig. 1 shows that over 20% of DIV2K-Val sam-
ples are blurred, and current methods struggle with such data. Thus, researching
blur BSR and constructing datasets is beneficial for BSR techniques.
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2.2 Image Super-Resolution Benchmark Datasets

Recent image super-resolution (SR) has been significantly driven by the develop-
ment of comprehensive benchmarks. The DIV2K [2], including 1000 high-quality
(HQ) 2K resolution images, has become a widely used standard for evaluating SR
models due to its diverse and detailed content. Similarly, the Flickr2K [38], with
its 2650 HQ images from various scenarios, provides sufficient data for training
robust SR models. For evaluation, the BSDS100 [43] is widely used, with 100
challenging images with complex natural scenes. The Set5 [3] and Set14 [74]
datasets, despite their smaller sizes, remain popular for their historical signifi-
cance. Besides, the Urban100 [26] and Manga109 [44] datasets cater to specific
needs, with the former focusing on urban scenes and the latter on comic images.
Though these datasets provide robust platforms for the evaluation of general SR
tasks, there is still a lack of specialized benchmarks for blur image SR.

3 Methodology

3.1 Blur in Real-World Blind Super-Resolution

Though recent BSR methods excel in general image enhancement, they do not
exhibit optimal performance when facing blur images, while blur is widespread
in high-quality multimedia content and is an important photographic technique.

To illustrate this, we selected blur samples from the DIV2K-val dataset, re-
vealing recent SR methods’ limitations, such as over-texturization and vignetting
destruction, as shown in Fig. 1a. These problems are overlooked by PSNR/SSIM
metrics due to their insensitivity to smooth areas. To further assess the inade-
quacy quantitatively, we conducted statistical experiments using the DIV2K-Val
dataset. Specifically, we used the blur detection method D-DFFNet [29] to dif-
ferentiate samples into those with and without blur. We found that over 20%
of samples had noticeable blur, which is a non-negligible proportion. Besides, as
Fig. 1b indicates, the SOTA BSR methods showed a marked decrease in effec-
tiveness on the blur samples, with a 0.01-0.06 drop in LPIPS.

These findings highlight blur’s significance in high-quality media, a gap in
current datasets and BSR methods. Therefore, this work aims to develop a fo-
cused subset for this gap and improve BSR methods’ performance on blur data.

3.2 Real-World Blur-Kept Super-Resolution Dataset

To support the training and evaluation of BSR methods on blur images, we cre-
ated the high-quality Real-world Blur-kept Super-Resolution dataset, namely,
ReBlurSR dataset, comprising of two subsets. We selected 2210 real-world blur
images from sources like DIV2K, Flickr2K, DIV8K, CUHK, EBD, and the web.
Additionally, we synthesized 601 blur images using popular diffusion-based mod-
els. These 2811 images form the ReBlurSR-Train set. For realistic evaluation, the
ReBlurSR-Test set includes 120 real blur images from existing validation bench-
marks. Each sample has a High-Resolution (HR) image and a blur region map,
indicating blur pixels with 0 and non-blur pixels with 1.
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Fig. 2: Data collection and partition of ReBlurSR. (a) Three methods of collecting the
ReBlurSR dataset. (b) The samples from different data partitions.

Data Collection For diversity and realism, we gathered data from recent public
datasets, the web and synthesized realistic blur images using multi-modal models
and image-generating models. As shown in Fig. 2a, our data collection involved:

1) From blur-specific datasets EBD [30] and CUHK [57], we chose large
samples (over 512×512 pixels) with less than 80% blur region and paired the
provided manually labeled blur maps with images, resulting in 849 samples.

2) Using D-DFFNet [29] and method in [31] for blur estimation on universal
SR datasets, including Flickr2K [38], DIV2K [2], and DIV8K [21], we filtered out
samples with less than 5% blur region and manually corrected detection errors of
estimated blur maps. Besides, we collected 315 HQ samples from the web using
the same processing, resulting in 1,362 valid samples in total.

3) For synthetic imagery, we developed a pipeline to create synthetic blur
images using Large Language Models (LLMs) and diffusion-based methods. As
shown in Fig. 3b, the process begins with extracting concise image descriptions
from real datasets using the GIT [63] method. GPT-3.5 [49] diversifies these
descriptions, specifying blur types. The Stable Diffusion [55] model transforms
these descriptions into 512×512 images, which are then upscaled to 2048×2048
due to computational limitations. After blur detection and manual verification
to remove errors, we produced 601 synthetic samples (more details in the Supp.).

4) Furthermore, we applied the filtering process to real-world samples from
the validation sets of DIV2K [2], CUHK [57] and EBD [30], resulting in the
collection of 120 samples for the ReBlurSR-Test set.

In total, ReBlurSR comprises 2,210 real blur images and 601 synthetic blur
images for training purposes, alongside 120 real blur images designated for test-
ing. This collection is nearly threefold larger than the widely used DIV2K and
1.14 times larger than Flickr2K, which is now accessible online for public use.
Data Partition Following prior blur research [1, 60], our ReBlurSR dataset
encompasses the two prevalent types of blur found in natural images: 1) De-
focus Blur primarily arises from aperture settings. Smaller apertures reduce it,
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Fig. 3: Data analysis of the ReBlurSR dataset. (a) The sample distribution of image
resolution and blur type. (b) The local gradient in the blur region of different blur
intensity subsets. (c) The sample distribution and the HR images’ quality assessment
based on NIQE [47] of different blur area sizes and blur intensities in ReBlurSR.

but larger ones cause defocus blur for objects outside the focal plane, intensi-
fying with distance from the focal plane. Modern photography often uses it to
highlight the foreground by blurring less important areas. 2) Motion Blur results
from relative movement during exposure, such as fast-moving subjects or camera
shake, and is more pronounced in low-light conditions requiring longer exposures.
While previous studies focused on correcting unintended blur, our work aims to
preserve professionally intended motion blur. For fine-grained assessment, we
conducted a detailed dataset partition based on the following criteria:

Blur Area Size: We categorized each sample based on the blur area’s
proportion of the total image size into three groups: small (<45%), medium
(45%∼55%), and large (>55%). In defocus blur samples, the blur area size pre-
dominantly falls in the small to medium range, whereas in motion blur samples,
it is mostly medium to small and large. Real samples are shown in Fig. 2b.

Blur Intensity: Given the challenges in quantitatively predicting blur inten-
sity, we relied on human visual assessment to classify images into three intensity
levels: little (minimal edge and texture loss), middle (noticeable edge overlap and
significant texture loss), and heavy (extensive edge loss and almost complete tex-
ture elimination), as shown in Fig. 2b. To intuitively assess the quality of our
classification, we calculated the pixel-level gradient in blur regions of different
intensity subsets. As shown in Fig. 3b, the gradient decreases with increasing
intensity levels, indicating the degradation of textures and edges as expected.
Data Analysis In Fig. 3, we show the statistical distribution of resolution, blur
type, size, and intensity in the ReBlurSR dataset’s high-resolution (HR) images.
The dataset mainly consists of high-quality images larger than 1920×1080, with
a higher prevalence of defocus blur compared to motion blur, likely due to the
former’s wider application. Fig. 3b and Fig. 3c indicate that samples with lower
blur intensity have better NIQE metrics. Additionally, there is a correlation
between blur intensity and blur area size: images with extensive blurring tend to
have larger blur areas, while those with smaller blur areas exhibit less blurring.

3.3 Perceptual-Blur-Adaptive Super-Resolution

Given the current methods’ disparate results on blur and general data, we posit
that an ideal blur-adaptive BSR framework should meet the following criteria:
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- Robustness. The framework must enhance blur image processing quality
without compromising the performance of general data.

- Efficiency. The framework should integrate with various methods requiring
minimal modifications, and incur negligible additional costs in inference.
Revisiting Recent Methods’ Performance To investigate the relationship
between general and blur data, and to evaluate the performance of current mod-
els, we conducted three demo experiments using FeMaSR, as detailed below:

(1) We explored the impact of data diversity by maintaining constant total
training data amount and altering the blur data (ReBlurSR-Train) to general
data ratio for FeMaSR fine-tuning. Findings in Fig. 4a illustrate a performance
trade-off, with LPIPS shifts around 0.05 for general data and 0.08 for blur data,
respectively, indicating that increasing specific data types boosts performance
in its respective category but fails to simultaneously improve both.

(2) To investigate convergence dynamics over time, we unified both data
types for an extended fine-tuning (370k iterations) and tracked FeMaSR’s per-
formance from 240k to 370k iterations. Fig. 4b shows LPIPS scores for general
and blur data oscillating between 0.415∼0.385 and 0.395∼0.355, respectively,
revealing a negative correlation. This further highlights the conflict between the
two data types, which cannot be resolved simply by unified training.

(3) To explore why models excel with single-class data but falter post-
merging, we analyzed adversarial loss on blur data. By comparing the average
discriminator hinge loss between blur and non-blur pixels on HR Blur data,
Fig. 4c reveals that loss in blur regions escalates from 25%∼30% to 150%∼300%
relative to non-blur areas as blur intensity and blur area size grow, signifying
diminished confidence and discriminative capacity of the classifier in blur regions.

In summary, the existing framework struggles with robustness and efficiency
when handling both blur and general data simultaneously. It cannot improve
performance on both data types at once, indicating a robustness issue, while
splitting inference parameters by data type contradicts efficiency principles.
To address these challenges, we propose the Perceptual-Blur-adaptive Super-
Resolution (PBaSR) framework, which effectively merges blur and general data
into a unified model without extra inference or deployment costs. The PBaSR
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framework incorporates the Cross Disentanglement Module (CDM) and the
Cross Fusion Module (CFM), which will be detailed in the sections below.

Cross Disentanglement Module In this part, we introduce the Cross Dis-
entanglement Module (CDM). Insights from Fig. 4a and 4b show that separate
training on distinct data types enhances performance in their respective datasets.
Inspired by this, we created the CDM with two branches for independently pro-
cessing each data type, enabling disentanglement at the sample level for general
and blur data. The structure of CDM is detailed in Fig. 5.

First, the general branch processes general data using existing training strate-
gies, while the distinct blur branch is tailored for training on blur data. Fig. 4c
indicates that training blur data within the conventional unconditional adver-
sarial learning framework leads to suboptimal results, for which the reduced
confidence of the discriminator in the blur regions is one of the primary factors.
Given the 0.3∼0.5 GAN loss disparity between blur and non-blur areas, we advo-
cate for customized loss adjustments in the blur branch for better optimization
in blur regions, diverging from general data strategies. We posit that incorpo-
rating a priori information as an additional loss calculation guide is beneficial.
Thus, blur maps from the ReBlurSR dataset, derived from human annotation
and auto-detection via D-DFFNet with a 0.5 threshold for binary conversion,
have been integrated. These maps, with a manual-to-auto annotation ratio of
about 20%:80%, inform the redefined GAN loss for the blur branch. As shown
in Eq. (1), the blur map M is concatenated with the input image and then in-
put into the discriminator DB for conditional discrimination. By incorporating
the blur map as a conditional factor, the adversarial loss LDB

is computed in a
manner that respects the distinct characteristics of different regions,

LDB
=

1

WHC
×

C∑
c=1

W∑
w=1

H∑
h=1

{(1−DB(IHRB
|M)w,h,c) + (1 +DB(ISRB

|M)w,h,c)} .

(1)
Thus, with these adjustments, we believe that the blur branch will more adeptly
and efficiently process blur data. To support this, we executed a simple exper-
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Table 1: Discriminator loss on HR de-
focus data in ReblurSR-Test. CDM0

denotes CDM trained without the blur
conditional adversarial loss. ‘Blur’, ‘Fo-
cus’, and ‘All’ in LD on blur data de-
note the corresponding regions’ loss.

Method LPIPS LD on blur data
Blur General Blur Focus All

Baseline 0.4178 0.3848 0.7047 0.8588 1.5636
CDM0 0.3786 0.3809 0.5677 0.5926 1.1603
CDM 0.3564 0.3826 0.3974 0.6051 1.0026

iment to assess the impact of integrating the a priori blur map condition. As
indicated in Tab. 1, employing the blur condition led to a reduction in the loss
of blur pixels by approximately 0.17 and yielded a 0.022 improvement in LPIPS
for blur samples when compared to the baseline classifier’s performance on the
ReBlurSR-Test HR data, without markedly impacting the loss in non-blur re-
gions. Furthermore, visual analysis of the discriminator loss residual map on
specific samples, depicted in Fig. 6, further corroborates that the inclusion of
the blur condition results in a notable decrease in the loss within blur regions.
These observations affirm that the blur map serves as a valuable auxiliary for
more accurate discrimination in blur regions.

Cross Fusion Module The CDM enables us to attain commendable results
on both blur and general data. Yet, as outlined in Sec. 3.3, we aim to avoid
adding complexity and computational demands during inference, a challenge
given CDM’s requirement for doubled parameters and extra data type distinc-
tion. An initial thought might be to average the branch weights after training,
but this method falls short of expectations. Tab. 2 shows that while each branch
excels on its target data type, yielding about 0.01 average LPIPS improvement
over the unified training baseline, the performance after weight averaging (Tab. 2
col.4) is still similar to that of the unified baseline (Tab. 2 col.1), indicating a per-
sistent sub-optimal trade-off. This issue stems from inadequate communication
between the branches during training. To overcome this and improve perfor-
mance without additional inference costs, we propose the Cross Fusion Module
(CFM), with its structure and operational phases detailed below and in Fig. 7.

Table 2: LPIPS comparison of FeMaSR trained unified on both kinds of data and the
averaged model of two branches of CDMFeMaSR after being trained separately.

Test Data Unified Trained FeMaSR CDMFeMaSR only
General Branch Blur Branch Poster-Average

General Data 0.3976 0.3855 0.4234 0.3890
Blur Data 0.3714 0.4100 0.3649 0.3711
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number. ‘k’ denotes the interval of CFM operation.

Training Stage During the training phase, our goal is for the weights from both
the general and blur branches to communicate effectively. Given the need for
efficiency in a multi-GPU training setup, we aim to optimize communication
costs while enhancing quality. Therefore, we argue that an optimal communi-
cation strategy should meet two key criteria: first, to achieve optimal results
on both kinds of data, the weights of the general WG and blur WB branches
should exhibit a certain level of difference; second, to ensure effective fusion
and inference, communication intervals should not be excessively long. There-
fore, we adopt weight interpolation as a cost-effective method of cross-branch
communication, balancing weight distance dynamically with infrequent updates.
Specifically, we interpolate the weights of the general branch WG and the blur
branch WB at every k iteration adaptive to the cross-branch distance and apply
these interpolated weights (W ′

G,B) to the subsequent iteration,

W
′

G = λWG+(1−λ)WB ,W
′

B = λWB+(1−λ)WG, λ = λ0+(1−λ0)
WG ·WB

2∥WG∥∥WB∥
.

(2)

Inference Stage After training, we combine the weights from both branches to
create a unified model. This involves equal interpolation of both branches to
establish the final model parameters, expressed as WPBaSR = WG/2 +WB/2.

The CFM and CDM do not modify the model’s architecture, ensuring the
inference process aligns with the original model and avoids extra inference or
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deployment costs. CFM’s role in maintaining weight distance between different
branches during training allows for the effective fusion of priors for different
data types via simple interpolation averaging during inference. For clarity, we
conducted an ablation analysis comparing the CDM trained with and with-
out CFM. As shown in Fig. 8a, the cosine distance between the two branches’
weights is effectively constrained within a certain range by CFM, while the dis-
tance without CFM fluctuates obviously. Besides, Fig. 8b shows that the LPIPS
of CDM without CFM on general and blur data are entangled in the same re-
gion as the unified trained baseline, whereas CFM achieves a 0.01-0.015 LPIPS
improvement.

4 Experiment

4.1 Experimental Setup

Dataset
Training Datasets: For general training data, we employed widely recognized
super-resolution datasets, including DIV2K [2], Flickr2K [38], and DIV8K [21],
covering a broad spectrum of high-resolution, real-world images. Regarding blur
data, we utilized the ReBlurSR dataset as the primary source. We applied the
degradation model from BSRGAN [75] for low-resolution (LR) image synthesis.
Testing Datasets: We assessed performance on general data using benchmark
datasets including DIV2K [2], Urban100 [26], BSDS100 [43], Manga109 [44],
Set14 [74], and Set5 [3]. For blur data, we evaluated methods using the ReBlurSR-
Test dataset. LR inputs are generated from a mixed degradation of BSRGAN [75]
and RealESRGAN [66]. Considering experimental efficiency, DIV2K [2] is used
as the default general benchmark in all ablation analyses.

Evaluation We use perceptual metrics as the main performance evaluation
metrics. Specifically, we employ six widely recognized metrics to evaluate the
performance of our proposed method, namely Learned Perceptual Image Patch
Similarity (LPIPS) [77], Visual Information Fidelity (VIF) [56], Gradient Magni-
tude Similarity Deviation (GMSD) [71], Visual Saliency Index (VSI) [76], Deep
Image Structure and Texture Similarity (DISTS) [12], and Attention-based Hy-
brid Image Quality (AHIQ) assessment [33]. For reference, the PSNR/SSIM and
more perceptual metrics [5, 17,82] results are also provided in the supplement.

Implementation Details In the implementation, branch initial weights are
based on those from the general BSR task, using officially released weights. The
optimization process for each branch is conducted independently, utilizing an
Adam optimizer with a learning rate set at 1 × 10−4. We set the batch size of
each GPU and the patch size of HR to 16 and 256, respectively. Each batch is
composed of an equal amount of general and blur data. The λ0 and k in CFM
are set to 0.99 and 20, respectively. The training spanned a total of 200,000
iterations, executed on two NVIDIA V100 GPUs, with PyTorch serving as the
programming framework. All experiments are conducted using x4 upscaling.
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Table 3: Quantitative comparison of PBaSR with the SOTA methods on blur data
and general data. The blur validation set is ReBlurSR-Test. The general validation set
consists of six benchmarks, including DIV2K, Urban100, BSDS100, Manga109, Set14,
and Set5. The best and second-best results are bolded in black and red, respectively.

Data Metric SwinIR
(2021)

Real-ESRGAN
(2021)

MM-RealSR
(2022)

FeMaSR
(2022)

CAL-GAN
(2023)

HAT
(2023)

SRFormer
(2023) PBaSRESRGAN PBaSRFeMaSR PBaSRSRFormer

Defocus
Blur

LPIPS ↓ 0.4048 0.4199 0.4270 0.4037 0.4511 0.3924 0.3974 0.3986 0.3564 0.3740
AHIQ ↑ 0.2396 0.2215 0.2204 0.2323 0.1857 0.2282 0.2394 0.2386 0.2670 0.2620
DISTS ↓ 0.2074 0.2313 0.2342 0.1861 0.2607 0.2502 0.2139 0.1952 0.1733 0.1734
VIF ↑ 0.0873 0.0842 0.0833 0.0862 0.0821 0.0859 0.0896 0.0907 0.0938 0.0931

GMSD ↓ 0.1843 0.1900 0.1851 0.1781 0.1854 0.1888 0.1796 0.1773 0.1737 0.1709
VSI ↑ 0.9565 0.9547 0.9552 0.9602 0.9573 0.9528 0.9577 0.9609 0.9621 0.9625

Motion
Blur

LPIPS 0.4252 0.4104 0.4238 0.4659 0.4605 0.3856 0.4145 0.3791 0.3624 0.3887
AHIQ ↑ 0.2852 0.2920 0.2771 0.2330 0.2343 0.2964 0.2846 0.2986 0.2884 0.2931
DISTS ↓ 0.2105 0.2212 0.2324 0.2097 0.2415 0.2250 0.2127 0.1907 0.1771 0.1844
VIF ↑ 0.1192 0.1135 0.1125 0.1225 0.1121 0.1171 0.1238 0.1244 0.1320 0.1292

GMSD ↓ 0.1713 0.1731 0.1706 0.1775 0.1770 0.1679 0.1670 0.1648 0.1629 0.1649
VSI ↑ 0.9744 0.9733 0.9721 0.9760 0.9749 0.9723 0.9748 0.9771 0.9782 0.9781

General

LPIPS ↓ 0.4202 0.4703 0.4952 0.3986 0.4775 0.4850 0.4284 0.4463 0.3912 0.3937
AHIQ ↑ 0.1944 0.1890 0.1707 0.1932 0.1557 0.1828 0.1990 0.1860 0.2190 0.2223
DISTS ↓ 0.2475 0.2839 0.3060 0.2303 0.2928 0.3115 0.2615 0.2587 0.2331 0.2229
VIF ↑ 0.0646 0.0568 0.0563 0.0619 0.0560 0.0598 0.0674 0.0617 0.0668 0.0673

GMSD ↓ 0.2387 0.2515 0.2536 0.2225 0.2418 0.2523 0.2402 0.2350 0.2261 0.2243
VSI ↑ 0.9176 0.9080 0.9059 0.9257 0.9139 0.9060 0.9174 0.9192 0.9257 0.9260

4.2 Comparison with State-of-the-art Methods

For comprehensive and reasonable comparative analysis, we conducted our PBaSR
on three widely recognized BSR methods, namely Real-ESRGAN [65], FeMaSR [6],
and SRFormer [84]. We compared them with four other state-of-the-art (SOTA)
BSR methods (including SwinIR [37], MM-RealSR [48], CAL-GAN [51], and
HAT [9]), evaluating performance on both general and blur data. To ensure fair-
ness in the comparison, the results for these SOTA methods were derived using
the code and weights available from their official repositories. Additionally, we
included comparative experiments to assess the impact of fine-tuning with the
ReBlurSR dataset in our ablation studies, thereby providing a more nuanced
understanding of our framework’s performance under varied training conditions.
The quantitative and qualitative results are shown in Tab. 3 and Fig. 9.

As shown in Tab. 3, our PBaSRFeMaSR (Tab. 3 col.9) outperforms the leading
method for blur data, HAT [9] (Tab. 3 col.6), with an improvement of 0.04∼0.09
in LPIPS [77], while maintaining comparable results on general data (Tab. 3 last
6 rows) with the best-performing FeMaSR [6] (Tab. 3 col.4) and SRFormer [84]
(Tab. 3 col.7) across all metrics. Fig. 9 presents several examples showcasing dif-
ferent types of blur. Taking the first sample in Fig. 9, most general BSR methods
(Fig. 9 cols. 1, 2, and 4.) generate artifacts and over-texturization in blur regions.
In contrast, our PBaSR (Fig. 9 col.5) exhibits superior blur preservation both
visually and quantitatively. While CAL-GAN [51] (Fig. 9 col.3 row.1) preserves
blur relatively well, it tends to over-smooth and lose texture in focused areas
(Fig. 9 col.3, row.2). PBaSR, however, not only enhances restoration in blur
regions (Fig. 9 row.1 and 3) but also achieves the best perception and LPIPS
metrics in focused areas (Fig. 9 Row.2 and 4). In summary, both quantitative
and qualitative analyses reveal that PBaSR effectively alleviates recent methods’
limitations in blur image blind super-resolution and also maintains comparative
texture restoration performance in general blind super-resolution tasks.
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Fig. 9: Comparison of PBaSRFeMaSR with SOTA methods on blur regions (up) and
non-blur regions (down). More results are provided in the supplement.

4.3 Ablation Study

Scalability for Blur Data To assess PBaSR’s flexibility with different blur
types, we categorized the ReBlurSR-Train set by blur types and progressively
included various blur types during training, beginning with defocus and then
motion blur data. We conducted detailed evaluations on subsets of distinct blurs
in the ReBlurSR-Test. Tab. 4 shows that adding defocus data (from the 1st to
2nd and the 4th to 5th rows) enhances performance on the defocus blur test for
a 0.04 LPIPS improvement without a heavy negative impact on general data
performance. Likewise, incorporating all blur data (from the 2nd to 3rd and the
5th to 6th rows) leads to enhancements across all blur data. These findings reveal
PBaSR’s robust scalability across different blur types, effectively adjusting to
new blur categories while maintaining performance on previously trained types.
Effect of Training Data To elucidate PBaSR’s effectiveness, we undertook
an extensive evaluation based on FeMaSR, examining how different types and
amounts of training data affect performance. Fig. 10a reveals that without
PBaSR (gray points), training solely on general or blur data improves results for
that specific category but leads to reduced performance for the other. Merging
both data types for training fails to yield simultaneous gains in both areas (sky
blue point). Conversely, PBaSR (blue point) shows notable improvements for

Table 4: Scalability of PBaSRFeMaSR on dif-
ferent blur subsets. “+G”, “+D”, and “+M”
denote general, defocus blur, and motion blur
data, respectively. Top: Blur Intensity; Bot-
tom: Blur area size.

Train Data LPIPS
+G+D+M Defocus Blur Motion Blur

General
Little Middle Heavy All Little Middle Heavy All

✓ × × 0.4237 0.4014 0.3689 0.4037 0.4871 0.4706 0.4461 0.4659 0.3848
✓ ✓ × 0.3809 0.3717 0.3315 0.3657 0.4250 0.3833 0.3439 0.3800 0.3856
✓ ✓ ✓ 0.3764 0.3595 0.31900.3564 0.3995 0.3782 0.32050.3624 0.3826

Small Medium Large All Small Medium Large All
✓ × × 0.4178 0.4180 0.3368 0.4037 0.4352 0.3898 0.4765 0.4659 0.3848
✓ ✓ × 0.3719 0.3848 0.3043 0.3657 0.3691 0.3323 0.3850 0.3800 0.3856
✓ ✓ ✓ 0.3660 0.3774 0.29010.3564 0.3559 0.3239 0.36600.3624 0.3826

Table 5: Generalizability across various
model structures. “Base” denotes the of-
ficial weights. “Flop” denotes the flop op-
eration number when processing a 256×
256 patch.

Method Model Type Framework Flops
LPIPS

DefocusMotionGeneral

ESRGAN CNN
Base

11.7T
0.4199 0.4104 0.4739

Unified Finetune 0.4148 0.3910 0.4419
PBaSR(ours) 0.3986 0.3791 0.4390

FeMaSR VQVAE
Base

15.0T
0.4037 0.4586 0.3848

Unified Finetune 0.3714 0.3905 0.3976
PBaSR(ours) 0.3564 0.3663 0.3826

SRFormerTransformer
Base

2.0T
0.3974 0.4145 0.4170

Unified Finetune 0.4139 0.4144 0.4150
PBaSR(ours) 0.3740 0.3887 0.3892
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Fig. 10: Ablations on ReBlurSR-Test (Defocus) and DIV2K-Val. (a) FeMaSR trained
with different training data settings. “×N” denotes the used ratio of the data type.
“1×B + 1×G” denotes the unified training with all training data. (b)/(c) Effect of the
communication frequency ‘k’ and ratio interpolation ‘λ0’ of CFM in Eq. 2.

both data types, evidencing the successful disentanglement and integration of
these categories by the CDM and CFM.
Generalizability across Anchor Method Structures To evaluate PBaSR’s
versatility across different SR model architectures, we implemented the PBaSR
framework on three widely recognized architectures: CNN, VQVAE, and Trans-
formers. Tab. 5 shows that PBaSR yielded noticeable enhancements across these
mainstream SR architectures. Additionally, our framework proved effective across
models of varying sizes and types, from SRFormer to FeMaSR, showing consis-
tent performance improvements regardless of model scale. Notably, SRFormer
and FeMaSR saw higher gains, possibly due to their superior fitting capabilities.
Effect of CFM Communication Strategy To evaluate the impact of the
communication strategy in CFM, we performed ablation studies on its frequency
and ratio of cross-branch interpolation with PBaSRFeMaSR. Fig.10b shows that
either too frequent or infrequent communication (k = 1 or k = 100) decreases
LPIPS by 0.005∼0.01 due to inappropriate distances between branch weights,
leading to poor interpolation results. Fig. 10c indicates that the absence of com-
munication (λ0 = 1) or overly aggressive interpolation (λ0 = 0) negatively affects
performance while a λ0 value between 0.9 ∼ 0.99 ensures performance stability.
Additionally, we compared CFM against other feature communication methods
like feature distillation and teacher-student learning in supplement, which also
indicates the effectiveness and efficiency of CFM.

5 Conclusion

In this work, we explored blind super-resolution for real-world blur images and
created the ReBlurSR dataset containing 2931 diverse blur images. We pro-
posed a novel Perceptual-Blur-adaptive Super-Resolution (PBaSR) framework
to address the limitations of current methods in processing blur data. Extensive
evaluations on various benchmarks reveal that PBaSR significantly improves per-
formance on real-world blur images while maintaining strong results on general
data, without incurring extra inference or deployment costs.
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