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1 Dataset Details

We provide more details of the dataset construction and statistical results.

1.1 Return Information of Google Maps API

For a querying pair of GPS coordinates (latitude, longitude), the reverse Geocod-
ing API of Google Maps will return a list of address results, which are sorted
by the distance between the address and query GPS coordinates. The informa-
tion contained in each returned result is shown in Fig. 1. We also provide some
examples of formatted addresses in returned results of the same query in Fig. 2.

Apart from the formatted address information, for each result, location type
information is also provided to mark what kind of address is returned. Specifi-
cally, "ROOFTOP" means the address is an accurate location (usually a build-
ing). "RANGE_INTERPOLATED" means the result is an approximate position
(usually on the road). "GEOMETRIC_CENTER" means the result is the geo-
metric center of a multi-segment line (such as a street) or a polygon (such as an
area). "APPROXIMATE" indicates that the returned result is an approximate
location. We only use the formatted address and location type for address anno-
tation. More details can be found in the official documentation of the Geocoding
API of Google Maps.

1.2 Details of Address Annotation

We annotate administrative address information from coarse to fine for images
with GPS coordinates in image geo-localization datasets by reverse geocoding,
address extraction, and semantic address partition. An detailed illustration is
shown in Fig. 3.
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results[]: {types[]: string, formatted_address: string,
address_components[]: {short_name: string,

long_name: string,
postcode_localities[]: string, types[]: string},

partial_match: boolean, place_id: string,
postcode_localities[]: string,
geometry: {location: LatLng,

location_type: GeocoderLocationType
viewport: LatLngBounds, bounds: LatLngBounds}}

Fig. 1: The specific information and their
types in each returned result.

results[0].formatted_address: "277 Bedford Ave, Brooklyn, NY, USA"
results[1].formatted_address: "Grand St/Bedford Av, Brooklyn, NY, USA"
results[2].formatted_address: "Williamsburg, Brooklyn, NY, USA"
results[3].formatted_address: "Brooklyn, NY, USA"
results[4].formatted_address: "New York, NY, USA"
results[5].formatted_address: "Brooklyn, NY, USA"
results[6].formatted_address: "Kings County, NY, USA"
results[7].formatted_address: "New York Metropolitan Area, USA"
results[8].formatted_address: "New York, USA"

Fig. 2: Examples of formatted addresses
in the returned results of the same query.
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Fig. 3: The pipeline of address annotation, including the reverse Geocoding from GPS
to addresses, extraction of address information, and semantic address partition.

Reverse Geocoding. Reverse geocoding is also known as address lookup, which
converts a location into an administrative address that is easy to understand. We
use the reverse Geocoding API of Google Maps to obtain the address information
for each location. Specifically, given the GPS coordinates (latitude, longitude) of
a location, the reverse Geocoding API returns a list of addresses that are ordered
by their match degree with the coordinate, e.g . [A(1), A(2), · · · , A(R)], together
with their location types. However, simply selecting A(1) as the ground truth
address is often imprecise since the API tends to match the GPS coordinates
to a place’s or building’s geometry center and return its address. For instance,
when a large building is situated at an intersection of Street A and Street B but
faces Street A, the coordinates on Street B near this building might always be
labeled as Street A with A(1). Note that accessing the Google Maps API incurs
certain costs, and for large and dense datasets like SF-IAL, which covers hun-
dreds of thousands of locations, retrieving the address for every single location
is prohibitively expensive and unaffordable for us. Therefore, for the SF-IAL
dataset, we randomly sampled a subset of locations to conduct reverse geocod-
ing, while the information for the remaining locations was filled in using the
nearest neighbor’s information. Therefore, we require additional post-processing
steps to ensure the accuracy of the street-level address annotation.
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Table 1: More statistics of the proposed Image Address Localization datasets.

Dataset Covered
Area

# Neighborhood
train / test

# Street
train / test

# Sub-Street
train / test

# Locations
Returned by API / Total

Pitts-IAL 20 km2 19 / 19 194 / 165 428 / 327 10,586 / 10,586
SF-IAL-Base 6 km2 15 / 15 121 / 110 400 / 369 8,371 / 17,067
SF-IAL-Large 170 km2 124 / 124 332 / 327 3,616 / 3,406 17,686 / 233,820

Address Extraction. To alleviate the above issue, we adopt the following three
steps to extract accurate street-level address information from the returned list
for each location. Firstly, we remove the returned addresses that are matched to
buildings along the street, whose location type is marked as "ROOFTOP" in the
results. Secondly, among the remaining addresses, we choose the most frequently
occurring address as the definitive address through a voting mechanism. Thirdly,
we correct inaccurately labeled addresses through manual random verification.
Building upon the aforementioned efforts, we have thus obtained accurate street-
level annotations for each location. This serves as a vital foundation for the
subsequent sub-street segmentation.
Semantic Address Partition. As mentioned in the main paper, to balance
the length of streets while eliminating the naming ambiguity at intersections, we
adopt the semantic address partition strategy for a more granular segmentation
of streets. Specifically, the process is as follows: First, identify all the intersect-
ing streets (orange) for each main street (blue). Second, obtain the intersection
points (green points) on the main street that intersect with other streets. Third,
remove closely spaced intersection points based on a certain threshold distance
to avoid redundancy and too short sub-streets. Finally, split the main street into
sub-streets and assign their names based on the remaining intersection points. In
this way, the textual representation of addresses consists of the main street name
and the name of one or two streets that intersect it. Moreover, to mitigate the
long-tail issue inherent in street distributions, we employ a method of clustering
adjacent addresses, merging shorter sub-streets (< 5 locations) into longer ones
or broader areas. This process ensures that the description of addresses is both
general and precise. It is important for the datasets that have irregular streets
and sparse locations, e.g ., Pitts-IAL.

1.3 More Statistics and Visualizations

We have presented the basic information of the three image address localization
datasets in Sec. 5.2 of the main paper. In Tab. 1, we provide more statistical de-
tails of the introduced three datasets, including the geographic area coverage of
the locations, the number of neighborhoods, streets, and sub-streets in the train-
ing and test sets, as well as the number of addresses captured by the Google Maps
API. Additionally, in Fig. 4, we illustrate the distribution of the number of loca-
tions associated with each address across the three datasets. The phenomenon
of long-tail distribution is significantly mitigated after applying the semantic ad-
dress partition strategy, resulting in a more balanced distribution of the number
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(a) Pitts-IAL (b) SF-IAL-Base (c) SF-IAL-Large

Fig. 4: The address distribution in the three Image Address Localization datasets.
Both the distributions before and after semantic address partition are demonstrated.
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Fig. 5: Examples of address annotation for the three Image Address Localization
datasets and their locations on the map.

of locations per address. Fig. 5 showcases examples of address annotations along
with their corresponding positions on the map from three introduced datasets.

2 More Implementation Details

In training, the Adam (β1 = 0.9 β2 = 0.98) is adopted as the optimizer with the
cosine learning rate from 2.4e-5 to 2.4e-8. We set the loss weights α, β and γ of
the final objective to 1, 0.2, and 0.8, respectively. The batch size is set to 32 for
each GPU and all the model is trained for 100 epochs on 8 Tesla V100.

3 Additional Ablations about Scene Caption

3.1 Scene Caption with Different Models

In this section, we present and discuss the impact of scene captions generated
by different models. We utilize different versions of the vision-language model
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Table 2: Comparison examples between the generated captions by BLIP-Caption-Base
and BLIP-Caption-Large.

Image Captioning Examples with BLIP [7]:

Base a street view of a large
building with cars parked
on the side

a street view of a river
and a city

a street view of a city
with cars and buildings

a street view of a city
with buildings and people

Large a street view of a city
with a lot of cars parked
on the side of the road
and tall buildings

a street view of a river
and a city with a bridge
in the background and a
car driving on the road

a street view of a city
street with cars and
buildings on both sides
of the street and a tram
crossing

a street view of a city
street with a few peo-
ple walking on the side-
walk and a building in the
background

Table 3: Examples of scene captions of BLIP-Caption-Base and BLIP-Caption-Large
models and their performance comparisons on the Pitts-IAL and SF-IAL-Base datasets.

Caption by Models Pitts-IAL SF-IAL-Base
SSA-1 SSA-5 SA-1 SA-5 SSA-1 SSA-5 SA-1 SA-5

BLIP-Caption-Base 80.28 95.99 82.48 96.43 86.25 99.00 87.41 99.19
BLIP-Caption-Large 80.39 96.27 82.62 96.74 86.32 99.09 87.44 99.23

BLIP [7] for image captioning, namely BLIP-Caption-Base and BLIP-Caption-
Large, to generate additional scene descriptions. Both of the two models are
prompted with "A street view of". The minimum and maximum length of the
output captions are set to 10 and 30, respectively. Tab. 2 presents examples
of scene captions generated by the two models, where BLIP-Caption-Base pro-
duces naive descriptions while BLIP-Caption-Large can generate more elaborate
captions. Tab. 3 shows the results of AddressCLIP on the Pitts-IAL and SF-IAL-
Base datasets using different captions generated by the above two models. It can
be observed that the resulted two AddressCLIP models achieve comparable per-
formance, with that trained with richer scene captions yielding a slightly higher
performance. This suggests that using a more powerful model to generate richer
descriptive information can further enhance performance, but the gains might be
limited. In practice, one needs to balance the cost of generating scene captions
with the performance benefits.

3.2 Scene Caption Formats

Tab. 4 presents the performance comparison results of different scene caption
forms of whether the textual address is incorporated or not. It is clear that the
addition of geographical address information improves the accuracy compared to
using only scene caption, suggesting that the combination of textual address and
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Table 4: Performance of different scene caption formats on the proposed datasets.

Scene Caption Format Pitts-IAL SF-IAL-Base
SSA-1 SSA-5 SA-1 SA-5 SSA-1 SSA-5 SA-1 SA-5

scene caption w/o address 79.32 95.51 81.44 95.87 84.79 97.99 86.04 98.19
scene caption w/ address 80.39 96.27 82.62 96.74 86.32 99.09 87.44 99.23

Table 5: Performance of AddressCLIP on the Pitts-IAL dataset when the granularity
of search space is varied. W is the number of prior streets.

Settings None Neighborhood W=20 W=10 W=5 W=2

SSA-1 80.39 82.18 80.83 82.20 85.17 89.57

Table 6: Performance of different geographic coverage on the Pitts-IAL dataset.

# Images 3 6 12 24

SSA-1/SSA-5 56.86/84.58 69.08/92.06 76.80/95.45 80.39/96.27
SA-1/SA-5 61.12/86.50 72.48/93.09 79.45/96.01 82.62/96.74

scene captions is beneficial in enhancing AddressCLIP’s capacity to accurately
align images with their corresponding locations.

4 Discussion about the Characteristics of AddressCLIP

4.1 AddressCLIP with Prior Knowledge

In practical applications of address localization, users often possess some level
of prior geographical context. For instance, while the address of an image may
be unknown, the neighborhood or several candidate streets may be known. This
additional information can effectively narrow the search space, thereby improv-
ing the model’s accuracy due to the reduced number of potential addresses for
consideration. To assess AddressCLIP’s adaptability in these situations, we per-
form experiments where the candidate address is limited within a predefined
neighborhood or several streets. Results across different settings are shown in
Tab. 5. The performance of AddressCLIP improves as we search from coarse
to finer granularity. The model’s capacity to adapt to restricted search spaces
affirms its applicability in real-world scenarios where partial geographic context
is commonly available.

4.2 Different Geographic Coverage

The IAL task assumes that the addresses during testing are covered during train-
ing, thus the training sets and testing sets are geographically overlapped. In the
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Table 7: Effect of mixed training on both Pitts-IAL and SF-IAL-Base datasets.

Train / Test SSA-1 SSA-5 SA-1 SA-5

Pitts / Pitts 80.39 96.27 82.62 96.74
Pitts + SF / Pitts 80.46+0.07 95.95−0.32 82.62−0.00 96.51−0.23

SF / SF 86.32 99.09 87.44 99.23
Pitts + SF / SF 85.51−0.81 98.31−0.78 86.82−0.62 98.72−0.51

Pitts + SF / Pitts+SF 83.07 97.17 84.79 97.65

main experiments on the Pitts-IAL dataset, 24 images were taken from different
perspectives at each location. To explore the potential of the proposed Address-
CLIP under conditions with less geographical coverage, we randomly reduce the
number of images per location to 12, 6, and 3. Tab. 6 shows the results of dif-
ferent geographic coverage on Pitts-IAL. One can observe that AddressCLIP
can preserve 75% of original performance with only 12.5% location coverage,
demonstrating its efficiency.

4.3 Mixed Training on Multi-city Datasets

In the main experiments, the proposed AddressCLIP is trained and evaluated
on the Pitts-IAL and SF-IAL-Base datasets respectively, but this does not mean
that our method can only work on a single city. To explore the potential of Ad-
dressCLIP on multiple city datasets, we combine the Pitts-IAL and SF-IAL-Base
datasets as a mixed dataset for training. Tab. 7 shows the performance compar-
isons with single-city dataset training. As can be seen, without increasing the
model size, the performance of mixed training achieves comparable performance
to that trained on each dataset (< 0.8% degradation), which shows the scala-
bility and potential of AddressCLIP to work across multiple cities.

5 Implements of "Image-GPS-Address" Pipeline

The "Image-GPS-Address" pipeline involves utilizing the image geo-localization
technology to predict the GPS coordinates of a given image query and then
translating them into textual addresses by the reverse Geocoding API of Google
Maps. To compare our proposed end-to-end method with existing solutions, we
have implemented this two-stage pipeline for these methods and provided eval-
uation results on the Pitts-IAL dataset in the Sec. 6.5 of the main paper. The
experiment demonstrates that our approach achieves superior street-level ad-
dress localization capabilities, presenting a promising method. We acknowledge
that the proposed method is not yet as precise as GPS localization (within 25
meters), but its advantage lies in being an end-to-end solution. Moreover, the
predicted textual addresses are more semantically meaningful and align with
human description habits.
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Specifically, we adopt state-of-the-art geo-localization approaches (i.e., Cos-
Place [3], MixVPR [1], EigenPlaces [4], AnyLoc [6], SALAD [5]) and use their
publicly available model weights for feature extraction, all of which are claimed
to have robust generalization capabilities. The database and query sets of the
introduced Pitts-IAL dataset are utilized for the retrieval-based methods. We
use ResNet50 with a feature dimension of 512 for image retrieval, except for
AnyLoc [6] and SALAD [5], which use DINOv2 for feature extraction. For each
query image, we first calculate its Euclidean distance with all the database im-
ages. Then we select the location of the image that has a minimum distance with
the query as the predicted location. This location is used for reverse Geocoding
to obtain the textual addresses.

Formally, given a query image Q, we define D as the database containing all
reference images, where each reference image is denoted as Di, ∀i ∈ [1, 2, ..., N ],
and N is the total number of images in the database. We compute the Euclidean
distance in the feature space between the query image and each reference image
in the database as follows:

Dist(Q,Di) =

√√√√ M∑
j=1

(Q(j)−Di(j))2, (1)

where M represents the dimension of the feature. Q(j) and Di(j) are the j-
th feature of the query and database image, respectively. Then the predicted
location LQ for the query image is determined by assigning the GPS of the
reference image with the minimum Euclidean distance in feature space, i.e.,

LQ = GPS(argmin
Di∈D

Dist(Q,Di)), (2)

where GPS(·) indicates the lookup table of the Image-GPS pairs in the database.
In addition, when using the reverse Geocoding API, for fair comparison, we

exclude returned address information where the location type is “ROOFTOP”,
and choose the most frequently occurring address from the remaining addresses
as the final predicted address.

6 Details of Instruct Tuning with LLaVA

Multimodal large language models (MLLMs) are key building blocks for general-
purpose visual assistants, and they have become increasingly popular in the re-
search community. To apply MLLMs to the task of image address localization, we
construct a multimodal dataset that pairs visual images with textual addresses
in a question-and-answer format from Pitts-IAL. Fig. 6 shows an example. Here,
we adopt LLaVA-1.5 [8] as the MLLM since it demonstrates impressive results
on instruction-following and visual reasoning capabilities with open-source code
and models. The instruct tuning process involves adjusting the LLaVA model’s
parameters with LoRA. During training, The AdamW is used as the optimizer
and the cosine annealing scheduler is used to adjust the learning rate. We set
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[
{

"id": "<path>",
"image": "<path>",
"conversations": [

{
"from": "human",
"value": "<image>\nWhere might this photo have been taken? \

Tell me its street level adress."
},
{

"from": "gpt",
"value": " The address of this photo might be Grant Street, Pittsburgh, PA."

},
]

},
...

]

Fig. 6: An example of the constructed conversation data from the Pitts-IAL dataset.

the batch size to 16 and the learning rate to 1e-4. All training is conducted on 8
GeForce RTX 3090 GPUs with 24GB memory. The training of three epochs costs
20 hours. The input image size is set to 224 × 224. The fine-tuned LLaVA model,
LLaVA-IAL, shows a significant improvement in the ability to predict textual
addresses from images, which is indicative of its enhanced understanding of the
visual and textual cues pertinent to the task of image address localization. This
advancement holds promise for applications that require intelligent navigation
and seamless interaction between the digital and physical realms.

7 Qualitative Demonstration

In this section, we qualitatively demonstrate the effectiveness of our method. We
first show the results of AddressCLIP with the image query. Then, we provide
more visualizations of the similarity map between the image embedding and the
address text query in Pittsburgh and San Francisco.

7.1 AddressCLIP with Image Query

Fig. 7 shows the Top-5 textual address predictions generated by the proposed Ad-
dressCLIP, based on given image queries, along with their locations on the map.
The examples provided come from the Pitts-IAL and SF-IAL-Base datasets. In
the majority of cases, the correct prediction is identified within the first address
(Top-1), demonstrating AddressCLIP’s precise address localization capability.
Subsequent predicted addresses are also close to the correct location. Addition-
ally, we showcase some failure examples where the Top-1 prediction is not correct.
Even so, the correct address can still be predicted within the Top-5 addresses,
and the Top-1 predicted address is typically close to the actual location.



10 S. Xu et al.

7.2 AddressCLIP with Address Text Query

In Fig. 8, we display more visualizations of the embedding similarity distribution
between images and given address queries on the map of Pittsburgh and San
Francisco. It is observed that on both Pitts-IAL and SF-IAL-Base datasets when
provided with a text query, our AddressCLIP is capable of effectively pinpointing
the approximate area corresponding to the text based on the features of the street
view images. The results presented are divided into three levels: neighborhood,
street, and sub-street from the top row to the bottom.

8 Broader Impacts

In this study, we introduce the problem of image address localization, which
aims to predict the textual address where a given image was taken, consistent
with how humans typically describe addresses. With the proposed AddressCLIP,
we can obtain more semantic address information, which has the potential to
revolutionize the way we navigate and interact with physical spaces. The intro-
duced image address localization datasets are derived from open-source datasets
Pitts-250k [2] and SF-XL [3] as well as publicly available Google Maps API, thus
we do not anticipate any potential negative social impact arising from this work.
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located in the Russian Hill, specifically on a section of Green Street that near Taylor Street

located in the Russian Hill, specifically on a section of Green Street that lies between Leavenworth 
Street and Taylor Street

located in the Russian Hill, specifically on a section of Union Street that lies between Redfield Alley 
and Taylor Street

located in the Russian Hill, specifically on a section of Macondray Lane that lies between Leavenworth 
Street and Taylor Street

located in the Russian Hill, specifically on a section of Kent Street that near Union Street
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5.

(a) Image query examples of Pitts-IAL

(b) Image query examples of SF-IAL-Base
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2.

3.

4.

5.

located in the Financial District, specifically on a section of California Street that lies between 
Montgomery Street and Sansome Street

located in the Financial District, specifically on a section of Leidesdorff Street that near Sacramento 
Street

located in the Financial District, specifically on a section of Sacramento Street that lies between 
Montgomery Street and Sansome Street

located in the Financial District, specifically on a section of California Street that lies between Davis 
Street and Sansome Street

located in the Financial District, specifically on a section of Washington Street that near Montgomery 
Street

1.

2.

3.

4.

5.

located in the North Beach, specifically on a section of Hotaling Place that near Jackson Street

located in the Financial District, specifically on a section of Washington Street that near Montgomery 
Street

located in the Financial District, specifically on a section of Leidesdorff Street that near Sacramento 
Street

located in the Financial District, specifically on a section of Merchant Street that near Mark Twain 
Place

located in the North Beach, specifically on a section of Jackson Street that lies between Columbus 
Avenue and Sansome Street

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

5.

3.

4.

located in the Downtown, specifically on a section of Exchange Way that lies between 10th Street and 
Tito Way

located in the Downtown, specifically on a section of Garrison Place that lies between Fort Duquesne 
Boulevard and Liberty Avenue

located in the Downtown, specifically on a section of Cecil Place that near Penn Avenue

located in the Downtown, specifically on a section of French Street that near 10th Street

located in the Downtown, specifically on a section of Cherry Way that lies between Boulevard of the 
Allies and Fifth Avenue

1.

2.

3.

4.

5.

located in the South Side Flats, specifically on a section of South 13th Street that near Muriel Street

located in the South Side Flats, specifically on a section of Bingham Street that near South 14th Street

located in the South Side Flats, specifically on a section of South 11th Street that lies between 
Freyburg Street and Muriel Street

located in the South Side Flats, specifically on a section of Bradish Street that near South 10th Street

located in the South Side Flats, specifically on a section of Bingham Street that lies between Bedford 
Square and South 14th Street

1.

2.

3.

4.

5.

located in the Strip District, specifically on a section of 20th Street that near Liberty Avenue

located in the Strip District, specifically on a section of Spring Way that lies between 20th Street and 
23rd Street

located in the Strip District, specifically on a section of Spring Way that lies between 16th Street and 
20th Street

located in the Strip District, specifically on a section of Liberty Avenue that near 20th Street

located in the Strip District, specifically on a section of Liberty Avenue that lies between 16th Street 
and 20th Street

1.

2.

3.

4.

5.

1.
2.

3.

4.

5.

1.

2.

5.
3.

4.

1.

2.
3.

4.

5.

Fig. 7: The address localization results predicted by AddressCLIP and their positions
on the map according to image queries. The results from Top-1 to Top-5 are displayed,
with green boxes indicating correctly predicted addresses and red boxes indicating
incorrectly predicted addresses.
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South Shore Financial District
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North Beach
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Crosstown Boulevard Clay Street

River Avenue Broadway

Jones Street

Stockton Street

Crosstown Blvd. near Municipal Courts Drive Centre Ave. between Fullerton St. and 6th Ave. Davis St. between Drumm St. & Sacramento St.

Three Rivers Heritage Trail between 10th St. and 2nd Ave. Embarcadero South between Drumm St. & Steuart St.

(a) Neighborhoods of Pitts-IAL (d) Neighborhoods of SF-IAL-Base

(b) Streets of Pitts-IAL (e) Streets of SF-IAL-Base

(c) Sub-streets of Pitts-IAL (f) Sub-streets of SF-IAL-Base
Bigelow Blvd. near Lincoln Highway

Washington St. between Leavenworth St. & Mason St.

Taylor Ave. between Broadway & Filbert St.

Fig. 8: More qualitative demonstrations with a given textual address query using Ad-
dressCLIP in Pittsburgh and San Francisco. The brighter the scatter point, the higher
the similarity of the embedding between the image and the query address text. The
red box represents the actual geographic range of the query street in the map.
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