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Abstract. In this study, we introduce a new problem raised by social
media and photojournalism, named Image Address Localization (IAL),
which aims to predict the readable textual address where an image was
taken. Existing two-stage approaches involve predicting geographical co-
ordinates and converting them into human-readable addresses, which can
lead to ambiguity and be resource-intensive. In contrast, we propose an
end-to-end framework named AddressCLIP to solve the problem with
more semantics, consisting of two key ingredients: i) image-text align-
ment to align images with addresses and scene captions by contrastive
learning, and ii) image-geography matching to constrain image features
with the spatial distance in terms of manifold learning. Additionally, we
have built three datasets from Pittsburgh and San Francisco on different
scales specifically for the IAL problem. Experiments demonstrate that
our approach achieves compelling performance on the proposed datasets
and outperforms representative transfer learning methods for vision-
language models. Furthermore, extensive ablations and visualizations ex-
hibit the effectiveness of the proposed method. The datasets and source
code are available at https://github.com/xsx1001/AddressCLIP.

Keywords: Image address localization · Image-text alignment · Image-
geography matching · Vision-language model

1 Introduction

Users on social media platforms such as Facebook and Instagram often tag their
pictures with textual addresses to connect with local communities, raising the
demand for predicting the descriptive address information of the place where an
image was taken. This has various practical applications, for instance, businesses
and travel platforms can use addresses of images to provide recommendations

† This work was done when Shixiong Xu was an intern at Alibaba Cloud.
∗ Equal contributions
‡ Corresponding authors

https://orcid.org/0009-0002-5607-4626
https://orcid.org/0000-0001-6515-1633
https://orcid.org/0000-0003-3488-5516
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0001-8662-5818
https://github.com/xsx1001/AddressCLIP


2 S. Xu et al.

Image Geo-localization Image Address Localization
Image

Image-GPS database

Pairs of (latitude, longitude)

(40.4484, -80.0140)

Query

Retrieve

Retrieved GPS
Coordinates

Image

Image-Address database

Pairs of (street, neighborhood)

(Reedsdale Street, North Shore)

Predicted Semantic 
Address Text

Address
CLIP

Query

Predict
Train

(Behan St., North Shore) (40.4539, -80.0189) 

(W General Robinson St., North Shore) (40.4471, -80.0111) 

Fig. 1: Comparison of image-based geo-localization and address localization tasks. The
objective of the proposed task is to predict the semantic text address of a given image
instead of a digital GPS coordinate without the need for a retrieval gallery.

or organize location-specific content. Additionally, photojournalism can rapidly
verify the authenticity of the event with the image’s address.

To predict an image’s address, one reasonable approach involves leveraging
image geo-localization technology to predict GPS coordinates (i.e., latitude and
longitude) from an image [50], followed by the reverse Geocoding to query for
a readable address. Image geo-localization, also known as visual place recogni-
tion, is commonly treated as an image retrieval problem where a database of
geo-tagged images serves as a matching reference for the query image. Previ-
ous retrieval-based methods [3, 4, 7, 19, 28] have shown remarkable performance.
However, in practice, the creation of pre-collected geo-tagged databases requires
significant labor and storage resources, while GPS coordinates lack readability
and semantics. In addition, the conversion from GPS to readable addresses often
presents ambiguities, and the Image-GPS-Address pipeline is not end-to-end.

To alleviate the above issues, in this study, we propose to perform Image
Address Localization (IAL) where a model is tasked to predict the readable
textual address where a given image was taken. We design a semantic address
partition strategy to perform fine-grained partitioning of city-wide addresses,
conforming to the way humans describe address information. By doing this, we
are able to train models in an end-to-end manner, and during inference, there is
no need to construct a retrieval database which greatly reduces the storage and
retrieval burden. Furthermore, the model’s output addresses align more closely
with human description habits, which provides a bridge for subsequent city-wide
scene understanding and point-of-interest recommendation. Fig. 1 shows the
comparison of image geo-localization and image address localization tasks, where
the latter focuses on predicting human-readable textual address information.

In this study, we propose an end-to-end framework, AddressCLIP, based on
the visual-language model CLIP [38], aiming to learn an alignment of images and
addresses. Our approach leverages two key ingredients: image-text alignment and
image-geography matching. Firstly, we introduce additional scene captions as a
supplement to address text thus facilitating the alignment of images and tex-
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tual addresses by contrastive learning. Secondly, we propose an image-geography
matching mechanism to bring features of geographically proximate images closer
while separating features of images that are far apart geographically.

To support the image address localization task, we constructed three IAL
datasets of different sizes based on the Pitts-250k [4] and SF-XL datasets [7]:
Pitts-IAL (234K), SF-IAL-Base (184K), and SF- IAL-Large (1.96M). In contrast
to the original datasets, each image in our dataset is accompanied by not only
its geographical coordinate but also the administrative address. Specifically, we
utilized the reverse Geocoding API of Google Maps to retrieve administrative
addresses for a portion of the images and obtain addresses for the remaining
images through nearest-neighbor interpolation of the geographical coordinates.

We evaluate the proposed AddressCLIP framework on the introduced datasets.
Our proposed method achieves a Top-1 address localization accuracy of over 80%
across three IAL datasets, most notably reaching a performance of 85.92% on the
largest dataset, SF-IAL-Large. Compared with challenging baselines [29, 51, 52]
that transfer CLIP to the downstream IAL task, our AddressCLIP achieves im-
provements of 3% to 6% on the proposed datasets. In addition, the qualitative
results demonstrate good alignment between images and textual address queries
in geographical space. Finally, we discuss the superiority of the proposed method
over the two-stage "Image-GPS-Address" approach and explore the application
prospects of multimodal large language models in the IAL task.

Our contributions are summarized as follows:

– We formulate the image address localization problem and introduce the Ad-
dressCLIP framework for this problem by utilizing the alignment between
the image and address text.

– Two key ingredients are designed for better alignment of the image and
address, i.e., image-caption alignment and image-geography matching, which
are mutually beneficial.

– We introduce three datasets named Pitts-IAL, SF-IAL-Base, and SF-IAL-
Large to facilitate the study of the image address localization problem.

– Experiments demonstrate that our method achieves compelling performance
on the proposed IAL datasets. Extensive ablations, visualizations, and anal-
yses are provided to show the effectiveness of the proposed method.

2 Related Work

Image Geo-localization. Image geo-localization, or visual place recognition, is
usually formulated as an image retrieval problem on the city scale, which needs
to collect a geo-tagged database of pre-computed embeddings of either local or
global features [6,13,24,25,33,34,40,45]. In recent years, deep learning models [14,
21, 43] have been proven to perform remarkably in image feature extraction,
complemented with an aggregation or pooling layer [3, 4, 9, 16, 17, 27, 32, 37, 54].
Recent methods achieve impressive retrieval performance by performing an addi-
tional re-ranking phase [19,48,53], adopting powerful pre-trained backbones [35]
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Fig. 2: The problem statement of the image address localization task consists of (a)
examples of administrative address and hierarchy, (b) semantic address partition strat-
egy, and (c) address predicting using visual-language models.

to extract image features [22, 28], or training on large-scale place recognition
datasets [2, 3, 7, 22]. Different from retrieval-based methods, classification-based
methods focus on planet-scale localization and split the earth into disjoint regions
to classify [12, 36, 42, 46, 49]. More recently, StreetCLIP [18] and GeoCLIP [10]
both utilize the vision-language model CLIP [38] with region description or GPS
information for better generalizability. Going beyond image geo-localization, we
propose to perform image address localization to obtain readable textual ad-
dresses rather than digital coordinates without a retrieval gallery. This not only
enables models to directly output human-understandable semantic addresses for
a given image but also paves the way for more complex geographical human-
computer interactions in the future.

Transfer Learning in Vision-Language Models. The integration of lan-
guage supervision with visual data is garnering significant interest, with the pri-
mary aim being to align images and texts and learn a shared embedding space.
As outlined in [52], the advancements in vision-language models can largely be
attributed to three key developments: Transformers [47], contrastive represen-
tation learning [11, 20], and expansive web-scale training datasets [26, 39]. One
notable example is CLIP [38], which employs two encoder networks trained via
contrastive loss to align image-text pairs, thus enabling impressive zero-shot
performance. Adapting CLIP to downstream tasks typically involves either full
fine-tuning or linear probing [15]. Recently, prompt learning offers an alternative
by introducing a small number of trainable prompt tokens at the input. Learn-
able prompts can be applied to the language branch [52], image instances [51],
or both forming a multi-modal prompt [29]. Complete fine-tuning enables CLIP
to fully adapt to the data distribution of downstream tasks, while prompt learn-
ing enhances CLIP’s zero-shot learning capabilities. Due to the domain gap
between the IAL task and the pre-training tasks, our proposed AddressCLIP
adopts carefully designed image-caption alignment and image-geography match-
ing to transfer CLIP toward the address localization task, which is superior to
the direct complete fine-tuning way.
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3 Problem Statement

In this study, we focus on the city-wide image address localization problem. The
administrative address hierarchy around the world varies widely depending on
the history, geography, culture, and political systems of each country. Taking
the United States as an example, we provide a specific illustration of an admin-
istrative address and its corresponding hierarchy in Fig. 2 (a). Since images in
one dataset belong to the same city, our study distinguishes image addresses on
neighborhood and street levels.

The straightforward division mentioned above introduces two challenges in
practical city-wide scenarios. Firstly, variable street lengths can result in coarsely
localized addresses, particularly for highways that extend for kilometers, creat-
ing a pronounced long-tail distribution issue and diverse inner-address visual
features that hinder precise localization during inference. Secondly, address am-
biguity arises at street intersections, where images could be equally attributed to
intersecting streets, thus lacking a clear and singular textual supervision signal.
To address these concerns, we introduce a semantic address partition strategy
for a more granular segmentation of streets, as shown in Fig. 2 (b). By segment-
ing streets at intersections, we achieve a balance in street lengths, which refines
the address localization scope and eliminates the intersection ambiguity, align-
ing more closely with the way humans typically describe locations. In this way,
the textual representation of addresses consists of the main street name (marked
green) and the name of one or two streets that intersect it (marked brown).

Formally, the Image Address Localization problem is defined as follows: given
a training dataset Dtrain = {(Ii, Ai)}Mi=1 containing pairs of image Ii and address
Ai, our objective is to train a vision-language model Hθ and use it to predict
the address of query images, AQ

k = Hθ(I
Q
k ),∀k ∈ [1..K] where IQk ∈ Dtest. The

images in the query set IQ can belong to any candidate address in the same
city as the images in the training set. Fig. 2 (c) shows a schematic diagram of
predicting the readable textual address for a given query image.

4 AddressCLIP

4.1 Framework Overview

We formulate the IAL problem as a vision-text alignment problem between the
image and address pairs. Fig. 3 depicts the framework of our method. Dur-
ing training, the embeddings of the image and the address are extracted by
the image encoder and text encoder, respectively, and are then aligned through
image-address contrastive learning. An additive scene caption is introduced as
a supplement to the address to enrich the plain text information. The scene
caption shares the same text encoder with the image address, and the resulting
caption embedding and image embedding are combined for image-caption con-
trastive learning. Furthermore, we adopt the geographical position information
as a guide to increase the similarities between geographically close image features
while increasing the differences between geographically distant image features.
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Fig. 3: Overview of the proposed AddressCLIP framework. (a) During training, the
alignment of image and address is learned by the image-address contrastive loss, image-
caption contrastive loss, and image-geography matching loss. (b) At inference, the
address with the highest similarity to the query image’s embedding is chosen.

The image-geography matching is learned between geospatial distance and im-
age feature similarity. During inference, the address with the highest similarity
to the query image’s embedding indicates the most probable address.

4.2 Image-Text Alignment

It is reasonable to use address information directly as textual prompts for image-
address alignment learning. However, the address text is simple and limited. It
cannot provide context about environments, landmarks, or other entities, which
are crucial for precise address localization. To alleviate the issues, we incorpo-
rate additional descriptive captions that capture the nuances of the visual scene,
thereby endowing the model with a deeper understanding of the contextual ele-
ments that are often missing in the bare address labels. This mechanism enables
more accurate and context-aware predictions by effectively bridging the gap be-
tween visual perception and textual representation.

Scene description can be generated through manual annotation, which, al-
though accurate, is costly and not easily scalable to large datasets. Benefit-
ing from the advancements in vision-language models, we utilize pre-trained
vision-language models [30] to generate linguistic captions corresponding to im-
age scenes. The lower left corner of Fig. 3(a) shows some illustrative examples,
where the descriptions can include context like the presence of specific build-
ings or unique street signs, which is relevant for distinguishing between visually
similar but geographically distant locations. This also aligns the model’s learn-
ing process with how humans typically communicate location information. For
detailed analyses of scene captions, refer to the supplementary material.
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Formally, define image features extracted from the image encoder V(·) as Vi =
V(Ii),∀i ∈ [1, ..., N ]. The text encoder V(·) extracts address features TA

i = T (Ai)
and caption features TC

i = T (Ci + Ai), where the scene caption Ci is obtained
by a vision-language model. We experimentally observe that appending address
information to the scene caption is more conducive to address localization, which
is discussed in detail in Sec. 6.3. Note that the additive scene caption is only used
for training. The alignment of images and addresses is learned via image-address
contrastive loss and image-caption contrastive loss.

For a batch of size N comprising image-text pairs, the image-address con-
trastive loss can be written as:

Laddress = − 1

2N

N∑
i=1

[
log

exp(Vi · TA
i /τ)∑N

j=1 exp(Vi · TA
j /τ)

+ log
exp(TA

i · Vi/τ)∑N
k=1 exp(T

A
i · Vk/τ)

]
, (1)

where τ is the temperature parameter. Similarly, the image-caption contrastive
loss is formulated as:

Lcaption = − 1

2N

N∑
i=1

[
log

exp(Vi · TC
i /τ)∑N

j=1 exp(Vi · TC
j /τ)

+ log
exp(TC

i · Vi/τ)∑N
k=1 exp(T

C
i · Vk/τ)

]
. (2)

4.3 Image-Geography Matching

In general, address text in city-wide scenarios may be geographically far away
but highly similar, or geographically close but significantly different. This makes
image-address alignment learning difficult to optimize with address text alone. In
contrast, the geographic coordinates of images (e.g ., UTM coordinates) differ sig-
nificantly, showcasing clear distinctions and discriminative properties. From the
perspective of manifold learning, image embedding represents a low-dimensional
representation of images in the feature space, and its distribution should be con-
sistent with the geographic coordinates of the images. Our goal is to ensure that
geographically proximate images exhibit closely in the feature space, while ge-
ographically distant images reflect more within the feature space. Visualization
results and analysis are elaborated in Sec. 6.4.

Inspired by the above motivation, we propose an image-geography matching
loss to constrain image features according to the spatial distances of geographic
coordinates. Specifically, denote Ui : UTMeast × UTMnorth,∀i ∈ [1, ..., N ] the
set of geographic coordinates corresponding to all images within a batch of size
N . We can calculate each element of the spatial distance matrix DU in the
geographic space as follows:

DU
ij = ||Ûi − Ûj ||1, s.t., Ûi =

Ui −min(Ui)

max(Ui)−min(Ui)
, (3)

where Manhattan distance and min-max normalization are adopted. Correspond-
ingly, each element of the feature similarity matrix DV in the image embedding
space is calculated as:

DV
ij =

Vi · Vj

||Vi|| · ||Vj ||
. (4)



8 S. Xu et al.

Table 1: Detailed information of the proposed Image Address Localization datasets.

Dataset Year Dataset
size

#
train/val

#
test

Query
type

Image
size GPS Address

Pitts-250K [4] 2016 9.4GB 250K 24K panorama 480×640 ✔ ✘
SF-XL [7] 2022 1TB 41.2M 1K/0.6K phone 512×512 ✔ ✘

Pitts-IAL 2024 6.7GB 234K 19K panorama 480×640 ✔ ✔
SF-IAL-Base 2024 6.8GB 184K 21K panorama 512×512 ✔ ✔
SF-IAL-Large 2024 121GB 1.96M 280K panorama 512×512 ✔ ✔

(a) Pitts-IAL (b) SF-IAL-Base (c) SF-IAL-Large

Fig. 4: Visualizations of the introduced datasets. Distinct semantic street partitions
are displayed using varying colors.

Consequently, the image-geography matching loss takes the image feature simi-
larity matrix DV as input and the geographic spatial distance matrix DU as the
target to perform gradient back-propagation, i.e.,

Lgeography =
1

N2

N∑
i=1

N∑
j=1

(DV
ij −DU

ij)
2. (5)

4.4 Objective Function

We train the proposed AddressCLIP using both image-text contrastive loss and
image-geography matching loss in an end-to-end manner. The total objective
function is as follows:

Ltotal = αLaddress + βLcaption + γLgeography, (6)

where α, β, and γ are weight parameters.

5 Image Address Localization Datasets

Existing datasets [2,7,45] for image geo-localization only contain the GPS coor-
dinates of where the image was taken. Meanwhile, the text in popular image-text
datasets like LAION-5B [41] mainly describes the semantic content of the corre-
sponding image instead of the geographical information. To support the study
of the IAL problem, we introduce three IAL datasets named Pitts-IAL, SF-IAL-
Base, and SF-IAL-Large derived from Pitts-250k [45] and SF-XL [7], respectively.
We describe the details of how these datasets were built below.
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5.1 Address Annotation

We look up the administrative address according to the GPS coordinates at-
tached to images by utilizing the Reverse Geocoding API of Google Maps. The
API returns a list of addresses ordered by their match degree with the GPS coor-
dinate, e.g . [A(1), A(2), · · · , A(R)]. However, simply selecting A(1) as the address
annotation is often imprecise since the API might match the GPS coordinates
of a building’s center and return the building’s address. Additionally, when a
building is located at an intersection of cross streets, the API might return am-
biguous addresses. To alleviate the issue, we first exclude address information
matched to buildings (labeled as "ROOFTOP" location type in the API). Then,
we choose the most frequently occurring address among the remaining addresses
as the definitive address and ensure its accuracy by random manual verifica-
tion and correction. Finally, we adopt the introduced semantic address partition
strategy for fine-grained partitioning as the final address annotation.

5.2 Statistics and Visualization

We provide a comprehensive comparison between the proposed IAL datasets
in Tab. 1 and visualize their street distributions in Fig. 4. Specifically, Pitts-
IAL is constructed using the training set of the original Pitts-250K [45] dataset
where 10,586 locations are annotated with 24 images from different views for
each location. These image-address pairs are divided into a training, database,
and query set randomly using a ratio of 7:2:1 according to locations. Due to the
sparseness of the Pitts-250K, the queries are filtered to ensure their address can
be covered by the training set and database. SF-IAL is constructed from the
SF-XL [7] dataset and is divided into two versions according to the size of the
coverage area, namely SF-IAL-Base, and SF-IAL-Large. SF-IAL-Base covers the
top-right corner of San Francisco with 17,067 locations, each with 12 images from
different views, which is of comparable size to Pitts-IAL. SF-IAL-Large covers
the entire San Francisco with 233,820 locations. The image-address pairs in both
versions are also divided into a training, database, and query set randomly using
a ratio of 7:2:1. The datasets introduced have been released to the community
for research at https://github.com/xsx1001/AddressCLIP.

6 Experiments

6.1 Experimental Setup

Implementation Details. Our AddressCLIP is implemented with PyTorch
based on the pre-trained CLIP from OpenAI [38] with no additional parame-
ters. All the images are resized to 224×224 and normalized to fit the input of
CLIP. Unless otherwise stated, the ViT/B-16 version of CLIP is used for ex-
periments. We adopt the vision-language model BLIP [30] to generate additive
scene captions. More training details are given in supplementary materials.

https://github.com/xsx1001/AddressCLIP
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Table 2: Evaluation results of address localization on the Pitts-IAL, SF-IAL-Base,
and SF-IAL-Large datasets.

Method Pitts-IAL SF-IAL-Base SF-IAL-Large
SSA-1SSA-5 SA-1 SA-5 SSA-1SSA-5 SA-1 SA-5 SSA-1SSA-5 SA-1 SA-5

Zero-shot CLIP 0.85 3.69 1.28 5.64 1.25 5.30 2.80 9.06 0.26 0.97 0.50 2.85
CLIP + address 77.66 93.28 80.86 94.17 83.66 96.32 85.76 96.85 81.84 95.38 84.56 95.79

CLIP + CoOp [52] 67.91 86.60 71.19 88.18 77.77 94.05 79.90 94.91 74.84 92.38 78.23 93.79
CLIP + CoCoOp [51] 69.04 88.34 73.28 89.78 79.19 95.27 81.15 96.32 76.92 93.58 79.85 94.04
CLIP + MaPLe [29] 72.98 91.85 76.04 92.27 81.46 96.98 83.69 97.77 79.63 94.47 82.34 95.96

AddressCLIP (Ours) 80.39 96.2782.6296.74 86.32 99.0987.4499.23 85.92 97.2888.1098.33

Metrics. It is straightforward to measure the address localization performance
by calculating the accuracy of the predicted address, like standard Top-1 and
Top-5 accuracy. Considering the varying precise requirements for the returned
addresses in different scenarios, we design two metrics specifically for evaluating
the address localization performance, i.e., Street-level Accuracy (SA) and Sub-
Street-level Accuracy (SSA). Formally, for a given query image, the output of
the model could be denoted by Ap = [Sm, Sc, Sn], where Sm is the main street,
Sc is the set of streets that intersect with Sm, and Sn is the neighborhood. The
groundtruth address is denoted by Agt = [Sm

gt , S
c
gt, S

n
gt]. If Sm = Sm

gt and Sn =
Sn
gt, the prediction is correct in street-level. It is correct in the sub-street level

only when Ap = Agt is satisfied. Both Top-1 and Top-5 accuracy are reported
as SA-1, SA-5, SSA-1, and SSA-5.

6.2 Main Results

Baselines. We compare our method with zero-shot CLIP and a fine-tuned CLIP
model with naive address prompts. Image address localization can be considered
a downstream visual-language task thus prompt learning approaches can be used
to transfer the pre-trained CLIP to address localization. We also compare with
several representative prompt learning methods for visual-language models, i.e.,
CoOp [52], CoCoOp [51], and MaPLe [29].
Comparisons. Tab. 2 shows the comparison results with the above baselines on
the introduced Pitts-IAL, SF-IAL-Base, and SF-IAL-Large datasets. It is clear
that our method achieves remarkable performance on the three datasets across
various metrics. The zero-shot CLIP model exhibits poor performance due to the
lack of explicit address information in the image-text pairs during pre-training.
After fine-tuning CLIP with address, the address localization accuracy improves
significantly on all three datasets, forming a strong baseline.

Benefiting from carefully designed image-text alignment and image-geography
matching mechanisms, our AddressCLIP surpasses the representative visual-
language prompt learning methods by 7.41%, 4.86%, and 6.29% on Pitts-IAL,
SF-IAL-Base, and SF-IAL-Large datasets respectively in terms of SSA-1. This
indicates that general prompt learning methods that transfer pre-trained models
to various downstream tasks are inferior to those specifically designed, especially
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Table 3: Ablation study of key components on the proposed datasets.

Laddress Lcaption Lgeography
Pitts-IAL SF-IAL-Base

SSA-1 SSA-5 SA-1 SA-5 SSA-1 SSA-5 SA-1 SA-5

✔ 77.66 93.28 80.86 94.17 83.66 96.32 85.76 96.85
✔ 69.27 87.23 71.39 88.92 75.85 89.21 77.24 91.46

✔ ✔ 79.20 94.15 81.26 94.64 84.86 97.46 86.03 98.04
✔ ✔ 79.27 95.15 81.45 95.61 85.54 98.98 86.64 98.15
✔ ✔ ✔ 80.39 96.27 82.62 96.74 86.32 99.09 87.44 99.23

Table 4: Performance of different encoder training strategies on the proposed datasets.
✘ refers to freezing the weight, and ✔ refers to unfreezing the weight.

Image Text Pitts-IAL SF-IAL-Base
SSA-1 SSA-5 SA-1 SA-5 SSA-1 SSA-5 SA-1 SA-5

✔ ✘ 77.77 89.20 80.28 90.48 84.32 93.63 85.82 95.05
✘ ✔ 48.88 78.31 52.43 80.89 54.62 83.74 57.50 86.06
✔ ✔ 80.39 96.27 82.62 96.74 86.32 99.09 87.44 99.23

when the domain of the downstream task (IAL) differs significantly from that
of the pre-trained. It is noteworthy that our method generally performs better
on the SF-IAL-Base dataset than on the Pitts-IAL dataset due to more orderly
streets and the greater density of street view image collection. Remarkably, our
method achieves an address location accuracy of 85.92% even on the more chal-
lenging SF-IAL-Large dataset, which covers an area 8× larger than the Pitts-IAL
dataset. Additionally, performance on the SA metric is typically higher than the
SSA metric, suggesting that using sub-streets as the learning target can further
enhance the localization capability for main streets.

6.3 Ablation Study

Effectiveness of Key Components. We adopt the CLIP model fine-tuned
with the image-address contrastive loss Laddress as the ablation baseline to show
the effectiveness of proposed image-caption alignment and image-geography match-
ing. The evaluation results on the Pitts-IAL and SF-IAL-Base datasets are listed
in Tab. 3. As can be seen, applying Lcaption alone yields reasonable address local-
ization accuracy, but it is far inferior to using Laddress alone, suggesting that the
independent role of address information better facilitates image-address align-
ment. Based on Laddress, adding Lcaption increases SSA-1 by 1.54% and 1.2%,
while adding Lgeography alone increases by 1.61% and 1.88% on the two IAL
datasets. This demonstrates that both the proposed mechanisms can facilitate
image address alignment learning from their respective perspectives. Their com-
bination can ultimately bring 2.73% and 2.66% improvement on SSA-1, indicat-
ing a mutually beneficial relationship between them. Consistent conclusions can
be drawn on other indicators.
Encoder Training Strategy. Typically, when adapting CLIP to downstream
tasks, the impact of unfreezing the weights of the image and text encoders varies
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(a) Pitts-IAL (SSA-1) (b) Pitts-IAL (SA-1) (c) SF-IAL-Base (SSA-1) (d) SF-IAL-Base (SA-1)

Fig. 5: Performance of different backbones on the proposed datasets.

(a) Downtown

(e) Uptown

(b) Smith St. (d) Forbes Ave. between Smith St. & Grant St.

(f) Marion St. (h) Forbes Ave. between Marion St. & Grant St.

(c) Liberty Ave.

(g) Forbes Ave.

Fig. 6: Qualitative demonstration: Address localization with a given textual address
query using AddressCLIP in Pittsburgh. The brighter the scatter point, the higher the
similarity of the embedding between the image and the query address text. The red
box represents the actual geographic range of the query street in the map.

on the outcomes. Tab. 4 shows the performance comparisons of different encoder
freezing strategies on the Pitts-IAL and SF-IAL-Base datasets. It is observable
that unfreezing only the image encoder brings much more performance gains
(about 30%) compared to unfreezing only the text encoder. This suggests that
visual discrepancies are more prominent than textual ones when transferring
CLIP to the task of address localization. The best performance is achieved when
both the image encoder and text encoder are concurrently unfrozen. This is
consistent with the intuitive notion that the textual address is significantly dif-
ferent from the natural category CLIP has been pre-trained on, necessitating the
unfreezing of more weights for fine-tuning.
Different Backbones. Fig. 5 shows the performance using different backbones
on the Pitts-IAL dataset. We adopt Transformer-based ViT-B/16, ViT-B/32,
and ViT-L/14 [14], as well as ResNet-50 [21] based on CNN. For Transformer-
based backbones, it is evident that larger networks achieve higher accuracy in
address localization. The performance of ResNet-50 is inferior to ViT-B/32 since
the former has fewer parameters. In practice, a balance can be struck according
to computational resources and performance requirements.
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Table 5: Comparisons with retrieval-based image geo-localization methods in terms
of storages and time overheads, without considering the API query time.

Methods Storage Inference Retrieval Reranking Memory

TransVPR [48] 2.02 GB 6.20 ms 0.19 ms 1757.70 ms 61.12 GB
R2Former [53] 2.10 GB 8.81 ms 0.19 ms 202.37 ms 12.64 GB
SALAD [23] 2.34 GB 2.34 ms 0.19 ms 0 1.69 GB

AddressCLIP 0.34 GB 3.46 ms 0 0 0.64 MB

Table 6: Performance comparisons with retrieval-based image geo-localization meth-
ods using the reverse Geocoding API on the Pitts-IAL dataset.

Methods CosPlace [7] MixVPR [3] EigenPlaces [8] AnyLoc [28] SALAD [23] AddressCLIP

SSA-1 73.04 74.52 73.88 74.83 75.17 77.01
SSA-5 92.43 93.67 93.79 93.45 94.23 95.33

6.4 Qualitative Results

Since the address embedding gets inherent alignment with the image feature in
our AddressCLIP, we can not only provide precise addresses for query images
but also estimate the distribution of images in geographic space according to
query addresses. In Fig. 6, we display the embedding similarity distribution in
the map of Pittsburgh between images and given address queries. Specifically,
Fig. 6 (a) and (e) show the similarity map of two address queries at the neigh-
borhood level, i.e., Downtown and Uptown. The area covered by the highlighted
part is consistent with the actual block in the map. Similarly, the results of
street-level querying are depicted in Fig. 6 (b), (c), (f), and (g). Our semantic
partition strategy further enables AddressCLIP to distinguish sub-street level
regions within the same street, Forbes Avenue, as shown in Fig. 6 (d) and (h).

6.5 Comparison with "Image-GPS-Address" Pipeline

We select state-of-the-art retrieval-based image geo-localization methods [3,7,8,
23, 28] to predict GPS coordinates from a given image, followed by the reverse
Geocoding API to obtain a readable textual address. More details about the
"Image-GPS-Address" pipeline are provided in supplementary materials. Tab. 5
shows the comparison results of AddressCLIP and VPR methods [23, 48, 53] in
terms of storage space and time overhead. Our AddressCLIP does not require
database storage space or retrieval and reranking time consumption, indicating
the high efficiency of IAL methods compared to VPR methods. Tab. 6 shows
their performance comparisons on the Pitts-IAL dataset, where all models adopt
ResNet-50 as the backbone except for AnyLoc [28] and SALAD [23] with larger
pretrained DINOv2 [35]. As can be seen, AddressCLIP surpasses the perfor-
mance of the "Image-GPS-Address" based methods, which indicates that the
compounded error of retrieval methods and Geocoding makes the "Image-GPS-
Address" pipeline less effective than an end-to-end address localization method.
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Table 7: Comparison examples between representative multimodal large language
models and our LLaVA-IAL for the IAL task in Pittsburgh.
Visual input examples for Image Address Localization:

Grant Street, Downtown Fifth Avenue, Downtown

User Where might this photo have been taken? Tell me its street level address.

LLaVA-IAL The address of this photo might be Grant
Street, Downtown, Pittsburgh, PA, USA.

The address of this photo might be Fifth Av-
enue, Downtown, Pittsburgh, PA, USA.

GPT-4V [1] This photo was taken in Peavey Plaza in
Minneapolis, Minnesota, USA, on the corner
of Nicollet Mall and 11th Street.

This photo was taken at 400 Fifth Avenue in
Pittsburgh, Pennsylvania.

Gemini-Pro-V [44] This photo was taken on the Rose Fitzger-
ald Kennedy Greenway in Boston, Mas-
sachusetts.

The photo was taken on Fifth Avenue in
Pittsburgh, Pennsylvania.

QWen-VL [5] This photo appears to have been taken on a
city street, possibly in a downtown area or
commercial district.

This photo appears to have been taken on
Fifth Avenue in Pittsburgh, Pennsylvania,
USA. The street sign in the image confirms
this location.

6.6 Limitations and Future Work

The proposed AddressCLIP can be regarded as a discriminative model, limited
by the set of candidate addresses at inference. In contrast, generative models
such as multimodal large language models (MLLMs) [1, 5, 44] can yield more
flexible and interactive geographic textual information but may not offer pre-
cise administrative addresses. In future work, we plan to explore the potential
of MLLMs for the IAL task. To this end, we have made an attempt by con-
structing a question-and-answer dataset based on Pitts-IAL and adopting the
LLaVA-1.5 [31] model for instruct tuning. Tab. 7 shows some examples com-
paring with representative MLLMs. It is evident that LLaVA-IAL, fine-tuned
with instructions, can predict accurate administrative addresses consistent with
address hierarchy, while other compared MLLMs are unable to predict addresses
without landmarks or street signs and lack standardized output formats.

7 Conclusion

In this study, we introduce the problem of image address localization and pro-
pose three IAL datasets for evaluation and subsequent research. To facilitate the
alignment of images and addresses for tackling the problem, we propose the Ad-
dressCLIP framework consisting of image-text alignment and image-geography
matching. Extensive experiments on the proposed datasets validate that our
method outperforms transfer learning methods that transfer CLIP to down-
stream tasks. We compare the proposed method with the existing two-stage
address localization pipeline based on the image geo-localization technology and
discuss AddressCLIP’s application in real-world situations. Finally, we explore
the potential of multimodal large language models for address localization.
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