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Abstract. Active learning (AL) in open set scenarios presents a novel
challenge of identifying the most valuable examples in an unlabeled data
pool that comprises data from both known and unknown classes. Tradi-
tional methods prioritize selecting informative examples with low confi-
dence, with the risk of mistakenly selecting unknown-class examples with
similarly low confidence. Recent methods favor the most probable known-
class examples, with the risk of picking simple already mastered exam-
ples. In this paper, we attempt to query examples that are both likely
from known classes and highly informative, and propose a Bidirectional
Uncertainty-based Active Learning (BUAL) framework. Specifically, we
achieve this by first pushing the unknown class examples toward regions
with high-confidence predictions, i.e., the proposed Random Label Neg-
ative Learning method. Then, we propose a Bidirectional Uncertainty
sampling strategy by jointly estimating uncertainty posed by both pos-
itive and negative learning to perform consistent and stable sampling.
BUAL successfully extends existing uncertainty-based AL methods to
complex open-set scenarios. Extensive experiments on multiple datasets
with varying openness demonstrate that BUAL achieves state-of-the-art
performance. The code is available at this link.

Keywords: Active learning · Open-set annotation · Negative learning ·
Uncertainty estimation

1 Introduction

Labeling data can be costly and time-consuming, often requiring high levels of
expertise from annotators [26]. This expense poses a significant challenge when
dealing with insufficient labeled data in deep learning tasks. Recently, active
learning (AL) has emerged as a prominent approach to tackle this issue and has
gained widespread attention [9,17,21]. It iteratively selects the most informative
examples from the unlabeled data pool and queries their labels from an oracle,
enabling the learning of an effective model with reduced labeling costs.

Existing AL methods [5,8,19,22,27,29,30] typically operate under the closed-
set assumption, assuming that the label categories in the unlabeled data pool
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match those of the target task. However, this assumption often does not hold
in practical scenarios. For example, consider a task that involves classifying im-
ages into two target categories, "Dog" and "Cat". Collecting training exam-
ples through keyword-based image search inevitably introduces irrelevant images
from other categories (i.e., unknown classes), alongside the two target categories
(i.e., known classes).

In such open-set scenarios, many previous AL methods, which prefer query-
ing examples with less confident predictions, may lead to failure since examples
from unknown classes often receive uncertain predictions. To mitigate the impact
of unknown class examples, some AL methods designed specifically for open-set
scenarios attempt to query examples that are more likely to belong to known
classes based on sample similarity [3] or model-predicted max activation value
(MAV) [20]. However, since examples similar to the labeled ones may be al-
ready mastered by the model, they do not significantly benefit the target model.
These methods only perform well when the proportion of unknown class ex-
amples is high. When the proportion is low, they tend to perform poorly than
traditional AL methods, even inferior to random sampling (please refer to Figure
6). However, determining the proportion of unknown class examples in practical
scenarios is often challenging. This further limits the usability of these methods.

In this paper, we start with a specific question: can we effectively dis-
tinguish the "informative" examples of known classes from examples
of unknown classes? Intuitively, if we can push the unknown class examples
toward regions with high-confidence predictions, existing uncertainty-based AL
methods can be applied directly in open-set scenarios. To achieve this, we pro-
pose to fine-tune the model by performing negative learning (NL) [11,14,16,32]
on unlabeled examples. NL is an indirect learning manner that explores the util-
ity of complementary labels, i.e., the label categories that an instance does not
belong to. For a K-classification problem, the NL loss is defined as:

ℓNL (f, ȳ) = −
∑K

k=1 ȳk log (1− pk). (1)

where f is the model we want to optimize, ȳ and ȳ = [ȳ1, . . . , ȳk, . . . , ȳK ] rep-
resent a complementary label and its corresponding one-hot form, respectively,
and pk denotes the probability of the k-th category.

Specifically, the fine-tuning process comprises two parts. On one hand, for
already labeled examples, we train them directly using Equation 1. On the other
hand, for unlabeled examples, we first randomly assign labels to them in each
training round and then train the model using Equation 1. Notably, the unlabeled
known class example has a relatively higher chance of receiving the correct label,
whereas the unknown class example will never be assigned the correct label. Once
unlabeled known class data receive the correct labels, they suffer a larger penalty
and are reduced confidence predictions by the model since they deviate from
the distribution information obtained from labeled data. In contrast, unlabeled
unknown class data are not constrained to move towards the high-confidence
region for counteracting the update gradient produced by the labeled data.

To validate this, we conducted preliminary experiments on CIFAR-10 [12]
with 4 known and 6 unknown classes. Figure 1 illustrates the confidence statis-
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Fig. 1: The statistics of prediction confidence before and after fine-tuning the model.
In the zoomed-in area of Figure 1b, we swapped the display order of the two to prevent
occlusion, allowing for a more intuitive view of how the distribution has changed.

tics for all unlabeled examples in a fixed query round before and after fine-tuning
the model. As expected, known class examples are more prevalent in the low-
confidence region, while unknown class ones are more common in high-confidence
regions. This distribution characteristic presents a potential solution to the afore-
mentioned question and offers a promising approach to AL for open-set scenarios.

Based on this, we propose a Bidirectional Uncertainty-based Active Learning
framework (BUAL). On the one hand, we propose the Random Label Negative
Learning (RLNL) method to fine-tune the model and leverage information from
the unlabeled data pool. Specifically, we first train a model using all labeled
data as a positive classifier. Then, negative learning is performed to fine-tune
the model as a negative classifier by randomly assigning labels to data from the
unlabeled pool in each training iteration. This effectively distinguishes known
class examples with lower confidence predictions from unknown class ones. On
the other hand, we propose a Bidirectional Uncertainty (BU) sampling strategy
for active selection, which estimates prediction uncertainty from both positive
and negative classifiers. By selecting examples with the highest uncertainty, we
expect to identify the most informative instances from the known classes. Exper-
iments are performed on multiple datasets with different unknown class ratios.
The results demonstrate that BUAL can query more informative known class
examples and that the model performance obtained by BUAL is substantially
improved compared with existing state-of-the-art methods.

2 Related Work

Active learning (AL) is a prominent approach aimed at reducing label costs by
selecting a batch of examples that are most valuable for model training. Existing
AL methods can be broadly categorized into three groups based on sample se-
lection strategies: uncertainty-based, representative-based, and hybrid strategies
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which combine both aspects. Uncertainty-based strategies focus on sampling in-
formative instances to reduce model uncertainty. Typical methods include Least
Confident Sampling [15], Margin-based Sampling [2], and Entropy-based Sam-
pling [7], etc. Representative-based strategies start from the sample distribu-
tion and aim to select representative instances that match the overall distri-
bution. A typical method is Coreset [25]. Hybrid strategies combine uncertainty
and representativeness by incorporating sample distribution information and the
model’s specific needs. Notable methods in this category include QUIRE [8] and
BADGE [1], etc.

Open-set annotation (OSA) involves active learning under open-set scenar-
ios [3,20]. Existing methods primarily focus on selecting examples that are most
likely to belong to known classes. For instance, CCAL [3] employs contrastive
learning to extract semantic and distinctive features of examples, facilitating
discrimination of known class examples. LfOSA [20] introduces an auxiliary net-
work to model the per-example max activation value (MAV) distribution and
dynamically selects examples with the highest probability from known classes.
However, these methods exhibit sensitivity to the openness of the dataset and
may not consistently perform well. Open-set recognition (OSR) [18, 23, 24] is
a related problem setting to OSA, aiming to predict correct labels for known
class examples while simultaneously detecting examples from unknown classes.
Nevertheless, direct use of OSR methods often falls short of expected effective-
ness [20], mainly due to limited training examples and the inability to identify
highly informative instances.

Complementary labels are labels other than the ground-truth label assigned
to an example. Complementary label learning (CLL) [4,10,31] was initially intro-
duced in [10], where the authors leveraged the lower acquisition cost and higher
correct labeling rate of complementary labels to address multi-class classification
problems. However, complementary labels contain less information compared to
the correct labels, which can result in slow convergence of the model and chal-
lenges in achieving the desired performance when directly using complementary
labels for training. Authors in [11] made the first attempt to combine CLL with
the noise labeling problem [33] and proposed an indirect and robust training
schema called negative learning (NL). In this paper, we exploit the properties of
NL and extend it to open-set and label-free settings for the first time.

3 Methodology

3.1 Preliminaries

Notations. In open-set annotation (OSA) settings, there are two labeled data

pools: Dkno
l =

{
(xl

i, y
l
i)
}nkno

l

i=1
for known classes and Dunk

l =
{
(xl

i)
}nunk

l

i=1
for un-

known classes, as well as an unlabeled data pool: Du = {(xu
i )}

nkno
u

i=1 ∪ {(xu
i )}

nunk
u

i=1

containing examples from both known and unknown classes. Each known class
example belongs to one of K known classes in the label space Y = {1, 2, . . . ,K}.
The unknown class examples are uniformly grouped into one category, denoted
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Fig. 2: The framework of BUAL. A two-stage K class classifier is maintained, where
the first stage is trained in a normal manner saved as fp(·) and the second stage is
trained using the proposed random label negative learning method denoted as fn(·). An
auxiliary K+1 class classifier faux(·) is trained in parallel. By collecting the predicted
uncertainty from fp(·) and fn(·) on each candidate example along with the global and
local balancing factors, the proposed bidirectional sampling strategy can accurately
estimate the potential utility of each example and perform effective sample sampling
under complex open-set scenarios.

as y = ∅. In each training round, active learning (AL) queries a batch of b exam-
ples according to a given query strategy A, denoted as Xquery = Xkno

query∪Xunk
query.

Once the labeled feedback is obtained, we can calculate a ratio r =
|Xkno

query|
|Xquery| to

represent the precision of known classes.
Overview. The proposed Bidirectional Uncertainty-based Active Learning

(BUAL) framework is depicted in Figure 2. In each iteration, there are in general
three steps:

– Model Training: the algorithm first trains a target classifier in a normal
learning manner, dubbed positive classifier fp(·). Then, the algorithm fine-
tunes the classifier with a new classifier head by the proposed Random Label
Negative Learning method, dubbed negative classifier fn(·). Similar to [20],
a K + 1 auxiliary classifier faux(·) is trained in parallel.

– Example Selection: the Bidirectional Uncertainty Sampling Strategy esti-
mates uncertainty bidirectionally using both the positive and negative clas-
sifier heads. This estimation is combined with dynamic balance factors gen-
erated by the auxiliary classifier and query feedback to select the most in-
formative known class examples.

– Oracle Labeling: the annotators assign class labels to the selected exam-
ples. Based on the feedback results, update the corresponding data pools
accordingly.
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3.2 Random Label Negative Learning

In OSA scenarios, conventional uncertainty-based AL methods tend to be ineffec-
tive for example selection, mainly due to the unconfident predictions generated
for the unknown class examples. Existing OSA methods prioritize sample pu-
rity without fully exploring sample informativeness, resulting in queries with too
many already mastered examples that are not useful for model training. Thus,
a key question arises: how to distinguish between unknown and "informative"
known class examples.

To cope with this problem, we propose a general method by pushing un-
known class examples toward the high-confidence regions, while pushing known
class examples to the low-confidence regions. If this separation is achieved, we
can leverage existing uncertainty-based AL methods directly to handle vari-
ous complex open-set scenarios. Fortunately, we achieve this to some extent by
employing negative learning (NL), where we assign random labels to unlabeled
examples and fine-tune the model with a new classifier head accordingly, dubbed
Random Label Negative Learning (RLNL).

Specifically, in the model training stage, we first train a K-class classifier
fp(·) in a normal training manner (e.g ., cross-entropy loss) based on Dkno

l . Note
that fp(·) can be the target model we eventually need to output. After training
on the labeled data, fp(·) can own a good discriminative ability for known class
examples at the representation level. Then, we replace the last layer of fp(·) and
fine-tune a new classifier head fn(·) with Equation 1. In this phase, unlabeled
examples in Du are involved in training to help achieve the goal mentioned above:
pushing unknown and known class examples toward the high and low confidence
regions, respectively. All labeled examples in Dkno

l are still involved to prevent
them from being incorrectly shifted in the distribution. Eventually, we assign
random labels to the unlabeled examples in Du, while using the complementary
labels instead for the labeled known class examples, i.e., for an example x:

P (ȳ = s) =
1

|S|
, s ∈

{
S = Y \ yl, if x ∈ Dkno

l ,

S = Y, if x ∈ Du.
(2)

where ȳ is uniformly sampled at each training iteration. Here, considering that
the number of examples in Du is usually much larger than that in Dkno

l , a small
subset Dsub is randomly selected from the Du to save training cost.

Why RLNL works? The first question one may hold is why it shouldn’t
be optimal for the unlabeled examples to be the uniform distribution as ȳ is
sampled at each iteration. To explain this, we take two different kinds of updating
for a single example in the binary classification scenario of "Dog vs. Cat" as
illustrations: negative learning using all labels at each iteration and negative
learning using only one random label at each iteration. One possible case is
shown in Figure 3. If each iteration uses all labels for negative learning, i.e.,
such an example is neither a "Cat" nor a "Dog", it is apparent that an update
gradient of 0 is only achieved when the example is at the decision boundary.
In contrast, if each iteration gives only one random label for negative learning,
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Fig. 3: Use all labels per iteration for negative learning (left) vs. use one random label
per iteration for negative learning (right).
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Fig. 4: The possible RLNL update scenario for unlabeled unknown class data in batch
deep learning manner. The green "−→" is the batch update gradient produced by the
example itself, and the purple "−→" is the update gradient produced by labeled data.
Initially, the decision boundary is close to the left-hand category.

i.e., such an example is not a "Cat" or a "Dog", then for an instance that is
not a "Cat", pushing it as much as possible towards the "Dog" side will result
in a gradient update of 0, and vice versa. Obviously, there is no fixed optimal
scenario for this type of data.

In RLNL, we utilize this property by exploiting the prior knowledge con-
tained in the labeled data. For unlabeled known class data, they might have
overlapping regions with labeled data in the feature space, benefiting from the
feature representations learned in the previous stage and the simultaneous in-
troduction of labeled data for negative learning. The mapping of such examples
in the feature space will remain or be close to the labeled ones in subsequent
model updates, as they will receive invisible constraints provided by the prior
knowledge from the labeled data, owing to similar features.

As shown in Figure 4, we present the possible update scenario for unlabeled
unknown class examples in the commonly adopted batch deep learning manner.
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(a) Before RLNL (b) After RLNL

Fig. 5: The t-SNE feature visualization of labeled data, unlabeled known class data,
and unlabeled unknown class data on CIFAR-10 with an openness ratio of 0.5 before
and after performing RLNL. For a more intuitive visualization, we only show a single
known class. More visualization results are shown in the supplementary file.

Here, the green arrow indicates the batch update gradient produced by itself,
while the purple arrow indicates the batch update gradient produced by labeled
data. Different from Figure 3, where data oscillates on both sides of the decision
boundary, the unlabeled unknown class examples will oscillate at uncharted away
from the decision boundary to counteract the update gradient due to the labeled
ones. In contrast, unlabeled known class examples will move much less than
unknown class ones in magnitude in the feature space within the constraints
of the prior knowledge provided by the labeled data. This is further confirmed
in Figure 5, which illustrates the t-SNE feature visualization of labeled data,
unlabeled known class data, and unlabeled unknown class data before and after
performing RLNL. This ultimately leads to the result in Figure 1b and proves
that RLNL does work.

3.3 Bidirectional Uncertainty Sampling Strategy

During the fine-tuning process, we observed that the predictions of fn(·) for
examples in Du tend to oscillate between epochs. To ensure stable sampling, on
one hand, we test all unlabeled examples t times at m round intervals to obtain
the predicted probabilities p−

t = (pt1, ..., p
t
K), which will further be averaged as

P− = 1
t

∑t
i=1 p

−
i = ( 1t

∑t
i=1 p

i
1, ...,

1
t

∑t
i=1 p

i
K). On the other hand, we reuse

the predictions of fp(·) to produce predicted probabilities p+ = (p1, ..., pK) for
all unlabeled examples, as fp(·) are accurate for measuring known class ones.

Compared to the positive head, the negative head is slightly biased for the
measurement of sample uncertainty due to the unstable training. Therefore, if
an example is likelier to belong to known classes, we prefer to utilize the sample
uncertainty obtained from fp(·). On the contrary, once an example has a higher
risk of belonging to the unknown classes, the uncertainty obtained from fp(·) is
unreliable, and thus the uncertainty by fn(·) should be given a higher weight.

To achieve this, we introduce two balancing factors based on global and
local observations. In open-set scenarios, some unknown class examples might be
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mistakenly selected for annotation. Although these examples cannot be directly
used for training the target model, they are valuable for measuring sample purity.
Therefore, similar to [20], we train a K+1 classifier faux(·) in a normal training
manner based on the examples from both Dkno

l and Dunk
l . Then, we can obtain

the predicted probability pauxK+1(x) = faux(∅ | x) for each example. This can act
as a local balancing factor, since the larger the value of pauxK+1(x) the more likely
x is to belong to the unknown class.

Additionally, once the selected examples are sent to the oracle for annota-
tion, we can calculate the ratio r, which provides a rough estimate of the current
openness of Du and can serve as a global balancing factor. With the two balanc-
ing factors, we propose a bidirectional uncertainty sampling strategy defined as
follows:

x∗ = argmax
x

pauxK+1(x)uncn + r
[
1− pauxK+1(x)

]
uncp, (3)

where uncp and uncn denote the uncertainty of x to the positive classifier head
and the negative classifier head, respectively. Noteworthy, this sampling strategy
remains applicable even in closed-set settings. If there are no unknown class
examples, the ratio r will always be equal to 1, and pauxK+1(x) will be 0, effectively
making the strategy equivalent to a normal uncertainty sampling strategy.

With Equation 3, extending the existing closed-set uncertainty-based active
learning methods to open-set scenarios is possible. In this paper, we focus on
three classical uncertainty sampling strategies: least confident sampling, margin-
based sampling, and entropy-based sampling. The corresponding modified ver-
sions for open-set scenarios are as follows:

• Bidirectional Least Confident Sampling

x∗ = argmax
x

pauxK+1(x)
[
1−P−

y−(x)
]
+ r

[
1− pauxK+1(x)

] [
1− p+

y+(x)
]
, (4)

where y− = argmaxy P−
y (x), y+ = argmaxy p

+
y (x).

• Bidirectional Margin-Based Sampling

x∗ =argmax
x

pauxK+1(x)
[
P−

y−
1

(x)−P−
y−
2

(x)
]

+ r
[
1− pauxK+1(x)

] [
p+

y+
1

(x)− p+

y+
2

(x)
]
,

(5)

where y−1 = argmaxy P−
y (x), y

+
1 = argmaxy p

+
y (x) y−2 = argmaxy\y−

1
P−

y (x),
y+2 = argmaxy\y+

1
p+
y (x).

• Bidirectional Entropy-Based Sampling

x∗ =argmax
x

pauxK+1(x)
[
−P−

y−(x) logP−
y−(x)

]
+ r

[
1− pauxK+1(x)

] [
−p+

y+(x) log p
+
y+(x)

]
,

(6)

where y− and y+ are consistent with the previous definition.
The main procedures of BUAL are summarized in Algorithm 1.
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Algorithm 1 BUAL Training Procedure
Input: Dkno

l , Dunk
l , Du, r, A, b, m, t, subset size s, training epoch E, optimizer O.

Output: Dkno
l , Dunk

l , Du, r, model parameters θp.
Process:
1: # Model training
2: for j = 1; j ≤ E do
3: Lp =

∑
(x,y)∈Dkno

l
ℓ(fp(x), y);

4: Laux =
∑

(x,y)∈Dkno
l

∪Dunk
l

ℓ(faux(x), y);
5: Update θp, θaux = O(Lp, θp),O(Laux, θaux);
6: end for
7: Use faux(x) to remove confidently unknown examples in Du and randomly select

s examples as Dsub;
8: for j = 1; j ≤ E do
9: Generate label ȳ for each example.

10: Ln =
∑

(x,y)∈Dkno
l

∪Dsub
ℓNL(fn(x), ȳ);

11: Update θn = O(Ln, θn);
12: if j mod m = 0 then
13: Obtain p−

j for each sample in Du by fn(x);
14: end if
15: end for
16: # Example selection
17: Calculate P− for each sample across rounds;
18: Obtain p+ for each sample in Du by fp(x);
19: Obtain pauxK+1 for each sample in Du by faux(x);
20: Obtain Xquery using BU sampling strategy A;
21: # Oracle labeling
22: Ask for annotation and update Dkno

l , Dunk
l , Du and r.

4 Experiments

Datasets. We conduct experiments on three benchmark datasets: CIFAR-10,
CIFAR-100 [12], and Tiny-Imagenet [28]. Tiny-Imagenet is a subset of the Im-
agenet [13], consisting of 200 classes with 500 training images per class. The
openness of each dataset is defined as the ratio of unknown classes to the total
number of classes, and we set its value to 0.2, 0.4, 0.6, and 0.8 for all datasets.

Comparing methods. We select nine AL strategies for comparison, which
can be further categorized into six groups: (1) Random: Randomly select exam-
ples from the unlabeled data pool for labeling. (2) Traditional uncertainty-based
strategies: Least confident sampling (LC), Margin-based sampling (Margin), and
Entropy-based sampling (Entropy). (3) Diversity-based strategy: Coreset. (4)
Hybrid-based strategy: BADGE. (5) OSA methods: CCAL and LfOSA. (6) OSR
method: DIAS [18]. Correspondingly, our methods are Bidirectional Least con-
fident sampling (B-LC), Bidirectional Margin-based sampling (B-Margin), and
Bidirectional Entropy-based sampling (B-Entropy).

Training details. On CIFAR-10, CIFAR-100, and Tiny-Imagenet, we ran-
domly sample 1%, 8%, and 8% known class examples as the initial labeled data,
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Fig. 6: Accuracy comparison on CIFAR-10 (first row), CIFAR-100 (second row), and
Tiny-Imagenet (third row). The ratio of unknown class examples to the total number
of examples is fixed at 0.4 (first column) and 0.6 (second column) for each dataset.

respectively. All the models involved in the experiments are ResNet18 [6], trained
for 100 epochs, using SGD as the optimizer, where the learning rate is 0.01, mo-
mentum is 0.9, weight decay is 1e-4, and batch size is 128. We perform the exper-
iments for 3 runs and report the average results. For CIFAR-10 and CIFAR-100,
5000 examples are randomly selected from the unlabeled pool as Dsub, and 1500
examples are queried in each query round. Due to the doubling of data volume,
we randomly select 10000 examples as Dsub and query 3000 examples in each
query round for Tiny-Imagenet.

4.1 Performance Comparison

Figure 6 presents the variation curves for the classification accuracy of the pro-
posed methods and the comparison methods. Here, to better observe the vari-
ation curves, we only show the B-Margin for the proposed methods and the
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Table 1: The final round average accuracy of different methods on CIFAR-10, CIFAR-
100, and Tiny-Imagenet. The best performance is highlighted in bold.

Datasets CIFAR-10 CIFAR-100 Tiny-Imagenet

Openness Ratio 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

(1) Random 83.3 82.5 87.2 96.9 57.6 58.3 58.7 61.2 45.7 47.2 50.9 55.0

(2)
LC 84.3 81.6 87.5 96.2 55.8 54.6 54.0 56.2 44.8 45.9 48.4 51.6

Margin 86.0 84.1 89.0 97.0 59.3 59.6 58.8 58.9 46.4 47.1 50.8 54.0
Entropy 85.4 83.4 88.0 96.8 57.1 56.8 55.7 56.4 44.6 44.5 46.9 50.7

(3) Coreset 85.0 81.8 86.4 97.4 60.2 61.2 61.8 64.2 46.2 47.8 51.8 54.0

(4) BADGE 86.8 84.2 89.2 96.4 60.2 60.8 60.4 62.0 46.3 47.8 51.8 53.3

(5) LfOSA 73.7 78.7 87.0 98.6 52.3 56.6 62.4 68.2 42.5 46.6 52.4 59.9
CCAL 80.8 81.5 88.0 98.1 55.9 60.0 64.7 67.7 44.4 46.3 50.3 57.0

(6) DIAS 81.8 80.7 83.0 94.0 55.7 56.1 56.9 57.2 43.1 45.1 47.5 54.4

Ours
B-LC 87.0 87.2 92.5 99.1 59.3 62.8 67.5 72.1 45.7 48.7 54.7 60.6

B-Margin 86.5 87.0 92.6 98.9 60.9 63.1 68.3 71.5 46.5 49.5 55.7 61.2
B-Entropy 86.9 87.4 92.6 99.1 58.9 61.7 66.9 71.4 45.4 47.5 55.2 61.0
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Fig. 7: The average recognition rate on CIFAR-10 (first column), CIFAR-100 (second
column), and Tiny-Imagenet (third column).

Margin for the compared traditional uncertainty methods. Table 1 reports all
methods’ final round average accuracy.

We can observe that our proposed methods consistently achieve the highest
classification accuracy, demonstrating the effectiveness and superiority of our
BUAL framework over other methods. Some notable observations are as fol-
lows: 1) The OSA methods, CCAL and LfOSA, gradually lose effectiveness as
the proportion of known classes in the dataset increases. In contrast, traditional
uncertainty-based methods perform better as the openness ratio decreases. This
is consistent with our previous analysis. 2) The performance of Coreset and
BADGE also deteriorates when the openness ratio is high. These methods tend
to select examples with diverse characteristics. However, unknown class examples
often differ significantly in characteristics from the labeled ones, making them
more likely to be sampled and thus undermining the effectiveness of this type of
method. 3) The OSR method DIAS does not perform well in all situations. The
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(a) LfOSA (b) BUAL (ours)

Fig. 8: The t-SNE feature visualization of data from one query and labeled pool on
CIFAR-10 with an openness ratio of 0.5.

limited labeled data prevents the model from learning a robust representation for
identifying open-set examples effectively. Moreover, DIAS cannot identify highly
informative examples, resulting in its queries often being simple and unhelpful
examples. 4) All our methods remain stable and do not suffer significantly from
changes in the openness ratio. This can demonstrate two points. The dynamic
balance factors in the proposed framework can adaptively assign appropriate
weights to positive and negative uncertainties regardless of the openness of the
dataset, and negative uncertainties are indeed effective for querying highly in-
formative known class examples.

Figure 7 shows the average recognition rate of known class examples across
queries and openness ratios. We can observe that traditional AL methods all per-
form poorly due to their inability to recognize known class examples from those
with high uncertainty and/or representative. As an OSR method, DIAS shows
only marginal improvement compared to the traditional AL methods, unable to
fully exploit its exceptional performance with limited training data. The recog-
nition ability of CCAL decreases slightly with the increase of dataset categories
compared to our method. It is noted that LfOSA achieved the highest query
precision on all datasets. However, combining the results in Table 1, we can find
that the performance of models trained by LfOSA is not satisfactory compared
to other methods. To explain why, we visualize the queried examples’ feature
representation and labeled examples’ feature representation for our method and
LfOSA in Figure 8. We can observe that the features of examples queried by
LfOSA are highly overlapping with the labeled ones, which are often examples
that the model has already mastered and cannot provide an effective bonus for
model training. On the contrary, the sample features queried by our method
have little overlap and are more distributed in low-density regions, consistent
with the goal of AL. These results validate the effectiveness of our approach in
querying more informative examples of known classes and maintaining a high
recognition rate.
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Table 2: Final accuracy of each component in Equation 3 on CIFAR-10, CIFAR-100,
and Tiny-Imagenet with an openness ratio of 0.6.

Dataset
Method

uncp uncn w/o w w/o faux B-LC

CIFAR-10 87.5 89.4 90.8 91.3 92.5

CIFAR-100 54.0 63.5 62.4 65.0 67.5

Tiny-Imagenet 48.4 52.3 52.0 53.0 54.7

4.2 Ablation Study

The ablation study is conducted on CIFAR-10 with an openness ratio of 0.6
to validate the effectiveness of each component in our proposed query strategy
(Equation 3). The final round accuracy is shown in Table 2. Here, unc_n and
unc_p indicate that only uncn and uncp is adopted for active sampling, respec-
tively. w/o w denotes the removal of all balancing factors, i.e., both faux and
r. w/o faux means only removing the local balancing factor faux.

We can observe that removing any of the components leads to performance
degradation. Although uncn and uncp are significantly less effective than B-
LC, uncn has a substantial improvement compared to uncp due to its ability
to distinguish informative examples of known classes from examples of unknown
classes. The direct combination of uncn and uncp, i.e., w/o w, works better
than unc_n, as models trained by RLNL may produce oscillate output and
thus the uncertainty obtained in unc_n is not necessarily accurate. By adding
the dynamic global balancing factor r, w/o faux achieves a better performance.
However, it still falls short in comparison to B-LC, which validates the effec-
tiveness of local balancing factor faux. These results further corroborate the
soundness of our strategy design.

5 Conclusion

In this paper, we successfully expand the existing uncertainty-based active learn-
ing methods to complex and ever-changing open-set scenarios by proposing a
Bidirectional uncertainty-based Active Learning (BUAL) framework. On one
hand, to achieve the goal of distinguishing known and unknown class examples
with high uncertainty, we propose a simple but effective Random Label Nega-
tive Learning (RLNL) method for pushing unknown and known class examples
toward the high and low confidence regions respectively. On the other hand,
to better measure sample uncertainty, we propose a Bidirectional Uncertainty
(BU) sampling strategy by dynamically fusing the sample uncertainty obtained
from positive learning and negative learning. The dynamic balancing factors in
it can ensure that the strategy is effective under various openness ratios. Exten-
sive experimental results show that the model trained with BUAL can achieve
state-of-the-art performance under various open-set scenarios.
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