Supplementary Material of Preventing Catastrophic Overfitting in Fast Adversarial Training: A Bi-level Optimization Perspective

Zhaoxin Wang¹, Handing Wang¹, Cong Tian², and Yaochu Jin³

¹ School of Artificial Intelligence, Xidian University, Xi'an, China zxwang74@163.com

² School of Computer Science and Technology, Xidian University, Xi'an, China ctian@mail.xidian.edu.cn

³ School of Engineering, Westlake University, Zhejiang Hangzhou, China jinyaochu@westlake.edu.cn

Table 1: Accuracy (%) and training time (min) of compared AT models on WideResNet34-10 with the CIFAR10 dataset. The number in bold indicates the best.

Method		Clean Acc	FGSM	PGD10	PGD20	PGD50	C&W	APGD	Square	AA	Time
PGD-AT	Best Last	87.30 87.39	$\begin{array}{c} 68.92 \\ 68.20 \end{array}$	$55.21 \\ 54.12$	$53.96 \\ 52.85$	$53.49 \\ 52.49$	$\begin{array}{c} 51.80\\ 50.68\end{array}$	$54.42 \\ 53.37$	$\begin{array}{c} 60.40 \\ 59.36 \end{array}$	$\begin{array}{c} 51.20\\ 50.57\end{array}$	1397
TRADES	Best Last	$85.70 \\ 85.70$	$68.28 \\ 68.28$	$57.21 \\ 57.21$	$56.10 \\ 56.10$	$55.87 \\ 55.87$	$50.72 \\ 50.72$	$54.85 \\ 54.85$	$59.84 \\ 59.84$	$53.36 \\ 53.36$	1692
FGSM-RS	Best Last	$75.10 \\ 86.19$	59.00 -	$\begin{array}{c} 44.66\\ 0.00 \end{array}$	43.29 0.00	$42.96 \\ 0.00$	$\begin{array}{c} 38.68\\ 0.00 \end{array}$	$\begin{array}{c} 44.98\\ 0.00 \end{array}$	$\begin{array}{c} 50.28\\ 0.00 \end{array}$	$\begin{array}{c} 40.27\\ 0.00 \end{array}$	281
Free-AT	Best Last	$71.79 \\ 71.79$	$51.37 \\ 51.37$	$41.75 \\ 41.75$	$41.13 \\ 41.13$	$ \begin{array}{r} 40.99 \\ 40.99 \end{array} $	$35.67 \\ 35.67$	$\begin{array}{c} 43.81\\ 43.81 \end{array}$	$\begin{array}{c} 44.33\\ 44.33\end{array}$	39.22 39.22	969
FGSM-MEP	Best Last	$83.43 \\ 85.63$	$67.73 \\ 69.09$	58.13 57.47	57.52 56.48	57.51 56.20	$\begin{array}{c} 49.62\\ 49.82 \end{array}$	$53.35 \\ 52.89$	$58.13 \\ 58.45$	$\begin{array}{c} 51.54\\ 51.06\end{array}$	407
FGSM-PCO	Best Last	87.38 87.38	$69.78 \\ 69.78$	57.82 57.82	57.12 57.12	56.96 56.96	$51.27 \\ 51.27$	$\begin{array}{c} 54.34\\ 54.34\end{array}$	59.88 59.88	$51.84 \\ 51.84$	421

1 Experimental Results

The classification accuracy of WideResNet34-10 with the CIFAR10 dataset is shown in Table 1. On the WideResNet34-10 model, we achieve good performance, especially for clean examples, which reach 87.38% accuracy. To comprehensively evaluate the performance of various AT methods and investigate the overfitting phenomenon, we conduct experiments with a smaller model as the

 $^{^{\}boxtimes}$ Corresponding Author: hdwang@xidian.edu.cn

2 Z. Wang et al.

backbone on datasets where catastrophic overfitting occurs. Table 2 presents the results on CIFAR100 with the ResNet18 model. The results demonstrate that FGSM-MEP effectively prevents the catastrophic overfitting problem observed in the WideResNet34-10 model. Our method, FGSM-PCO, achieves improvements both on clean examples and AEs, with only a 0.1% lower performance than FGSM-MEP under the CW attack at the last checkpoint. It is noteworthy that our method incurs a higher computational cost than FGSM-MEP but saves memory on computational devices, requiring only two-thirds of the memory compared to FGSM-MEP.

Method		Clean Acc	FGSM	PGD10	PGD20	PGD50	C&W	APGD	Square	Time
PGD-AT [3]	Best Last	$58.24 \\ 58.42$	$37.84 \\ 37.59$	29.68 29.00	$29.20 \\ 28.45$	$29.15 \\ 28.35$	$25.09 \\ 24.83$	$27.82 \\ 27.27$	$30.73 \\ 30.42$	191
TRADES [6]	Best Last	$58.38 \\ 58.00$	$37.95 \\ 38.08$	$30.53 \\ 30.34$	$30.05 \\ 29.99$	$29.95 \\ 29.89$	$23.55 \\ 23.57$	$26.28 \\ 26.15$	$30.20 \\ 29.95$	260
FGSM-RS [5]	Best Last	$45.64 \\ 42.54$	28.87	20.89 00.00	$20.20 \\ 00.00$	$\begin{array}{c} 20.24\\00.00 \end{array}$	$\begin{array}{c} 17.21\\00.00 \end{array}$	$\begin{array}{c} 17.82\\00.00\end{array}$	$\begin{array}{c} 20.01\\ 00.00 \end{array}$	38
FGSM-GA [1]	Best Last	46.37 62.34	28.56 -	$\begin{array}{c} 21.74 \\ 00.02 \end{array}$	$\begin{array}{c} 21.43\\ 00.00 \end{array}$	$\begin{array}{c} 21.31 \\ 00.00 \end{array}$	$\begin{array}{c} 18.18\\00.00 \end{array}$	$\begin{array}{c} 19.81\\00.00\end{array}$	$22.21 \\ 00.00$	137
Free-AT [4]	Best Last	$38.19 \\ 38.19$	$23.17 \\ 23.17$	$\begin{array}{c} 18.38\\ 18.38\end{array}$	18.11 18.11	$\begin{array}{c} 18.08\\ 18.08 \end{array}$	$\begin{array}{c} 15.02\\ 15.02 \end{array}$	$16.13 \\ 16.13$	$\begin{array}{c} 17.46\\ 17.46\end{array}$	138
FGSM-EP [2]	Best Last	$58.24 \\ 58.20$	$39.69 \\ 39.41$	$31.69 \\ 31.39$	$31.34 \\ 30.96$	$31.27 \\ 30.92$	$\begin{array}{c} 25.14\\ 24.86\end{array}$	$27.39 \\ 27.28$	$30.81 \\ 30.46$	58
FGSM-MEP [2]	Best Last	58.79 58.82	$39.06 \\ 39.77$	$31.83 \\ 31.74$	$31.35 \\ 31.22$	$31.35 \\ 31.12$	25.76 25.26	27.88 27.66	$31.09 \\ 30.92$	58
FGSM-HPF	Best Last	60.20 59.80	39.98 39.83	32.39 31.89	31.94 31.44	31.85 31.36	25.85 25.25	28.16 27.62	31.50 31.11	60

Table 2: Accuracy (%) and training time (min) of compared AT models on ResNet18 with the CIFAR100 dataset. The number in bold indicates the best.

On the WideResNet34-10 model, nearly all FGSM-based methods exhibit catastrophic overfitting. Fig. 1 illustrates that FGSM-PCO effectively prevents the overfitting problem.

2 Divergence between Adversarial and Clean Examples

Apart from the classification accuracy of AT models under various attacks, the divergence between adversarial and clean examples is also a crucial metric for evaluating AT algorithms. The norm of perturbation can be regarded as a convergence criterion for the non-convex optimization problem, with smaller perturbations implying quicker convergence to local optima [2]. We evaluate the

Fig. 1: Classification accuracy of FGSM-MEP and FGSM-PCO on WideResNet34-10 with the CIFAR100 dataset. Our method significantly prevents catastrophic overfitting.

perturbation under L2 norm for PGD10, FGSM-MEP and FGSM-PCO algorithms on the CIFAR100 dataset with the ResNet18 model. The results indicate that our method achieves the smallest perturbation norm, as shown in Fig. 2.

Fig. 2: The L2 norm of perturbation under different AT methods.

References

- 1. Andriushchenko, M., Flammarion, N.: Understanding and improving fast adversarial training. neural information processing systems (2020)
- Jia, X., Zhang, Y., Wei, X., Wu, B., Ma, K., Wang, J., Cao, X.: Prior-guided adversarial initialization for fast adversarial training (2022)
- 3. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)
- Shafahi, A., Najibi, M., Ghiasi, M.A., Xu, Z., Dickerson, J., Studer, C., Davis, L.S., Taylor, G., Goldstein, T.: Adversarial training for free! Advances in Neural Information Processing Systems **32** (2019)
- 5. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: Revisiting adversarial training. Learning (2020)

- 4 Z. Wang et al.
- Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International conference on machine learning. pp. 7472–7482. PMLR (2019)