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Fig. 1: Robust oriented object detection results with point-axis representation.

Abstract. This paper introduces the point-axis representation for ori-
ented object detection, as depicted in aerial images in Figure 1, em-
phasizing its flexibility and geometrically intuitive nature with two key
components: points and axes. 1) Points delineate the spatial extent and
contours of objects, providing detailed shape descriptions. 2) Axes de-
fine the primary directionalities of objects, providing essential orientation
cues crucial for precise detection. The point-axis representation decouples
location and rotation, addressing the loss discontinuity issues commonly
encountered in traditional bounding box-based approaches. For effective
optimization without introducing additional annotations, we propose the
max-projection loss to supervise point set learning and the cross-axis loss
for robust axis representation learning. Further, leveraging this repre-
sentation, we present the Oriented DETR model, seamlessly integrating
the DETR framework for precise point-axis prediction and end-to-end
detection. Experimental results demonstrate significant performance im-
provements in oriented object detection tasks.

Keywords: Oriented Object Detection, Aerial Object Detection, Point-
Axis Representation, Detection Transformer
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Fig. 2: Mainstream oriented object representations. (a) is the rotated bounding box
representation, (b) is the point set representation, and (c) is the point-axis representa-
tion we propose.

1 Introduction

Oriented object detection [1–5] is an important task in computer vision and
has raised remarkable research interests in the community. Compared to vanilla
object detection [6–11] which only outputs the horizontal bounding box aligned
with the image’s axis, oriented object detection requires a more flexible and
accurate approach to handle non-axis aligned objects.

Current methods for oriented object detection predominantly rely on rotated
bounding boxes to represent objects, as illustrated in Figure 2 (a). Despite varia-
tions in their definitions, these methods all encounter a common challenge known
as loss discontinuity, stemming from abrupt changes in rotation degree or height-
width definitions. Angle-based methods [12–15] define a rotated bounding box as
(x, y, w, h, θ), where x and y denote the center point location, w and h represent
the width (short edge) and height (long edge), and θ denotes the orientation
angle between the long edge of the box and the horizontal axis. Although these
methods are effective in most cases, they suffer from a critical issue: when the
lengths of the long and short edges are similar, the angle θ can switch between θ
and θ±90◦, leading to discontinuities in the loss function. This switching behav-
ior makes it difficult for the model to learn stable and consistent representations,
thereby affecting detection performance.

Quadrilateral methods [16–18], on the other hand, determine a rotated bound-
ing box using an outer horizontal box and offsets from its four corners, denoted
(x, y, w, h, l1, l2, l3, l4). While these methods provide more flexibility in represent-
ing objects’ shapes and orientations, they also encounter ambiguous definitions.
Specifically, when an object approaches a horizontal orientation, it encounters
ambiguous definitions that the offset could change abruptly, as is the case shown
in the bottom of Figure 2 (a). Other variant definitions, such as those based on
box boundary vectors [19], middle lines [20], or Gaussian distributions [21, 22],
also face various representation issues, for example, the square problem [23,24].
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Recent research has drawn attention to object representations based on point
set [25, 26] as a promising approach to address these challenges. In these ap-
proaches, each object is represented as a collection of points. These methods
then determine the object’s bounding boxes by computing the minimum area
rectangle enclosing these points. While these point set-based approaches excel at
capturing the detailed locations of targets, their effectiveness heavily relies on the
quality and quantity of the predicted points. Moreover, they often disregard the
primary directionalities of objects, which can hinder their ability to accurately
detect targets with complex shapes. In such cases, the computed rectangles may
fail to adequately enclose the targets, as illustrated in Figure 2 (b).

To overcome existing limitations, we present an innovative point-axis rep-
resentation that offers a divide-and-conquer approach for describing oriented
objects, as illustrated in Figure 2 (c). Unlike methods that rely on direct ori-
entation regression, our technique leverages a more flexible and geometrically
intuitive framework centered on point sets and axes.

This representation emphasizes two pivotal aspects.

– Points for Shape Descriptions: The use of points to delineate the spatial
extent and contours of objects provides a detailed shape representation. This
aspect is crucial, especially when dealing with irregularly shaped objects
that traditional bounding box-based methods might struggle to accurately
describe.

– Axes for Orientation Cues: Beyond shape information, knowing the pri-
mary directionalities of objects is essential for precise detection. Axes provide
these orientation cues, which are particularly important when keypoints can
appear in near-circular shapes.

Our point-axis representation effectively disentangles location and rotation, fa-
cilitating a more flexible and continuous modeling approach for both aspects.
Additionally, the axis representation is axis-order invariant, implying that it
neither prioritizes one axis over another nor defines an object’s long side. This
attribute addresses the boundary discontinuities encountered in rotated bound-
ing box-based methods, bolstering our method’s resilience when handling objects
with near-square or near-circular shapes. Consequently, this leads to more robust
optimization and consistent prediction. For effective optimization, we devise two
specialized loss functions.

– Max-Projection Loss: This loss function is introduced to supervise point
set learning and facilitate object convergence without explicit keypoint an-
notations. It encourages the model to learn the optimal set of points that
best represent the shape and contours of the object. By focusing on the
projection of points onto the object’s boundary, this loss function helps the
model converge toward a more accurate representation of the object’s spatial
extent.

– Cross-Axis Loss: Designed for robust axis representation learning, cross-
axis loss transforms axis representation into label encoding. This is achieved
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by discretizing angles into bins and applying smoothing to enhance robust-
ness. The resulting label encoding yields a cross-axis shape with four peaks,
representing the primary directionalities of the object. We utilize cross-
entropy loss to supervise this learning process.

Building on this flexible representation, we propose the Oriented-DETR
model. This model extends the end-to-end detection Transformer framework
with point-axis prediction. Specifically, our model introduces conditioned point
queries and a points detection decoder to predict points. It leverages group self-
attention to facilitate information interaction between point queries, enabling the
capture of relationships between points and iterative refinement through multiple
layers. Experimental results demonstrate effectiveness in main datasets, showing
significant performance improvements in oriented object detection tasks.

2 Related Work

2.1 Oriented Object Detection

Oriented object detection faces the challenge of accurately representing objects
with arbitrary orientations, whose axes often do not align with the image axes.
While numerous studies [12, 27–30] have emphasized feature extraction tech-
niques for such objects, the representation of oriented objects remains a fun-
damental issue. One common approach is the use of rotated bounding boxes.
This representation has led to numerous research efforts aimed at enhancing its
robustness. Some methods [13, 15, 21, 22, 31] utilize (x, y, w, h, θ) to define each
rotated bounding boxes. They focus on addressing the boundary issues caused by
the periodicity of angles, such as CSL [13], which resolves the angular periodicity
problem by transforming angle regression into a classification problem. However,
these methods overlook the fundamental flaws in definition boundaries, which
also lead to discontinuous loss. Some methods use different descriptions. Gliding
Vertex [17] and RSDet [16] propose to describe objects using the outer horizon-
tal bounding box along with the offsets of the four vertices. However, They also
encounter the issue of vertices regression order. Oriented Reppoints [26] and OS-
KDet [32] introduce point representation for oriented objects. Although avoiding
the issue of abrupt definition changes, these point-based methods struggle to ac-
curately describe both the position and orientation of shape-irregular objects.
STD [33] employs a strategy of decoupling spatial transforms sequentially while
CrackDet [34] partitioning the 180-degree regression task into four sub-tasks.
Compared to these methods, our Point-Axis representation introduces, for the
first time a decoupled representation of position and orientation for oriented
object detection.

2.2 Detection Transformers

The Transformer framework [35] has emerged as a promising approach for various
computer vision tasks [36–40], especially for object detection [41–45]. Compared
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Fig. 3: The overall framework of the point-axis representation. (a) provides a visual de-
piction of the representation method. (b) outlines the overall process of loss constraints.
(c) introduces the key loss, max projection loss, proposed by us for supervising the point
set learning.

to traditional CNN-based detectors [6,8,9,46,47], DETR offers a simpler design,
end-to-end optimization, and improved accuracy and scalability [48–52]. Several
studies [53–55] have attempted to adapt the DETR framework for oriented object
detection. Typically, these methods model object queries as rotated bounding
boxes and refine them using a transformer decoder. However, they neglect the
fact that the iterative updating of queries by the previous DETR decoder [43,48]
is based on the premise that horizontal boxes are aligned with the image axes.
Furthermore, they suffer from the previously discussed representation issues of
oriented objects. In this study, we seamlessly integrate the point-axis represen-
tation with the DETR framework to resolve the aforementioned issues.

3 Oriented DETR with Point-Axis Representation

In this section, we introduce the point-axis representation and elaborate on its
implementation, along with the corresponding loss constraints. Using this repre-
sentation as a foundation, we present the Oriented DETR model and detail its
architectural framework, emphasizing the design of the point-axis prediction.

3.1 Point-Axis Representation

We propose the point-axis representation, as illustrated in Figure 3 (a). In
this representation, each oriented object i is defined by a combination of a
set of points Pi and an axis representation Ai. The set of points, denoted as
Pi = {pji}j=1,2,...,K , comprises K points, with the K-th point designated as the
object’s center. For the axis representation, we discretize directions into bins and
apply Gaussian smoothing to generate a four-peak label encoding that represents
the primary directionalities of the object. Notably, our representation exhibits
the following advantages:
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– The decoupling of orientation from the bounding box prevents abrupt changes
at boundaries that occur due to the coupled definition in methods based
on rotated bounding boxes. This separation ensures a smoother transition
between orientations, enhancing the stability and reliability of the represen-
tation for oriented objects.

– Employing circular labels ensures the consistency of angles at both the be-
ginning and end of the defined range, thereby avoiding abrupt losses caused
by angle periodicity. For instance, labels for 0◦ and 360◦ are identical, min-
imizing loss between 0◦ and 359◦. This approach maintains continuity and
smoothness in representing angles, enhancing the robustness and effective-
ness of the orientation encoding process.

The point-axis representation provides a detailed depiction of oriented objects
by incorporating positional information via point sets and directional details
through axes. In the following sections, we delve into the loss constraints asso-
ciated with this representation, elucidating how they contribute to the overall
effectiveness of our approach.

Point-Axis Loss Functions. Toward effective model optimization, we propose
two specialized loss functions as depicted in Figure 3 (b). For each object i, we
initially transform its ground truth bounding box, defined by four coordinates
{(xj

i , y
j
i )}j=1,2,3,4, into a central point Ci = {(xc

i , y
c
i )}, accompanied by radial

vectors extending from the central point to the edges of the bounding boxes
Vi = {vji }j=1,2,3,4. From these vectors, we derive Ai. Subsequently, our model
generates a set of points P̂i and predicted axis encoding Âi. Finally, we enforce
constraints on these predictions using max-projection loss and cross-axis loss.

The overall Point-Axis loss function is defined as:

L =
1

N

N∑
i=1

(λ1Lproj(P̂i,Vi, Ci) + λ2Lca(Âi,Ai)), (1)

where N is the total number of instances, λ1 and λ2 are balancing coefficients,
Lproj denotes our proposed max-projection loss, and Lca represents the cross-
axis loss. We will now detail each loss function.

Max-Projection Loss. The max-projection loss is concise and easy to imple-
ment, with the computation process illustrated in Figure 3 (c). For the i-th
object with its predicted point set P̂i, we first convert it into a vector repre-
sentation relative to Ci: V̂i = {v̂ji }j=1,2,...,K . We then project each vector onto
the elements of Vi, selecting the element with the maximum projection value for
optimization. The optimization objective is intuitively depicted in Figure 3 (c)
and mathematically expressed as:

minimize
4∑

j=1

∣∣∣∣ max
m=1,2,. . . ,K-1

(
(v̂m

i −vj
i )·v

j
i

∥vj
i ∥

)∣∣∣∣+ ∥v̂Ki ∥. (2)
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Fig. 4: The architecture of Oriented DETR.

It is worth noting that the max-projection loss does not impose auxiliary con-
straints on non-projected local maxima in the set, which reduces the ambiguity
in optimization direction and enhances the flexibility of point set description.

Cross-Axis Loss. The cross-axis loss is implemented using the cross-entropy
loss, the mathematical expression of the optimization objective is as follows:

minimize
1

Nbins

Nbins∑
j=1

[
Aj

i log Â
j
i + (1−Aj

i ) log(1− Âj
i )
]
. (3)

where Nbins is the number of bins for discretizing directions, with a default
setting of 360. During inference, we take the argmax of these bins to obtain the
principal direction, and then expand to the other three directions at intervals of
90 degrees.

3.2 Architecture

The model architecture of Oriented DETR is depicted in Figure 4. Following the
typical DETR framework, given an input image ximg ∈ R3×H×W, it initially ex-
tracts features using a backbone and enriches them with global context through
a transformer encoder. Subsequently, based on the scores corresponding to the
features, it selects the top N as object queries Qo ∈ RN×dim, where N is the pre-
defined maximum instance numbers. Our key design involves initializing point
queries using an object-to-point query conversion function and enabling interac-
tion among point queries using a points detection decoder. Finally, a prediction
head is employed to generate the output.

Object-to-Point Query Conversion. For the i-th object query Qi
o with its

reference point (xi
ref , y

i
ref ), we convert it into K point queries {Q(i,j)

p }j=1,2,...,K

that are conditioned on Qi
o. Among these, Q(i,K)

p is defined as the center point
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query corresponding to the definition of Pi. Following the common practice in
DETR frameworks, we decompose the query into positional embeddings and
content embeddings. For the center point query Q

(i,K)
p , we predict the offsets

(∆xi, ∆yi) of the center point relative to the reference point (xi
ref , y

i
ref ) using a

multi-layer perceptron (MLP) layer:

{∆xi, ∆yi} = MLP (Qi
o). (4)

The positional embedding PK
i for the center point query is then generated by

concatenating the positional encodings of the updated center point coordinates:

PK
i = Concat(PE(xi

ref +∆xi), PE(yiref +∆yi)), (5)

where PE is a positional encoding function.
For the other point queries, we generate their positional embeddings based on

the polar coordinates. Initially, we define K−1 equidistant angles {θj}j=1,2,...,K−1

and establish a polar coordinate system with (xi
ref , y

i
ref ) as the origin. Subse-

quently, we utilize an MLP layer to predict the polar coordinates of the object
boundary in these directions and generate P j

i as follows:

{∆rij}j=1,2,...,K−1
=MLP (Qi

o),

P j
i = Concat(PE(xi

ref +∆rij · cos θj), PE(yiref +∆rij · sin θj)).
(6)

Finally, we use Qi
o as the content embedding for all point queries to construct

the initial point queries conditioned on i-th instance.

Points Detection Decoder. In the DETR framework, the decoder plays a
pivotal role in facilitating information exchange between different components.
It typically consists of self-attention mechanisms to enable interaction among
queries and cross-attention mechanisms to promote interaction between queries
and image features. Oriented DETR extends this concept by introducing a points
detection decoder specifically designed to handle point queries. The point detec-
tion decoder in Oriented DETR comprises two key modules: the point-to-point
attention module and the object-to-object attention module, as illustrated in
Figure 4 (b).

In the point-to-point attention module, we divide point queries into N groups
according to their corresponding instances, and each group contains K point
queries. Then we apply a parameter-shared self-attention layer within each group
to capture the relationships between points. In object-to-object attention, we
extract the center point query from each instance to form a new group Gc =

{Q(i,K)
p }i=1,2,...,N and apply self-attention within this new group to capture re-

lationships between objects. Afterward, all queries are passed through a de-
formable cross-attention module and a FFN module for further processing.

Prediction Head. In the prediction head, for each instance i, each point query
Qj

i is mapped to a 2D point coordinate p̂ji , while its class ĉi and axis Âi are
mapped from all its conditioned point queries {Q(i,j)

p }j=1,2,...,K .
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4 Experiment

4.1 Evaluation Datasets

DOTA [1] is a large oriented object detection dataset comprising 2,806 images
and 188,282 instances distributed across 15 categories, with a substantial varia-
tion in orientations, shapes, and scales. The image sizes range from 800×800 to
4000×4000. The split ratio for training, validation, and testing sets is 3:1:2. Ac-
cording to the official toolkit, DOTA has two evaluation protocols: 1) single-scale
training and testing 2) multi-scale training and testing. For single-scale training
and testing, the training and testing images are cropped into 1024×1024 patches
with a stride of 824. For multi-scale training and testing, the raw pictures are
first resized at three scales (0.5, 1.0, and 1.5) and then cropped into 1024×1024
patches with a stride of 524.

DIOR-R [3] is constructed based on DIOR [56], with the addition of annotations
for rotated bounding boxes. It comprises 23,463 images with a size of 800×800
pixels, totaling 190,288 oriented instances across 20 categories. The dataset is
divided into training, validation, and testing sets with a ratio of 1:1:2.

HRSC2016 [57] is a renowned dataset for ship detection, comprising 1,061 im-
ages collected from ports with sizes ranging from 300×300 to 1500×900. The
training, validation, and testing sets consist of 436, 181 and 444 images, respec-
tively.

In addition to the above datasets for oriented object detection, we also extend
our model to handle general object detection tasks. To this end, we evaluate our
approach on the COCO2017 [58] dataset, which is a widely used benchmark
for general object detection. It allows us to demonstrate the versatility and
generalizability of our proposed approach.

4.2 Implementation Details

When comparing with other methods on DOTA, DIOR-R, and HSRC2016, we
use training and validation set for training and testing set for evaluation. The
extension experiments on COCO are conducted by training on the training set
and evaluating on the validation set. For DOTA, DIOR, and COCO, we train
the model for 36 epochs, with a learning rate reduction at epochs 27 and 33. For
HSRC2016, we train the model for 50 epochs, with learning rate reductions at
epochs 33 and 45. We use the AdamW optimizer with an initial learning rate of
0.0001 and weight decay of 0.0001. Training is performed on 4 RTX 4090 GPUs
with a total batch size of 8. Inference is performed on a single RTX 4090 GPU.
The complete hyperparameters can be found in the supplementary file.

4.3 Ablation Study and Analyses

The key components of Oriented DETR are the point-axis representation and
the points detection decoder. In our ablation study, we analyze these crucial com-
ponents with ResNet-50 as backbone, training on the training set and evaluate
on the evaluating on the validation set. Default settings are marked in gray .
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Fig. 5: The dis-
tributions of pre-
dicted axes for ob-
jects without clear
orientation defini-
tion.
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Fig. 6: Visualization of results under different numbers of points.

Axis Representation Learning. To understand the behavior of axis predic-
tions, we visualize their distributions for various objects in the DOTA dataset.
As shown in Figure 1, for most objects, the axis predictions accurately capture
the directional information. However, we also identify some anomalous distribu-
tions. Upon closer inspection, these anomalies often correspond to objects that
lack an overall clear directional definition, such as certain swimming pools, as
illustrated in Figure 5. It’s worth noting that even in the DOTA dataset, anno-
tations for such objects exhibit ambiguity. Nevertheless, our model is capable of
learning the directional information for these objects and providing predictions
that cover all possible directions through distributions. This analysis highlights
the robustness of our approach in handling objects with varying degrees of direc-
tional clarity and demonstrates its ability to provide meaningful predictions even
in the presence of annotation ambiguities. Additional visualizations of predicted
axis distributions can be found in the supplementary file.

Number of Points. We investigate the influence of K (the number of points
representing each object) on model performance. Table 1 and Figure 6 respec-
tively present quantitative metrics and visual results. Statistically, increasing
the number of points from 5 to 13 yielded a modest improvement of 0.49%
for mAP50 and 0.50% for mAP75. Visually, augmenting the number of points
facilitates more precise localization. Nonetheless, even with only four boundary
descriptor points at K = 5, predictions can still be accurately translated into
rotated bounding boxes, predominantly owing to the auxiliary axis predictions.

Point Loss Constraints. In our method, the max-projection loss only imposes
constraints on the maximum projection value in each direction. We seek to ex-
plore whether incorporating additional constraints could enhance supervision.
Initially, we experiment by calculating the loss for all points located outside the
ground-truth box and incorporating this into the penalty term. Furthermore, we
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Table 1: Performance comparison
with different numbers of points.

Values of K 5 9 13 16 19

mAP50 74.86 74.93 75.35 75.53 75.10

mAP75 49.64 49.98 50.14 50.03 49.60

Table 2: Performance comparison
with different point constraints.

Loss Max-Projection
Max-Projection variants

w.penalty top-2 top-3

mAP50 75.35 75.20 74.77 73.20

mAP75 50.14 50.02 49.36 47.88

Table 3: Ablation study on the design of the Points Detection Decoder.

Baseline Decoder components

Point Queries? ✓ ✓ ✓
Group Self-Attention? ✓ ✓

Decouple Cross-Attention? ✓

mAP50 72.80 70.98 74.21 75.35 (↑ 2.55)
mAP75 45.25 44.06 48.30 50.14 (↑ 4.89)

also attempt to constrain the top-k values of the projection, rather than solely
focusing on the maximum value. However, the experimental result in Table 2
indicates that introducing additional penalties and increasing loss constraints
don’t result in improved accuracy. Specifically, when considering the top-k vari-
ant, we observe a notable decrease in accuracy when k = 2. We hypothesize
that imposing excessive constraints may diminish the flexibility of the point set
representation, ultimately leading to ambiguous optimization directions.
Points Detection Decoder. We conduct ablation experiments on different
components of the points detection decoder, with the results shown in Table 3.
Starting from a two-stage deformable DETR [42] (object queries in the decoder
are generated from encoder output features) and retaining the object queries
design, we utilize each object query to predict a set of points and an orienta-
tion axis, which serves as our baseline. This yields a mAP50 of 72.80% and a
mAP75 of 45.25%. Subsequently, we model queries as dynamic points and use a
vanilla self-attention layer to handle interactions between point queries, result-
ing in decreases of 1.82% for mAP50 and 1.19%for mAP75. We attribute this
to the ambiguity in the interaction between point queries of different objects.
Therefore, we adopt group self-attention, initially grouping point queries by in-
stances and then performing self-attention operations within each group, which
significantly improves detection accuracy. Further, we decouple the deformable
cross-attention modules for center point queries and boundary point queries to
facilitate specialized feature learning, further improving its performance. Ulti-
mately, the design of the points detection decoder leads to increases in accuracy
of 2.55% for mAP50 and 4.89% for mAP75.

4.4 Comparison with State-of-the-Art Methods

Results on DOTA. We firstly conduct a fair comparison with state-of-the-art
methods using the single-scale training and testing protocol, as commonly em-
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Fig. 7: Visualization of results from Oriented DETR in DOTA.

ployed in most papers. The results are presented in Table 4. Using ResNet50 [59]
and Swin-T [60] as backbones, Oriented DETR achieved mAP50 of 79.1% and
79.8% respectively, outperforming all previous methods. Using the same back-
bone, Oriented DETR outperforms the point-based representation method Ori-
ented Reppoints by 2.2%. Compared to end-to-end DETR-based methods EMO2-
DETR, ARS-DETR, and AO2-DETR, it achieves performance gains of 7.5%,
4.3%, and 1.4%, respectively. Table 5 shows a systematic comparison (multi-
scale training and testing) with others. Using Swin-L as the backbone, we achieve
an mAP50 of 82.26%, surpassing the previous leading method, LSKNet, by
0.41%, and outperforming the best DETR-based method, AO2-DETR, by 3.04%.
The visualization results are shown in Figure 7.

Results on DIOR. Table 6 shows our results on the DIOR dataset which has
a richer variety of targets in terms of quantity and categories. using Swin-T as
the backbone, Oriented DETR achieves an mAP50 of 74.26%, surpassing the
previous best method by 3.21%. Using ResNet50 as the backbone, Oriented
DETR achieves an mAP50 of 66.80%, surpassing the best method with the
same backbone by 2.89%.
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Table 4: Comparison with state-of-the-art methods on DOTA under single scale train-
ing and testing protocol. Best in bold.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

one-stage methods
R3Det [63] R-152 89.5 81.2 50.5 66.1 70.9 78.7 78.2 90.8 85.3 84.2 61.8 63.8 68.2 69.8 67.2 73.7
SASM [64] R-50 86.4 79.0 52.5 69.8 77.3 76.0 86.7 90.9 82.6 85.7 60.1 68.3 74.0 72.2 62.4 74.9
GGHL [65] Darknet53 89.7 85.6 44.5 77.5 76.7 80.5 86.2 90.8 88.2 86.3 67.1 69.4 73.4 68.5 70.1 77.0

Orient-Rep [26] Swin-T 89.1 82.3 56.7 75.0 80.7 83.7 87.7 90.8 87.1 85.9 63.6 68.6 75.9 73.5 63.8 77.6
DHRec [66] R-101 88.8 82.1 55.7 72.0 77.8 79.1 88.0 90.9 84.0 85.8 58.0 66.6 74.5 70.6 57.3 75.4
DCFL [67] ReR101 - - - - - - - - - - - - - - - 75.4

PSC [15] Darknet53 89.9 86.0 54.9 62.0 81.9 85.5 88.4 90.7 86.9 88.8 63.9 69.2 76.8 82.8 63.2 78.1

two-stage methods
SCRDet [68] R-101 90.0 80.6 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6

RoI-Trans [12] R-101 88.6 82.6 52.5 70.9 77.9 76.7 86.9 90.7 83.8 82.5 53.9 67.6 74.7 68.8 61.0 74.6
G. Vertex [17] R-101 89.6 85.0 52.3 77.3 73.0 73.1 86.8 90.7 79.0 86.8 59.6 70.9 72.9 70.9 57.3 75.0

CSL [13] R-152 90.3 85.5 54.6 75.3 70.4 73.5 77.6 90.8 86.2 86.7 69.6 68.0 73.8 71.1 68.9 76.2
O-RCNN [27] R-101 88.9 83.5 55.3 76.9 74.3 82.1 87.5 90.9 85.6 85.3 65.5 66.8 74.4 70.2 57.3 76.3

ReDet [28] ReR50 88.8 82.6 54.0 74.0 78.1 84.1 88.0 90.9 87.8 85.8 61.8 60.4 76.0 68.1 63.6 76.3
OSKDet [32] R-101 90.1 87.1 54.2 75.6 72.6 76.9 87.6 90.8 79.1 86.9 59.9 71.3 75.2 71.7 66.7 76.4

RVSA [69] ViTAE-B 89.4 84.3 59.4 73.2 80.0 85.4 88.1 90.9 88.5 86.5 58.9 72.2 77.3 79.6 71.2 79.0
ARC [29] ARC-R101 89.4 83.6 57.5 75.9 78.8 83.6 88.1 90.9 85.9 85.4 64.0 68.7 75.6 72.0 65.7 77.7

COBB [70] ResNet50 - - - - - - - - - - - - - - - 76.6
PKINet [71] PKINet-S 89.7 84.2 55.8 77.6 80.3 84.5 88.1 90.9 87.6 86.1 66.9 70.2 77.5 73.6 62.9 78.4

DETR based end-to-end methods
AO2-DETR [54] R-50 89.3 85.0 56.7 74.9 78.9 82.7 87.4 90.5 84.7 85.4 62.0 70.0 74.7 72.4 71.6 77.7

EMO2-DETR [53] Swin-T 89.0 79.6 48.7 60.2 77.3 76.4 84.5 90.8 84.8 85.7 48.9 67.6 66.3 71.5 53.5 72.3
ARS-DETR [55] Swin-T 87.7 76.5 50.6 69.9 79.8 83.9 87.9 90.3 86.2 85.1 54.6 67.0 75.6 73.7 63.4 75.5

Our Oriented-DETR R-50 89.2 86.4 57.7 75.3 81.1 84.7 89.1 90.9 86.1 87.0 59.5 70.3 79.3 81.5 68.8 79.1
Our Oriented-DETR Swin-T 89.4 85.1 57.8 75.0 81.2 86.1 89.1 90.9 88.7 87.0 62.9 69.1 80.7 82.8 71.0 79.8

Table 5: System comparison with state-of-the-art methods on DOTA.

Methods EMO2-DETR [53] SASM [64] AO2-DETR [54] ReDet [28] R3Det-KLD [22] AOPG [72] O-RCNN [27]
mAP50 78.46 79.17 79.22 80.10 80.63 80.66 80.87

Methods KFIoU [14] RVSA [69] RTMDet-L [73] ARC [29] LSKNet-S [30] Ours(Swin-T) Ours(Swin-L)
mAP50 80.93 81.24 81.33 81.77 81.85 81.78 82.26

Results on HRSC2016. On the HRSC2016 dataset, Oriented DETR achieves
competitive results, as shown in Table 7. Oriented DETR achieves the highest
accuracy of 98.02% under the PASCAL VOC 2007 [61] metrics and achieves the
second-best accuracy of 90.56% under the PASCAL VOC 2012 [62] metrics,
with a slight disadvantage compared to the previous best method (90.60%).
On the HRSC2016 dataset, objects tend to have large aspect ratios and simple
shapes, making the boundary issues almost non-existent for methods based on
rotated bounding boxes of long-edge definition. Despite not having a significant
advantage in accuracy, we have demonstrated the generalization capability of
Oriented DETR across different scenarios.

4.5 Extension to General Object Detection Task

We extend Oriented DETR to general object detection which only needs to
output horizontal detection boxes and use COCO for evaluation. Concretely, we
consider the axes of objects to be fixed in the horizontal and vertical directions,
and remove the prediction and supervision for axes. Table 8 lists the experimental
results, showing that Oriented DETR still maintains a precision advantage over
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Table 6: Performance comparisons on
the DIOR-R dataset.

Methods Backbone mAP50

Gliding Vertex [17] R50 60.06
TIOE-Det [74] R50 61.98
ROI-Trans [12] R50 63.87

AOPG [72] R50 64.41
O-RCNN [27] R50 64.30

ARS-DETR [55] R50 66.12
AO2-DETR [54] R50 66.41

GGHL [65] R50 66.48
Oriented RepPoints [26] R50 66.71

DCFL [67] R50 66.80
DCFL [67] ReR101 71.03
RVSA [69] ViTAE-B 71.05

Our Oriented-DETR R50 69.69
Our Oriented-DETR Swin-T 74.26

Table 7: Performance comparisons on the
HSRC2016 dataset.

Methods Backbone mAP(07) mAP(12)

ROI-Trans [12] R101 86.20 -
AO2-DETR [54] R50 88.12 97.47

R3Det [63] R101 89.26 96.01
GWD [75] R101 89.85 97.37

OSKDet [32] R101 89.98 -
PSC [15] DarkNet53 90.06 -

AOPG [72] R101 90.34 96.22
Oriented Reppoints [26] R50 90.38 97.26

ARC [29] ARC-R50 90.41 -
ReDet [28] ReR50 90.46 97.63

Oriented-RCNN [27] R101 90.50 97.60
RTMDet [73] RTM-L 90.60 97.10

Our Oriented-DETR R50 90.52 97.73
Our Oriented-DETR Swin-T 90.56 98.02

Table 8: Results on COCO val.

Methods Backbone Epoches AP AP50 AP75 APS APM APL

baseline methods
DETR [41] R-50 500 43.3 63.1 45.9 22.5 47.3 61.1

Deformable-DETR [42] R-50 50 43.8 62.6 47.7 26.4 47.1 58.0
Deformable-DETR† [42] R-50 50 46.2 65.2 50.0 28.8 49.2 61.7

DAB-DETR [43] R-50 50 45.7 66.2 49.0 26.1 49.4 63.1
DAB-Deformable-DETR†‡ [43] R-50 50 49.7 68.2 54.3 32.0 52.9 65.3

Our Oriented-DETR R-50 36 50.5 68.1 55.1 33.2 53.5 65.0

methods based on training strategies
DN-Deformable-DETR [76] R-50 50 48.6 67.4 52.7 31.0 52.0 63.7

H-Deformable-DETR [49] R-50 36 50.0 - - 32.9 52.7 65.3
DINO-4scale [48] R-50 36 50.9 69.0 55.3 34.6 54.1 64.6

Group-DINO-4scale [77] R-50 36 51.3 - - 34.7 54.5 65.3
†: two-stage.
‡: better result from detrex [78].

other DETR baseline methods. Future work could explore combining Oriented
DETR with more advanced training strategies, such as those proposed in [48,
49,76,77], to further enhance its performance and versatility.

5 Conclusions

This paper proposes the point-axis representation, which provides a stable rep-
resentation for aerial-oriented object detection by decoupling the location and
orientation information, accompanied by the point-axis loss functions to super-
vise both the point set and the axis without introducing additional annotations.
Leveraging this representation, we present the Oriented DETR model which in-
tegrates the DETR framework for precise point-axis prediction and end-to-end
detection, showing significant performance improvements in aerial-oriented ob-
ject detection tasks. In the future, we hope this representation could be extended
to detecting arbitrary polygonal bounding boxes. The code will be made publicly
available to facilitate easy reproduction.
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