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Abstract. In this appendix, we present more details about our exper-
imental benchmarks, class-wise performance, and efficiency comparison,
and more qualitative comparison with previous methods. Firstly, bench-
marks details including class mapping and data preparation procedures
are thoroughly illustrated. Secondly, we provide the detailed description
of implementation details and baseline settings for all previous methods
we compare Latte with. Thirdly, we illustrated the class-wise perfor-
mance and online efficiency for further analysis. Fourthly, more quali-
tative comparisons with previous SOTA methods are illustrated to justify
the effectiveness of Latte.

1 Benchmark Details

As mentioned in Sec. 4.1, we conduct our experiments on three different MM-
TTA benchmarks, including USA-to-Singapore (U-to-S), A2D2-to-SemanticKITTI
(A-to-S), and Synthia-to-SemanticKITTI (S-to-S). Here we provide more details
about the included benchmarks.

1.1 USA-to-Singapore

For U-to-S, we adopt a similar setting of most previous MM-UDA methods [3,8,
11], while the major difference lies in two points. Firstly, considering both source
and target domains are derived from NuScenes [2] with the same class map, we
discard the commonly used class mapping [3, 8] that alleviate the segmentation
challenges and directly utilize the original semantic categories from NuScenes.
Secondly, we release the restriction that only utilizes the points located in the
front camera view and leverage points of full range for 3D networks pre-training
and online updating instead. We modify this setting since SPVCNN [14] usu-
ally performs better when receiving the full range of point clouds. Furthermore,
different from other MM-TTA methods, Latte can sometimes leverage the out-
of-view points through spatial-temporal revisiting (e.g ., Latte can refer to points
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Table 1: Class mapping of the benchmark A2D2-to-SemanticKITTI.

A-to-S Class A2D2 classes SemanticKITTI classes
car Car 1-4, Ego car car, moving-car
truck Truck 1-3 truck, moving-truck

bike Bicycle 1-4, Small vehicles 1-3
bicycle, motorcycle, bicyclist, mo-
torcyclist, moving-bicyclist, moving-
motorcyclist

person Pedestrian 1-3 person, moving-person

road

RD normal street, Zebra crossing, Solid
line, RD restricted area, Slow drive
area, Drivable cobblestone, Dashed line,
Painted driv. instr.

road, lane-marking

parking Parking area parking
sidewalk Sidewalk, Curbstone sidewalk
building Buildings building
nature Nature object vegetation, trunk, terrain

other-
objects

Traffic signal 1-3, Traffic sign 1-3, Side-
bars, Speed bumper, Irrelevant signs,
Road blocks, Obstacles/trash, Animals,
Signal corpus, Electronic traffic, Traffic
guide obj, Grid structure, Poles

fence, traffic-sign, other-object

Table 2: Class mapping of the benchmark Synthia-to-SemanticKITTI. Class names
in red contain zero pixels in Synthia [12]

S-to-S Class Synthia classes SemanticKITTI classes
car car, bus, truck car, moving-car, truck, moving-truck

bike bicycle, motorcycle, rider
bicycle, motorcycle, bicyclist, mo-
torcyclist, moving-bicyclist, moving-
motorcyclist

person pedestrian person, moving-person
road road, lanemarking, parking-slot road, lane-marking, parking
sidewalk sidewalk sidewalk
building building, wall building
nature vegetation, terrian vegetation, trunk, terrain
pole pole pole
other-
objects fence, traffic-sign, traffic-light fence, traffic-sign, other-object

out-of-view during a sharp turn). For MMTTA [13], we maintain their original
methodology to utilize the points within the camera field-of-view, while other
pseudo-label-based MM-TTA methods (including xMUDA+PL [8], PsLabel and
Latte) utilize the 3D teacher predictions after class-wise median filtering as in [8]
as the pseudo-labels for out-of-view points. Different from previous works based
on SCN [6] which discards the point-wise features, we preserve such meaningful
point-wise intensity as partial 3D input.

1.2 A2D2-to-SemanticKITTI

In terms of A-to-S, since the original class mapping is not identical across the
source and target domain, we utilize the same class mapping as in [3, 8, 11],
which is also detailed in Tab. 1. Considering A2D2 [5] only contains a limited
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range of point clouds with ground-truth labels, we follow the same protocol
of MMTTA [13], which utilizes the images from the front camera and points
within the camera FOV for pre-training and online adapting. Similar to U-to-S,
we preserve point-wise features (i.e., reflectivity for A2D2 [5] and intensity for
SemanticKITTI [1]) for 3D input, where different properties of these input fea-
tures cause domain shift between the source and target domain in 3D predictions,
causing the inferior performance of 3D source only predictions in Tab. 1.

1.3 Synthia-to-SemanticKITTI

The S-to-S benchmark is initially proposed in [13] to study a more challenging
MM-TTA scenario with significant domain shifts in both 2D and 3D inputs.
We attempt to follow the same setting as in [13], while some important details
(e.g ., class mapping and downsampling strategies) are missing from the official
benchmark description in their paper. To better facilitate the future exploration
of challenging MM-TTA scenarios, we re-construct the S-to-S benchmark in this
work, following the design details in [13] as much as we can. For class-mapping,
as some semantic classes shared across S-to-S contain zero pixels in Synthia [12]
(i.e., those highlighted in red in Tab. 2), we merge them into other classes to
avoid a redundant class mapping, resulting in a 9-class segmentation benchmark.
On the other hand, instead of randomly downsampling the dense depth images
of Synthia to sparse point clouds as in [13], we adopt a more vivid sampling
strategy same as [4] to imitate the point cloud pattern recorded by sweeping
LiDAR sensors. Since raw 3D input from Synthia does not contain point-wise
features as the other two benchmarks, we empirically replace point-wise features
with all-zero vectors for both source and target domain datasets.

2 Implementation Details and Baseline Settings

As mentioned in Sec. 4.1, we perform a parameter search for all baseline methods
to obtain their best performance for a fair comparison. Specifically, the hyper-
parameter search is conducted on U-to-S for all methods including Latte, starting
from the initial parameter settings during the pre-training stage and the official
settings of each baseline method. The optimal setting is subsequently applied to
the other two benchmarks.

2.1 Implementation details

Universal settings. During the pre-training stage, most settings are identical
to the default settings of backbones from both 2D and 3D modality. Specifically
for 3D SPVCNN [14], we follow the pre-training settings of previous works [4,7]
to set the initial learning rate to 0.001 with an Adam optimizer. The learning
rate is divided by 10 at 80k and 90k steps, while the total training iteration is
set to 100k. The voxel size of SPVCNN is set to 0.05m for all benchmarks. All
methods utilize a batch size of 6 by default.
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In terms of 2D SegFormer [18], most settings are universal across three bench-
marks, where the initial learning rate is set to 6E-5 with an AdamW optimizer
using the same configuration as in [18]. A Poly scheduler is additionally applied
to SegFormer to gradually decrease its learning rate and the total pre-training
iteration is also set to 100k. For all pre-training, SegFormer is initialized with the
parameters pre-trained on ADE20K [19] with an input resolution of 512×512.
Considering different datasets have different image resolutions, we slightly al-
ter the size augmentations for each benchmark to fully leverage the potential
of all methods. Specifically, for U-to-S, images from the source domain dataset
are firstly resized to 800×450 and then randomly cropped from the bottom to
450×450, while the bottom crop is discarded during adaptation and the whole
image is inferred in a slide-window manner with a window size of 450×450 and
a stride of 300×300. For A-to-S, the image augmentation on the source domain
dataset follows the same setting as in [7] and the inference protocols are identical
to U-to-S. For S-to-S, we change to resize the image into a shape of 640×380
followed by a bottom crop of 350×350 on the source domain dataset. The slide
window size and stride during inference are changed to 350×350 and 230×230,
respectively. During the online adaptation of all methods, we first reset the pa-
rameters of all normalization layers before adaptation. For methods based on
pseudo-label training, the class weights from the labeled source domain are in-
troduced to alleviate the class-imbalanced issue. Note that all Dropout layers
of both student and teacher models are disabled during the adaptation process.
For pose generation, we utilize the default settings of KISS-ICP [15] for each
dataset.

2.2 Baseline Specific Settings

TENT [16]. Since TENT does not contain any hyper-parameters for tunning,
we mainly adjust the learning rate of 2D and 3D backbones. Specifically, the
performance of TENT on U-to-S peaks when 2D and 3D learning rates are set to
6E-8 and 1E-4, respectively. We therefore utilize the same learning rate settings
for the other two benchmarks. In fact, most methods minimizing prediction
entropy favor smaller learning rates compared to pseudo-label-based methods.
ETA [9]. There exist two hyper-parameters in ETA, including entropy threshold
E0 and similarity threshold ϵ. Specifically, we found a combination of the default
E0 = 0.4× ln 103 and ϵ = 0.005 performs the best, while the optimal 2D and 3D
learning rates are 6E-7 and 1E-3, respectively. It is worth mentioning that ETA
requires more GPU memory compared to other methods and we alter its batch
size from 6 to 4 so that it can fit in a single RTX 3090.
SAR and SAR-rs [10]. Both SAR and SAR-rs perform similarly across dif-
ferent parameter settings, except for the 2D and 3D learning rates, where we
found the 2D and 3D learning rates of 6E-7 and 1E-3, respectively, achieve the
best performance.
MMTTA [13]. We mainly tune the 2D and 3D learning rate for MMTTA to
achieve its best performance for a fair comparison, where we found a 2D and 3D
learning rate of 6E-6 and 1E-3 as its optimal settings, respectively.
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Table 3: Class-wise performance and efficiency comparison on S-to-S. Note that
CoTTA [17] refers to its original version while CoTTA* is the variant that updates
only the parameters of normalization layers. “MM” and “MF” indicate whether the
method contains multi-modal or multi-frame learning, respectively. Here we report the
cross-modal prediction score for all methods. All inference time is evaluated with an
i7-12700 and an RTX 3090.
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Source only - - - 71.5 73.6 27.1 7.3 73.1 36.4 46.4 55.6 23.6 0.6 38.2
Oracle TTA - - - 71.5 79.1 32.0 18.4 86.0 57.3 69.4 77.4 33.0 39.2 54.6
TENT [16] ICML-21 ✗ ✗ 147.5 73.4 31.5 10.1 78.0 38.7 37.2 47.9 20.1 0.4 37.5
ETA [9] ICML-22 ✗ ✗ 103.8 65.0 13.9 3.1 67.7 33.4 40.6 45.6 25.2 1.6 32.9
SAR [10] ICLR-23 ✗ ✗ 180.3 70.2 17.8 5.1 71.8 35.9 39.2 45.2 10.2 0.5 32.9
SAR-rs [10] ICLR-23 ✗ ✗ 240.6 65.4 14.1 3.1 68.8 33.8 39.2 43.2 25.3 1.5 32.7
xMUDA [8] PAMI-22 ✓ ✗ 215.6 20.4 2.7 0.4 22.7 15.5 21.5 36.2 6.8 0.8 14.1
xMUDA+PL [8] PAMI-22 ✓ ✗ 215.9 67.0 26.5 0.3 52.4 37.0 56.0 61.9 25.5 0.2 36.3
MMTTA [13] CVPR-22 ✓ ✗ 197.3 65.7 20.1 8.4 51.5 26.6 58.4 61.4 27.0 0.2 35.5
PsLabel - ✓ ✗ 193.1 71.0 27.0 0.6 67.4 41.2 40.4 47.2 22.8 0.5 35.3
CoTTA [17] CVPR-22 ✗ ✓ 406.6 68.0 14.6 3.4 69.5 34.2 40.4 45.2 26.6 1.6 33.7
CoTTA* [17] CVPR-22 ✗ ✓ 327.3 67.9 14.8 3.5 69.2 34.1 40.5 45.5 27.0 1.5 33.8
Latte (ours) - ✓ ✓ 270.9 72.6 27.7 11.6 74.5 37.9 56.4 61.9 31.4 0.2 41.6

CoTTA [17]. CoTTA is a multi-frame baseline included in this appendix as an
additional comparison for the multi-frame efficiency of Latte. Here we include
two versions of CoTTA, including the original CoTTA (CoTTA) that updates
all parameters and its variant (CoTTA*) which only updates the parameters
of normalization layers as other methods. Both versions utilize a confidence
threshold of 0.9 and the same 2D and 3D learning rate of 6E-5 and 1E-3. CoTTA*
utilizes a batch size of 6, while the batch size of CoTTA is decreased from 6 to
4 due to its high occupancy of GPU memory.
xMUDA [8], xMUDA+PL [8], PsLabel, and Latte. For the remaining
methods, the 2D and 3D learning rates are set to 6E-5 and 1E-3, respectively,
while the cross-modal coefficient for xMUDA and xMUDA+PL is set to 0.1.

3 Class-wise Performance and Efficiency Comparison

To provide a more detailed performance and efficiency comparison between Latte
and previous methods, we include additional results of class-wise performance
and per-frame processing time on the challenging S-to-S benchmark. As shown
in Tab. 3, Latte can achieve consistent improvement on most semantic classes
compared with previous state-of-the-art MM-TTA methods (i.e., “✓” in the
“MM” column), where Latte significantly outperforms MMTTA [13] by relatively
17.2%. Compared with TTA methods, Latte achieves a more balanced class-wise
performance compared to TENT [16], achieving a relative improvement of 10.9%.

In terms of computational cost, we additionally compare our Latte with the
recent CoTTA [17] which stabilizes the noisy single-frame predictions by av-
eraging predictions from various augmented frames. Compared to the original
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Table 4: Supplementary comparison between Latte and combining existing TTA meth-
ods with cross-modal interaction. Here † denotes the Latte variant with window size
set to 1 while “xM” stands for the cross-modal scheme from xMUDA [8].

Method Publication U-to-S A-to-S S-to-S
2D 3D xM 2D 3D xM 2D 3D xM Avg

TENT+xM ICML-21 37.1 39.7 45.2 43.3 47.1 50.3 23.9 36.5 37.7 44.4
ETA+xM ICML-22 36.9 35.2 44.8 43.1 44.2 50.1 23.7 30.8 33.1 42.7
SAR+xM ICLR-23 36.9 39.4 45.5 43.1 46.3 50.5 22.8 32.8 34.5 43.5
SAR-rs+xM ICLR-23 36.9 36.8 45.0 43.1 45.6 50.5 23.8 30.7 33.1 42.9
Latte - 37.4 41.0 46.0 46.1 52.6 54.3 33.2 39.3 41.6 47.3
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Fig. 1: Qualitative comparison with ETA [9] and MMTTA [13] on S-to-S. Red boxes
highlight the area where Latte produces more accurate predictions compared to ETA
and MMTTA. Figure best viewed in color and zoomed in.

CoTTA and its efficient variant CoTTA*, Latte established a much more compu-
tationally efficient and effective strategy to mitigate the single-frame instability,
reducing the inference time relatively by 33.4% and 17.4% while achieving sig-
nificant improvements by 23.4% and 23.1%, respectively. This justifies both the
efficiency and effectiveness of Latte compared to previous multi-frame methods.

4 Comparision with TTA Methods with Multi-Modal
Interactions

Due to the fact that the pure single-modal learning scheme may severely hinder
the performance of existing TTA methods, we thus supplement the results with
existing TTA methods combined with a widely used cross-modal learning scheme
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Fig. 2: Qualitative comparison with ETA [9] and MMTTA [13] on U-to-S. Red boxes
highlight the area where Latte produces more accurate predictions compared to ETA
and MMTTA. Figure best viewed in color and zoomed in.

xMUDA [8] as in Tab. 4. Specifically, the cross-modal prediction consistency loss
from [16] is included for each TTA method as their additional optimization ob-
jective with a coefficient of 0.1. Although the cross-modal learning scheme brings
an average relative improvement of 1.0-4.0%, the performance gap between ex-
isting TTA methods and Latte is still non-trivial, which justifies the superiority
of our cross-modal learning scheme in Latte. We have included this discussion
in the updated version.

5 Qualitative Comparision with Previous Methods

To demonstrate the improvement brought by Latte, we provide some additional
qualitative comparison between Latte and previous SOTA TTA (ETA [9]) and
MM-TTA (MMTTA [13]) methods on U-to-S and S-to-S. As shown in Fig. 1
and Fig. 2, the cross-modal predictions from Latte are more accurate compared
to ETA and MMTTA (e.g ., more accurate pole recognition on the lower set
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of consecutive frames in Fig. 1). Furthermore, the predictions from Latte are
more consistent across time. For instance, the pedestrians and poles in the red
rectangles in Fig. 1 as well as the motorcycle and the truck in Fig. 2 can be
consistently recognized by Latte, while both ETA and MMTTA suffer from the
instability of single-frame predictions. This justifies the effectiveness of Latte
and the improvement brought by our multi-frame aggregation strategy.
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