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Abstract. In recent years, deep generative models have developed rapidly
and can generate high-quality images based on input texts. Assessing the
quality of synthetic images in a way consistent with human preferences is
critical for both generative model evaluation and preferred image selec-
tion. Previous works aligned models with human preferences by training
scoring models on image pairs with preference annotations. These care-
fully annotated image pairs well describe human preferences for choosing
images. However, current training paradigm of these preference models
is to directly maximize the preferred image score while minimizing the
non-preferred image score in each image pair through cross-entropy loss.
This simple and naive training paradigm mainly has two problems: 1) For
image pairs of similar quality, it is unreasonable to blindly minimize the
score of non-preferred images and can easily lead to overfitting. 2) The
human robustness to small visual perturbations is not taken into account,
resulting in the final model being unable to make stable choices. There-
fore, we propose Stable Preference to redefine the training paradigm of
human preference model and a anti-interference loss to improve the ro-
bustness to visual disturbances. Our method achieves state-of-the-art
performance on two popular text-to-image human preference datasets.
Extensive ablation studies and visualizations demonstrate the rationality
and effectiveness of our method.

Keywords: Human preference model · Training paradigm · Synthetic
image quality assessment

1 Introduction

Recent text-to-image generation methods have enabled the generation of high-
quality photorealistic images from a piece of text. In particular, auto-regressive
[3,5,28] and diffusion-based methods [21,27,31] have shown advantages in diver-
sity and stability. To evaluate their performance, Inception Score (IS) [34] and
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Fig. 1: Comparison between previous training paradigm and our stable preference. (a)
Previous methods simultaneously performed order correction and broaden margin and
treat every image pair equally (refer to Sec. 3.1)). (b) Stable preference first corrects the
preference order, and then mainly expands the margin between images with significant
difference (refer to Sec. 3.3).

Fréchet Inception Distance (FID) [8] remain the most popular metrics. Since
these models synthesize various images by taken different random noise as in-
put, the quality of the generated images may vary greatly. Therefore, measuring
the quality of a single image is equally important as evaluating the model perfor-
mance, while FID and IS are not suitable for evaluate a single image. CLIP [25]
aligns text and images in the embedding space by pre-training on large-scale
image-text pairs and can be used to measure the semantic relevance of between
images and text. However, the human preference is influenced by not only the
image-text alignment but also by other factors such as fidelity and aesthetic.

To facilitate research in this area, many carefully annotated preference datasets
are proposed. These datasets can be roughly divided into two types. The first
type directly collects image pairs and corresponding texts, and then the annota-
tors only need to make a choice in each pair of images based on the text [13]. The
second type collects a image group (usually contain 4∼10 images) for each text,
and the annotators are asked to rank each set of images according to human pref-
erence [37–39]. Although there are differences in the collection and annotation
of these datasets, the training paradigms of the preference models are almost
identical. First, training samples will be uniformly processed into image pairs.
For the dataset consist of image groups, in a group containing K images, at most
C2
K different comparison pairs can be obtained. Then choice within each pair of

images is analyzed as a binary classification issue. And a preference model can
be trained using cross-entropy loss.
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Though these meticulously annotated image pairs encapsulate human prefer-
ences for image selection, extant training paradigms fail to fully leverage them,
which is predominantly exhibited in two aspects. Firstly, the image selection
process is not strictly dichotomous. Indiscriminately minimizing the score of
non-preferred images, particularly where similar quality is exhibited (e.g., ②
and ③ in Figure 1), is irrational and heightens the risk of model overfitting. Sec-
ondly, the current model displays sensitivity towards minute visual disturbances.
Contrastingly, human preferences remain largely unaltered despite these minor
perturbations. As illustrated in Figure 2, humans do not change their choices
because of these small visual perturbations [2]. Nevertheless, when there is a
minimal quality disparity between images, these perturbations can potentially
lead to alterations in the choices made by the preference models. To address the
above issues, we devise stable preference (SP), a novel training paradigm for the
human preference model (HPM). It initially prioritizes the alignment of prefer-
ences (order) and then mainly enlarges the margin between images possessing
significant differences, as illustrated in Figure 1. Furthermore, we formulate an
anti-interference loss aimed at mitigating the sensitivity of the preference model
to minor visual perturbations. This methodical progression ensures a more robust
training process, thereby effectively thwarting premature over-differentiation of
image pairs with similar quality. In summary, our contributions are as follows:

– We designed an anti-interference loss to reduce the model sensitivity to small
visual perturbations, which further align the preference model with human
scoring behavior.

– We propose a novel training paradigm for human preference models, named
stable preference, which reduces the risk of overfitting.

– We conduct extensive experiments on two popular human preference datasets.
Stable preference achieves best performance and can serve as a standard
paradigm for training preference models. The effectiveness of our method is
further corroborated by the results from visualizations.

2 Related Work

2.1 Metrics for Text-to-image Generation

To gauge the efficacy of various text-to-image generative models, some metrics
have been introduced to measure the quality of the generated images. Among
them, Fréchet Inception Distance [8] and Inception Score [34] are still the most
prevalently used metrics. FID quantifies the distributional disparity between
synthetic and real-world images, while the IS measures the fidelity and diversity
of the generated images. Nonetheless, both of them are single-modal evaluation
metrics, focusing solely on the image aspect. Consequently, using them to mea-
sure the quality of images generated from text conditions is suboptimal. Unlike
IS and FID, which can only provide a single evaluation score, Sajjadi et al.
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Fig. 2: Examples of small visual perturbations. These images are generated from “The
image is of an anthropomorphic orange walking on a sidewalk”. 0.9 is the side length
ratio.

proposes to measure the distance between the generated and the reference dis-
tribution from two aspects (i.e., the precision and recall for distributions) [33].
Besides, there are also many other metrics designed to measure image diver-
sity and fidelity [14, 20], while these metrics are not designed for conditional
generative models.

To ascertain the congruity between generated images and user intent (i.e.,
input prompt), Xu et al. proposed R-Precision which utilized a text-image sim-
ilarity model to calculate the top-1 retrieval accuracy from one hundred text
candidates for each generated image [40]. Thanks to pre-training on 400 mil-
lion image-text pairs [26], CLIP-R-Precision can be applied to evaluate a wider
range of text-to-image generation models without extra training [23]. Compared
with retrieval-based metrics, CLIP scores can directly measure the alignment of
images and text. Another popular pipline is to measure the cyclic consistency
between generated caption from the generated image and the input prompt [10].
Specially, the semantic object accuracy (SOA) is devised for evaluate each indi-
vidual object through object detection models [9].

2.2 Human Preference Models

Human evaluation of images generated under text conditions is a complex pro-
cess that involves an exhaustive evaluation of several factors such as text-image
alignment, fidelity, and aesthetics. However, the aforementioned metrics are only
able to address a fraction of these factors, thereby resulting in deviations from
human preferences. To align with human preferences more accurately, the most
direct approach involves the collection of a human preference dataset, following
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which a human preference model can be trained on it. For example, the aesthetic
predictors can score the aesthetic of each image by fine-tuning MLP layers that
take the CLIP embedding as input on AVA [19] and LAION-aesthetic [35] to
align with human aesthetic judgments. Some works directly exploit general mul-
timodal models (e.g., GPT-4V and MiniGPT-4) and carefully design manual
instructions to score each image on multiple aspects [42, 44]. Nonetheless, con-
sidering these models are not customized image evaluation models, their scoring
quality is not uniformly reliable or stable, potentially leading to failure in more
challenging scenarios.

In order to measure human preferences more comprehensively, some works
manually rank image pairs or image groups, such as Pick-a-Pic [13], ImageRe-
ward [39], and human preference dataset [38]. Annotators are required to anno-
tate image pairs or image groups based on detailed annotation document. Then
the human preference models are trained on the image pairs annotated with hu-
man choice. These models can be trained via cross-entropy loss by transforming
the problem into a binary classification task on each image pair. Since most pref-
erence models are fine-tuned from vision-language pre-training models, such as
CLIP [25] and BLIP [15], these models usually converge quickly and are prone to
overfitting. Existing methods take a variety of tricks to prevent overfitting, such
as freeze some backbone layers [38] and adding dropout layers. However, these
models still exhibits sensitivity to training hyperparameters [39]. Therefore, we
propose stable preference to redefine the training paradigm, reducing the risk of
overfitting and improving the stability of the human preference model.

3 Method

3.1 Problem Definition

Human preference models are designed to score on any text and image pairs.
When the text is fixed, it can be used to evaluate the relative quality of any
two images under the textual conditions. Let (I1, I2) refer to an image pairs
generated from the same text T . A preference model Fθ is expected to score I1
and I2 under the condition T , which can be defined as,

S1 = Fθ(I1, T )

S2 = Fθ(I2, T ).
(1)

Then S1 and S2 can then be used to make choice between I1 and I2 (e.g.,
if S1 > S2, then I1 is better than I2 under the condition T ). If the choice
made by the preference model aligns with the human choice in the majority of
circumstances, it can be used to automatically evaluate the quality of synthetic
images and generative models. Therefore, the most direct training paradigm of
human preference model is to regard the image selection problem as a binary
classification problem, and the corresponding loss function can be formulated as
follows,
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1+e(∆S−0.1)/0.05 . ∆S
is the independent variable of the function.

Lpref =
2∑

i=1

yi log ŷi, (2)

with
ŷi =

exp(Fθ(Ii, T ))∑2
j=1 exp(Fθ(Ij , T ))

. (3)

Where [y1, y2] is the preference label. Specifically, [y1, y2] takes a value of [1, 0]
if I1 is preferred, [0, 1] if I2 is preferred. This training paradigm has been widely
adopted in the training of most previous human preference models [13,37,39].

3.2 Anti-interference Loss

Human usually focus more on the central region of an image [22] and main-
tain their preference in the presence of small perturbations [2]. Because of this
characteristic, they usually do not change their choices due to small visual dis-
turbances. However, the preference model cannot learn this human evaluation
habit well under the existing training paradigm. To fix this gap, we proposed
anti-interference loss to lessen the sensitivity of the preference model to small
visual perturbations. Specifically, as shown in Figure 3, for image pair (I1, I2)
with text T and preference label [y1, y2] = [1, 0] (i.e., I1 is better than I2),
we perform k independent weak data augmentation on each image and obtain
2k extra views with small visual perturbations ({Ii1}, {Ii2}), i ∈ {1, 2, 3, ..., k}.
The corresponding 2k preference scores can be obtained through the preference
model and are recorded as,

Si
j = Fθ(I

i
j , T ) i ∈ {1, 2, 3, ..., k}. (4)

As shown in Figure 3, the goal is to minimize the difference between different
views of the same image while maximizing the margin between two images. Then
the anti-interference loss can be formulated as,

Lai = − log
edistinter

edistinter + edistintra
(5)
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with

distinter = min({Si
1} ∪ S1)−max({Si

2} ∪ S2),

distintra =

∑2
j=1 max({Si

j} ∪ Sj)−min({Si
j} ∪ Sj)

2
,

i ∈ {1, 2, 3, ..., k}.

(6)

Where distinter and distintra are inter-image distance between I1 and I2 and
the mean intra-image distance between different augmented views of a same
image, respectively. In contrastive learning, strong augmentation is often used
to generate different views so that the network learns consistent representations.
Lai is designed to make the preference model have stable scoring ability under
small perturbations, which is why we use weak augmentation.

3.3 Stable Preference

While the aforementioned training paradigm is straightforward and intuitive, the
human selection process is not as binary as characterized by the cross-entropy
function. Accordingly, we propose a two-step training paradigm named Stable
Preference.
Step 1: Correct the preference order. The main task of the preference model
is to select the image according to human preferences, rather than maximizing
the score difference in each image pair. Given this, in the initial phase, the
preference model should primarily learn from the image pairs in which it made
incorrect selections and correct them. Besides, as shown in Figure 1, we should
only ensure that the model can just make choice correctly, and not further expand
the distance between images (i.e., 0 < S1 − S2 < ϵ when I1 is better, where ϵ is
a small positive value). Therefore, the loss function of this stage is,

L1 =
Lpref + Lai

1 + e(∆S−b)/τ
, (7)

where ∆S is the difference between the preference score of the better image and
that of the worse image (i.e., if I1 is better than I2, then ∆S = S1 − S2). b
and τ are two hyperparameters that dictate the minimal discernible difference
in scores between images. More specifically, by setting the appropriate b and
τ , when ∆S < 0 (i,e, the preference model does not make the correct choice),
L1 ≈ Lpref + Lai, and when ∆S > b + τ ln( 1−ϵ

ϵ ) , L1 < ϵ(Lpref + Lai). More
intuitively, we show the function curve of 1

1+e(∆S−b)/τ when setting b and τ to 0.1
and 0.05 in Figure 4. When the model is able to make the correct choice, L1 will
quickly decay to near zero, which ensures that the model focuses on correcting
the preference order.
Step 2: Broaden the margin After learning the correct preference order, our
objective shifts towards enlarging the score discrepancy between images whose
differences are pronounced, which prevent the over-differentiation of image pairs
assessed as having similar quality in the first step. The loss of the j-th image
pair in a mini batch can be written as follows,
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L2 =
e∆Sj∑N
i=1 e

∆Si

(Lpref + Lai), (8)

where N is the mini-batch size, and ∆Si stands for the score difference of the
i-th image pair in each mini batch.

4 Experiments

To verify the effectiveness of our method, we conduct extensive experiments
on ImageReward [39] and human preference dataset v2 [37]. The datasets and
implementation details are described below.

4.1 Dataset

ImageReward Datasets [39] utilizes a diverse selection of real user prompts from
DiffusionDB [36]. After filtering out similar prompts, the dataset finally yields
10,000 candidate prompts, each accompanied by 4 to 9 sampled images from
DiffusionDB. The annotators are asked to evaluate the image according to the
annotated document in terms of image-text alignment, fidelity, and harmlessness.
After rating for each aspects, annotators will finally rank each image group. The
dataset finally contain valid annotations for 8,878 prompts, resulting in 136,892
compared pairs. Among them, 8,000 prompts are used for training, 466 prompts
are for testing, and the rest 412 prompts are for validation.

Human Preference Datasets v2 (HPD v2) [37] is the latest human preference
dataset for preference model training, preference model testing, and benchmark-
ing generative models. In order to obtain more diverse prompts, HPD v2 collect
108k prompts from both COCO captions [1] and DiffusionDB [36]. Specially, the
prompts from DiffusionDB are cleaned by ChatGPT. Since the training split is
not yet open source, we only use the test split and image benchmark of the
HPD v2 to verify the cross-dataset generalization performance and benchmark-
ing the text-to-image generative model. The test split consists of 400 groups
of images, which corresponds to 400 individual prompts. Each group contains
9 images generated from 9 popular text-to-image generative models and is an-
notated by 10 distinct annotators to ensure the annotation quality. The image
benchmark part contains 3,200 prompts for four styles, including “Animation”,
“Concept-art”, “Painting”, and “Photo”. Various prompts ensure that the model
can generate diverse images to fully evaluate the performance of the generative
model.

DrawBench [32] collect a comprehensive and challenging set of prompts that
support the evaluation and comparison of text-to-image models. In total, Draw-
Bench contains 200 different prompts.
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Table 1: Comparison of human preference models sensitivity to small visual perturba-
tions on HPD v2 and ImageReward datasets. “ORG” represents the baseline result on
original test split. “HP” and “CC” stand for horizontal flip and center crop, respectively.
Numbers in brackets represent the side length ratio of the center crop. SP represents
our stable preference training paradigm.

Method Dataset ORG HP&CC (0.97) HP&CC (0.95) HP&CC (0.93) HP&CC (0.90)

HPS v2

HPD v2

83.3 82.2 (-1.1) 82.2 (-1.1) 81.8 (-1.5) 81.7 (-1.6)
ImageReward 74.2 73.7 (-0.5) 73.6 (-0.6) 73.6 (-0.6) 74.0 (-0.2)
SP (CLIP-L) 77.2 77.3 (+0.1) 77.0 (-0.2) 76.9 (-0.3) 77.0 (-0.2)
SP (CLIP-H) 80.7 81.4 (+0.7) 80.3 (+0.4) 80.4 (+0.3) 80.7 (+0.0)

HPS v2

ImageReward

65.7 64.8 (-0.9) 63.8 (-1.9) 64.2 (-1.5) 63.9 (-1.8)
ImageReward 65.2 64.5 (-0.7) 64.8 (-0.4) 64.8 (-0.4) 65.3 (+0.1)
SP (CLIP-L) 66.3 65.7 (-0.6) 65.6 (-0.7) 65.9 (-0.4) 66.0 (-0.3)
SP (CLIP-H) 66.8 67.4 (+0.6) 66.4 (-0.4) 66.5 (-0.3) 66.7 (-0.1)

4.2 Implementation Details

We fine-tune CLIP-H and CLIP-L [11] on ImageReward for 30,000 steps with
the AdamW optimizer [18] following a cosine learning rate schedule, with 3,000
steps for optimizing with L1 and the rest for optimizing with L2. The initial
learning rate is set at 2 × 10−6. The AdamW optimizer is used with a mini-
batch size of 64 and the weight decay is 0.2. A warm-up period of 1,500 steps is
adopted. As in previous work [38,39], we freeze the parameters of shallow layers
in CLIP to prevent overfitting. Specifically, we train the last 18 layers of the
CLIP image encoder and the last 8 layers of the CLIP text encoder. b and τ are
is set at 0.3 and 0.2 by default. To calculate the anti-interference loss, random
horizontal flipping and random resized cropping (the lower and upper bounds for
the random area of the crop is [0.85, 1]) are adopted as the weak augmentation to
obtain 3 extra views for each image. The selection accuracy of all image pairs on
the test split is taken as the evaluation metric. All the experiments are conducted
on two NVIDIA V100 GPUs with PyTorch toolbox [24].

4.3 Quantitative Results

Sensitivity to Small Visual Perturbations: To verify the robustness of our
method to small visual perturbations, we conducted experiments on HPD v2
and ImageReward datasets. We adopt horizontal flipping and center cropping
to introduce weak visual perturbations. For center cropping, we conducted ex-
periments on several side length ratio settings that can hardly change human
preference. To provide an intuitive understanding, we suggest referring to Fig-
ure 2 which illustrates the maximum perturbation under a side length ratio of
0.9. The results in Table 1 show that the performance of our method is more
stable than other latest methods under different perturbations, which suggests
that introducing anti-interference loss make the preference model less sensitive
to small visual perturbations. Specially, under some perturbation settings our
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Table 2: Evaluation of the anti-interference loss and our stable preference training
paradigm.

Settings Model ImageReward
Lai Stable Preference

% %

CLIP-L

63.1
" % 64.0
% " 65.8
" " 66.3

% %

CLIP-H

63.9
" % 64.5
% " 66.2
" " 66.8

Table 3: Evaluation of different weight assignment methods in step 2.

Settings HPD v2 ImageReward

e−∆Sj/
∑N

i=1 e
−∆Si 79.5 66.2

1
N

80.1 65.8

e∆Sj/
∑N

i=1 e
∆Si 80.7 66.8

method even surpasses the performance without perturbation. This may due to
the random cropping used in anti-interference loss that weights the center area
of the image slightly higher than the edge area, which is consistent with the
human habit that tend to focus the center area of the image [12].
Effectiveness of anti-interference loss and stable preference training
paradigm. We evaluate the effectiveness of anti-interference loss and stable
preference training paradigms on ImageReward dataset. The results in Table 2
show that both designs can boost model performance. Among them, the improve-
ment of SP is relatively significant. The main reason is that the anti-interference
loss is mainly designed to enhance the robustness of the model to small visual
perturbations.
Whether we should focus on image pairs with larger ∆S? In step 2, we
mainly focus on image pairs with pronounced difference. But in some other tasks,
image pairs with small differences are given more attention [16]. Therefore, we
conduct experiments to demonstrate that focusing on image pairs with larger
∆S is beneficial for subjective understanding task such as image preference. In
Table 3, we compared giving similar image pairs a higher weight and giving all
image pairs the same weight with our stable preference. The results show that
the more conservative learning strategy we use can achieve better performance.
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Table 4: Comparison with state-of-the art methods on test split of ImageReward
dataset. † CLIP-H is initialized with the HPS v2 checkpoint.

Method ImageReward

CLIP-L [11,25] 54.8
CLIP-H [11,25] 57.1

Aesthetic Score Predictor [35] 57.4
HPS v1 [38] 61.2

PickScore [13] 62.9
ImageReward [39] 65.1

HPS v2 [37] 65.7

Single Human vs. Single Human 65.3
Single Human vs. Averaged Human 53.9

Stable Preference (CLIP-L) 66.3
Stable Preference (CLIP-H) 66.8
Stable Preference (CLIP-H†) 68.0

Comparison with State-of-the-Arts. We compare current state-of-the-art
human preference models on the test split of ImageReward dataset. The results
in Table 4 show that fine-tuning both CLIP-H and CLIP-L models under the SP
paradigm can outperform previous methods. In particular, we also fine-tune the
CLIP-H model initialized by the checkpoint of HPS v2 and obtained the highest
performance of 68.0.
Evaluation of cross-domain performance. Although we achieved state-of-
the-art performance compared with previous models, this comparison is not
strictly fair because most of the methods in Table 4 are trained on different
datasets (e.g., LAION-aesthetic [35], HPD v2 [37], and Pick-a-Pic [13]). Be-
sides, these models are fine-tuned from similar vision-language models, such as
CLIP [11] and BLIP [15]. Therefore the quality of their dataset is one of the
biggest factors affecting their final performance. Therefore, in Table 5, we uni-
formly train all models on the training split of ImageReward and verify their
performance on the test set of HPD v2. Under such a setting, we can not only
fairly verify the effectiveness of our training paradigm, but can also facilitating
an evaluation of cross-domain generalizability. The results show that the stable
preference significantly exceeds the results of training through cross-entropy loss,
once again validating the superiority of stable preference.
Benchmarking Latest Text-to-image Generative Models by Stable Pref-
erence. In addition to automatically selecting preferred images, another major
use of human preference models is to evaluate the performance of text-to-image
generative models. In order to make it convenient for future work to use sta-
ble preference (CLIP-H†) to verify the effectiveness of their own text-to-image
generative models, we evaluated the latest models in academia and industry on
the DrawBench [32] and HPD v2 benchmarks in Table 6. We follow the protocol
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Table 5: Comparison of cross-domain performance. All the models are trained on
the training set of ImageReward and tested on the test split of HPD v2. † CLIP-H is
initialized with the HPS v2 checkpoint.

Method HPD v2

CLIP-L [11,25] 72.8
CLIP-H [11,25] 74.8

BLIP [15] 74.2

Single Human vs. Single Human 78.1
Single Human vs. Averaged Human 85.0

Stable Preference (CLIP-L) 77.2
Stable Preference (CLIP-H) 80.7
Stable Preference (CLIP-H†) 82.5
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Fig. 5: Correlation between stable preference and other human preference models. The
model score is calculated by the average score of all images in DrawBench [32].

in [37] to report the mean and standard deviation of 10 groups of images on
HPD v2.

4.4 Visualization

Correlation between Stable Preference and Other Human Preference
Models. In Figure 5, we show the correlation between stable preference and
other preference models in benchmarking text-to-image generative models. These
results indicate that our method is positively correlated with existing human
scoring models, but can better align with the human preferences according to
the quantitative results in Tables4/5.
Image Selection Based on Human Preference Models. We generate 100
candidate images for each text through Stable Diffusion v1.4 [30], and show the
top-1 choice of each model in Figure 6. It can be seen that our stable preference
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Table 6: Evaluation of recent text-to-image generative models through our stable
preference (CLIP-H†). For DrawBench, we report the average score of all images. For
HPD v2, we divide 800 prompts of each style into ten groups of 80, and report the
mean and standard deviation of 10 groups, which is consistent with [37].

Model HPD v2 DrawBench [32]
Photo Concept-art Animation Painting

GLIDE [21] 25.03±0.245 24.12±0.111 24.25±0.151 24.27±0.150 25.53
VQ-Diffusion [7] 25.82±0.189 25.24±0.118 25.45±0.156 25.50±0.108 25.60

LAFITE [43] 26.16±0.179 25.37±0.049 25.48±0.090 25.38±0.132 25.67
FuseDream [17] 25.79±0.221 25.54±0.071 25.61±0.073 25.44±0.163 25.97
CogView2 [4] 26.29±0.227 26.66±0.092 26.58±0.106 26.51±0.091 26.10

Latent Diffusion [29] 26.03±0.158 25.72±0.091 26.10±0.102 25.84±0.156 26.16
VQGAN + CLIP [6] 25.90±0.185 26.15±0.077 26.13±0.121 26.04±0.116 26.18

DALL·E mini 26.16±0.206 25.94±0.114 26.32±0.103 25.97±0.101 26.33
Versatile Diffusion [41] 26.59±0.202 26.07±0.121 26.40±0.124 26.21±0.108 26.44

Stable Diffusion v1.4 [30] 26.85±0.193 26.57±0.083 27.03±0.145 26.63±0.131 26.85
DALL·E 2 [27] 26.80±0.153 26.59±0.089 27.26±0.117 26.68±0.173 26.88
Epic Diffusion 26.98±0.152 26.79±0.073 27.27±0.141 26.89±0.098 26.91

Stable Diffusion v2.0 [30] 27.01±0.185 26.83±0.063 27.29±0.146 26.82±0.144 26.97
Openjourney 27.02±0.148 27.00±0.059 27.48±0.132 27.07±0.115 27.00
ChilloutMix 27.15±0.162 27.13±0.048 27.72±0.127 27.18±0.159 27.06

MajicMix Realistic 27.19±0.180 27.21±0.058 27.67±0.171 27.25±0.148 27.13
Dreamlike Photoreal 2.0 27.28±0.204 27.31±0.074 27.79±0.127 27.32±0.115 27.25

DeepFloyd-XL 27.16±0.147 26.91±0.080 27.49±0.084 26.90±0.120 27.26
Realistic Vision 27.24±0.184 27.38±0.068 27.93±0.110 27.44±0.123 27.31

Deliberate 27.23±0.172 27.40±0.061 27.92±0.127 27.39±0.101 27.33

has good performance in evaluating image-text alignment, fidelity, and aesthetic.
For the third prompt, the image selected by our method not only consider the
concepts appearing in the text, i.e., girl, sunflower and hallway, but also take
into account the reasonable arrangement of these concepts in the image.

5 Limitation & Future Works

This work mainly focuses on the improvement of the visual side, but text and
vision are equally important for training human preference model. We summarize
several potential research directions not covered in this work to provide hints for
future work.

– Preference models need to be able to adapt to various forms of user prompts,
and should have consistent scoring criteria for prompts that have the same
semantics but different expressions.

– Evaluating image quality based on the complete prompts is the most coarse-
grained setting. Designing a finer-grained preference model will help increase
the interpretability of the preference model.

– Given the subjectivity of the task, decision-making based on a singular pref-
erence model may exhibit bias. Reasonable integration of different preference
models should be able to further approximate the average human preference.
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Prompt

A unicorn in a clearing. it 

has a single shining horn. 

volumetric light.

CLIP-H ImageReward HPS v2 Stable Preference

A teddy bear skateboarding 

in Times Square.

A painting of a girl walking in a 

hallway and suddenly finds a 

giant sunflower on the floor 

blocking her way.

Highly detailed portrait of a 

woman with long hairs, 

stephen bliss.

Fig. 6: Top-1 images out of 100 (Stable Diffusion v1.4) generations selected by stable
preference and other human preference models.

We anticipate that the aforementioned topics will generate significant interest in
the field of preference modeling. As we contemplate potential solutions to these
issues, there is room to further optimize the training paradigm of preference
models. This aspect will be our prime focus in our future work.

6 Conclusion

In this work we propose Stable Preference, a new paradigm for human pref-
erence models. Training in the order of first aligning preference order and then
mainly broaden the margin between images with significant difference effectively
mitigates the risk of overfitting. Besides, we designed an anti-interference loss
to reduce the sensitivity of preference model to small visual perturbations that
do not affect human preferences, which further improves the robustness of the
model. In terms of experiments, we conducted extensive experiments to verify the
effectiveness of the proposed method, and provided a benchmark for evaluating
text-to-image generative models based on SP model. In addition, we also provide
visualization results to prove that SP model is closer to human preferences than
existing models.



Stable Preference 15

Acknowledgments

This work was supported by the Anhui Provincial Natural Science Foundation
under Grant 2108085UD12. We acknowledge the support of GPU cluster built
by MCC Lab of Information Science and Technology Institution, USTC.

References

1. Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.:
Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325 (2015)

2. Digirolamo, G.J., Hintzman, D.L.: First impressions are lasting impressions: A
primacy effect in memory for repetitions. Psychonomic Bulletin & Review 4(1),
121–124 (1997)

3. Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao,
Z., Yang, H., et al.: Cogview: Mastering text-to-image generation via transformers.
Adv. Neural Inf. Process. Syst. 34, 19822–19835 (2021)

4. Ding, M., Zheng, W., Hong, W., Tang, J.: Cogview2: Faster and better text-to-
image generation via hierarchical transformers. Adv. Neural Inf. Process. Syst. 35,
16890–16902 (2022)

5. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp. 12873–
12883 (2021)

6. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp. 12873–
12883 (2021)

7. Gu, S., Chen, D., Bao, J., Wen, F., Zhang, B., Chen, D., Yuan, L., Guo, B.: Vector
quantized diffusion model for text-to-image synthesis. In: Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. pp. 10696–10706 (2022)

8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural
Inf. Process. Syst. 30 (2017)

9. Hinz, T., Heinrich, S., Wermter, S.: Semantic object accuracy for generative text-
to-image synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1552–1565
(2020)

10. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-
to-image synthesis. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp.
7986–7994 (2018)

11. Ilharco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave,
A., Shankar, V., Namkoong, H., Miller, J., Hajishirzi, H., Farhadi, A., Schmidt, L.:
Openclip (Jul 2021). https://doi.org/10.5281/zenodo.5143773, https://doi.
org/10.5281/zenodo.5143773, if you use this software, please cite it as below.

12. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans
look. In: Proc. IEEE Int. Conf. Comput. Vis. pp. 2106–2113. IEEE (2009)

13. Kirstain, Y., Polyak, A., Singer, U., Matiana, S., Penna, J., Levy, O.: Pick-a-pic:
An open dataset of user preferences for text-to-image generation. arXiv preprint
arXiv:2305.01569 (2023)

14. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision
and recall metric for assessing generative models. Adv. Neural Inf. Process. Syst.
32 (2019)

https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773


16 H. Li et al.

15. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. In: Proc. Int. Conf.
Mach. Learn. pp. 12888–12900. PMLR (2022)

16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proc. IEEE Int. Conf. Comput. Vis. pp. 2980–2988 (2017)

17. Liu, X., Gong, C., Wu, L., Zhang, S., Su, H., Liu, Q.: Fusedream: Training-free
text-to-image generation with improved CLIP+GAN space optimization. arXiv
preprint arXiv:2112.01573 (2021)

18. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

19. Murray, N., Marchesotti, L., Perronnin, F.: Ava: A large-scale database for aesthetic
visual analysis. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp.
2408–2415. IEEE (2012)

20. Naeem, M.F., Oh, S.J., Uh, Y., Choi, Y., Yoo, J.: Reliable fidelity and diversity
metrics for generative models. In: Proc. Int. Conf. Mach. Learn. pp. 7176–7185.
PMLR (2020)

21. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

22. Palmer, S.E., et al.: Aesthetic issues in spatial composition: Effects of position and
direction on framing single objects. Spatial vision 21(3), 421–450 (2008)

23. Park, D.H., Azadi, S., Liu, X., Darrell, T., Rohrbach, A.: Benchmark for composi-
tional text-to-image synthesis. In: Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1) (2021)

24. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

25. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: Proc. Int. Conf. Mach. Learn. pp. 8748–8763.
PMLR (2021)

26. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: Proc. Int. Conf. Mach. Learn. pp. 8748–8763.
PMLR (2021)

27. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022)

28. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
Sutskever, I.: Zero-shot text-to-image generation. In: Proc. Int. Conf. Mach. Learn.
pp. 8821–8831. PMLR (2021)

29. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. pp. 10684–10695 (2022)

30. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. pp. 10684–10695 (2022)

31. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Adv. Neural Inf.
Process. Syst. 35, 36479–36494 (2022)



Stable Preference 17

32. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Adv. Neural Inf.
Process. Syst. 35, 36479–36494 (2022)

33. Sajjadi, M.S., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative
models via precision and recall. Adv. Neural Inf. Process. Syst. 31 (2018)

34. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans. Adv. Neural Inf. Process. Syst. 29 (2016)

35. Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti,
M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open
large-scale dataset for training next generation image-text models. Adv. Neural
Inf. Process. Syst. 35, 25278–25294 (2022)

36. Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Diffu-
siondb: A large-scale prompt gallery dataset for text-to-image generative models.
arXiv preprint arXiv:2210.14896 (2022)

37. Wu, X., Hao, Y., Sun, K., Chen, Y., Zhu, F., Zhao, R., Li, H.: Human preference
score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341 (2023)

38. Wu, X., Sun, K., Zhu, F., Zhao, R., Li, H.: Human preference score: Better aligning
text-to-image models with human preference. In: Proc. IEEE Int. Conf. Comput.
Vis. pp. 2096–2105 (2023)

39. Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., Dong, Y.: Imagere-
ward: Learning and evaluating human preferences for text-to-image generation.
arXiv preprint arXiv:2304.05977 (2023)

40. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp. 1316–1324
(2018)

41. Xu, X., Wang, Z., Zhang, G., Wang, K., Shi, H.: Versatile diffusion: Text, images
and variations all in one diffusion model. In: Proc. IEEE Int. Conf. Comput. Vis.
pp. 7754–7765 (2023)

42. Zhang, X., Lu, Y., Wang, W., Yan, A., Yan, J., Qin, L., Wang, H., Yan, X., Wang,
W.Y., Petzold, L.R.: Gpt-4v (ision) as a generalist evaluator for vision-language
tasks. arXiv preprint arXiv:2311.01361 (2023)

43. Zhou, Y., Zhang, R., Chen, C., Li, C., Tensmeyer, C., Yu, T., Gu, J., Xu, J., Sun,
T.: LAFITE: Towards language-free training for text-to-image generation. arxiv
2021. arXiv preprint arXiv:2111.13792

44. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: Minigpt-4: Enhancing vision-
language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592 (2023)


	Stable Preference: Redefining Training Paradigm of Human Preference Model for Text-to-image Synthesis

