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In the supplemental material included, we offer further information regard-
ing the quantization procedure and the approach to quantization-aware training
implemented for the student model. Additionally, we outline the methodology
utilized for creating label supersets with the assistance of ChatGPT-4 [1]. We
also include experimental results concerning the overall efficacy of the student
model, alongside an ablation study. To enhance comprehension of the model’s
effectiveness across various visual modalities, we conclude with visual represen-
tations of the open vocabulary classification outcomes on multiple datasets.

A Model Quantisation

We consider integer uniform quantization [11] which maps high-precision model
weights and activations to low-precision representations. The quantization pro-
cess is presented as follows:

271 —1
S =
fe!
Quantization: x, = clip([x - s], —2°71 + 1,207 — 1) (1)
De-quantization: T = ]
s

where « is the maximum representable value, s is the scale factor, b is the
bit-width, x is the original weight or activation, x, is the quantized weight or
activation, x is the weight or activation restored from quantized ones, and clip
is the clipping function.

a ifrx<a
clip(z,a,b)=<b ifx>b (2)
x otherwise
Per-tensor quantization applies the same scale factor across the entire tensor,

whereas per-channel quantization assigns a distinct scale factor to each channel.
The scale factor is determined using a calibration set in a static quantization
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Fig. A: Quantization-aware matrix multiplication is used to take-quantize the student
model

approach or computed on the fly during inference for dynamic quantization.
Quantizing the weights and activations of a Float32 model to Int8 reduces both
the model size and inference latency. We follow the common practice [10] [11]
and apply per-channel quantization to the weights and per-tensor quantization to
the activations. When evaluating static quantization performance, we follow [11]
and calculate the scale factors using a subset of the training set, e.g., 64 pairs
of RGB and non-RGB images.

Figure[A]depicts the computation flow of quantization-aware matrix multipli-
cation during training and quantized matrix multiplication during inference. Af-
ter training the student model in stage-1, the fake-quantized student model is ob-
tained by including the Quantize and Dequantize operations in the model. After
stage-2, quantization scales are computed using a subset of the training data.
For deployment on edge devices, the fake-quantized student model is transformed
into the quantized student model using TensorRT, replacing quantization-aware
matrix multiplication with quantized matrix multiplication.

B Label Supersets Generation

Scene classification typically involves categorizing scenes within the domain of
indoor, outdoor, or remote sensing. Acknowledging this, we create a comprehen-
sive set of labels tailored to various scene classification challenges. For instance,
we might develop a set of indoor scene labels for the ScanNet dataset and a
distinct set of labels for satellite imagery in the EuroSAT dataset. In particular,
we utilize ChatGPT-4 [1] to expertly craft these extensive label supersets.

For the ScanNet dataset, we use the following prompt:
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User: Please generate a list of indoor scene categories without
descriptions.

ChatGPT-4: Living Room, Kitchen, Bedroom, Bathroom, Dining Room,
Home Office, Basement, Attic, Office and Cubicles, Conference Room,
Classroom, Laboratory, Library, Gym/Fitness Center, Shopping Mall,
Retail Store, Hotel Lobby, Hotel Room, Restaurant, Cafe, Bar or
Nightclub, Cinema/Theater, Airport Terminal, Subway Station, Train
Station, Bus Interior, Hospital Ward, Operating Room, Dental Clinic,
Veterinary Clinic, Museum, Art Gallery, Church, Temple, Mosque,
Classroom, Lecture Hall, Laboratory, School Hallway, Dormitory,
Indoor Pool, Bowling Alley, Arcade, Indoor Playground, Courthouse,
City Hall, Police Station, Fire Station, Factory Floor, Warehouse,
Server Room.

For the EuroSAT dataset, we use the following prompt:

s )

User: Please generate a list of satellite scene categories without
descriptions.

ChatGPT-4: Urban or Built-up Areas, Agriculture, Forest, Grassland,
Water Bodies, Wetlands, Desert, Snow and Ice, Bare Land or Barren,
Mountainous Terrain, Coastal Zones, Riparian Zones, Glacial and
Periglacial Landscapes, Volcanic Features, Urban Green Spaces.

C Results

C.1 Overall Accuracy

To provide a comprehensive performance evaluation of EdgeVL compared to
existing methods, we present a detailed accuracy analysis in Tab. [A] Except
for a small performance difference to CQD |[8] using Swin-T on EuroSAT (61.3%
vs. 62.5%), EdgeVL demonstrates superior performance across all backbones and
on two datasets, surpassing all other methods by a significant margin.

C.2 Quantization Aware Contrastive Learning

We compare the performance of EdgeVL with other quantization methods when
dynamic quantization is applied during inference. Comparison between Tab. 3
in the main script and Tab. [B] reveals that dynamic quantization outperforms
static quantization. This finding is also supported by [11]. Just like the results
showcased in Tab. 3 in the main script, EdgeVL emerges as the most effective
method in maintaining model performance post-quantization.
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Table A: Overall accuracy comparison. M and W denote the topl accuracy of non-
RGB and RGB images, respectively. And & denotes the average of the two, all in
percentage. The same applies to the following tables. Best viewed in color.

Methods Bits ScanNet (%) 1 EuroSAT (%) 1

I 1 7 1 I 7

Pretrained CLIP-B [7] | F32 | 4.5 36.2 20.4 | 16.8 404 28.6
Pretrained CLIP-G |7| | F32 | 6.2 47.3 26.8 | 16.9 54.0 355

Frank |2 F32 | 83 21.7 15.0 | 324 314 319

Gupta [3] F32 ] 16.8 224 19.6 | 254 272 26.3

CMKD |4| (non-RGB) | F32 | 37.8 11.5 24.6 | 36.7 189 27.8

oary CMKD [4] (RGB) F32 | 40 425 232|152 409 281
Fida |9] F32 1389 58 223|537 141 339

CQD 8] F32 ] 401 6.7 234|372 175 273

SKD |12] F32 ] 21.2 407 31.0 | 24.8 415 332

EdgeVL Int8 | 47.9 52.0 49.9|61.0 65.7 63.3

Frank 2] F32 | 80 14.8 114 | 419 39.0 40.5

Gupta [3] F32 1220 175 19.8 | 458 39.5 426

CMKD |4| (non-RGB) | F32 | 38.9 4.0 214|595 220 40.8

guin CMKD [1] (RGB) F32 | 32 424 228|201 624 41.2
Fida [9] F32 1412 13 213|545 105 325

CQD 8] F32 1414 49 231 |62.5 183 404

SKD |12] F32 ] 312 378 345|241 288 264

EdgeVL Int8 | 46.0 48.7 47.4| 61.3 67.1 64.2

Frank [2] F32 | 113 140 12.7]492 379 435

Gupta [3] F32 1196 149 172 | 54.2 424 483

CMKD |4| (non-RGB) | F32 | 38.0 4.7 21.3|61.2 344 478

vitg  CMKD [1] (RGB) F32 | 3.0 425 228|143 604 37.3
Fida [9] F32 ] 40.0 4.5 222 |56.7 203 385

CQD 8] F32 1380 4.0 210|624 364 494

SKD |12] F32 | 287 376 331|229 503 36.6

EdgeVL Int8 | 42.0 47.5 44.7|62.9 66.8 64.8

Table B: QAT meets Contrastive Learning. + denotes in combination with stage-1.
Inferencing with Dynamic quantization.

DAT-T (%) Swin-T (%) ViT-S (%)
Yy W o | "W W = | 4 W w

Methods Bits

Stage-l | F32|38.6 40.6 39.6 | 30.9 412 405 |37.8 40.7 39.3

+PTQ [5 |Int8| 35.1 39.1 37.1 | 32.0 350 33.5 | 26.6 285 276
+QAT [5| |Int8| 39.6 41.3 40.5 | 39.6 39.5 39.5 | 384 419 40.1
+QVIiT [6] | Int8 | 38.8 41.1 39.9 | 37.8 399 38.8 | 31.9 352 335
+Stage-2 | Int8 | 49.0 51.5 50.2 | 47.6 49.7 48.7 | 44.9 49.1 47.0
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C.3 Effect of Finetuning CLIP

To further demonstrate the effectiveness of our fine-tuning method, we use the
CLIP-B model as the student model and the CLIP-G model as the teacher model.
The CLIP-B model was trained following the same approach as in stage-1 of Fig.
1, with training parameters identical to those in Sec. 4.1. As shown in Tab. [C]
the fine-tuned CLIP-B model exhibits improved performance compared to the
pre-trained models on non-RGB modalities, but its performance still lags much
behind EdgeVL. We attribute this to the fact that the CLIP-B model is designed
for large-scale image-text retrieval tasks, meaning it excels with larger datasets.
In contrast, EdgeVL is specifically optimized for cross-modal classification tasks.
Additionally, the contrastive learning process during stage 2 helps EdgeVL to
learn better feature representations.

Table C: Effect of finetuning CLIP-B.

ScanNet (%) 1
I 7

F32 | 27.1 279 275
Int8 47.9 52.0 49.9

EuroSAT (%) 1
| J i

Methods Bits

Finetuned CLIP-B
EdgeVL (DAT-T)

46.9 47.7 473
61.0 65.7 63.3

C.4 Qualitative Analysis
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Fig. B: Visualization of the predictions of different models on ScanNet. Red and green
colors indicate incorrect and correct predictions, respectively.

Figure [B] and Figure [C] illustrate visual examples of the predictions made
by CLIP-G [7], CQD [8], SKD [12], and EdgeVL (ViT-S) on the ScanNet and
EuroSAT datasets, respectively. The visualizations underscore the superior ac-
curacy of EdgeVL over competing methods, particularly with non-RGB images.
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Fig. C: Visualization of the predictions of different models on EuroSAT. Red and green
colors indicate incorrect and correct predictions, respectively.
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Fig. D: Visualization of the predictions of different models on SUNRGBD. Red and
green colors indicate incorrect and correct predictions, respectively.
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Fig. E: Visualization of the predictions of different models on SUNRGBD. Red and
green colors indicate incorrect and correct predictions, respectively.
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Figure [D] and Figure [E] depict the cross-dataset predictions on SUNRGBD
by EdgeVL (DAT-T) that was trained on ScanNet. In Figure [D| EdgeVL demon-
strates good performance in distinctive scenes like bathrooms and kitchens. How-
ever, in settings such as furniture stores and lecture theatres shown in Figure [E]
EdgeVL struggles even with the RGB modality, while CLIP-G achieves higher
accuracy in these instances. This is due to the infrequent presence of these sce-
narios (e.g., furniture stores and lecture theatres) in the ScanNet dataset, making
them unfamiliar to the model. We also discussed the potential reason for data
amount in our main paper. Our future research will focus on improving the
model’s generalization ability with limited adapataion data.
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