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A Distribution Shift in Watermarking

The operation of discarding imaginary part during the watermarking process
results in distribution shift in ℓ1-to-reference distance for any watermarked noise.
In the following, we first demonstrate this from a mathematical view. In order
to present this conclusion more clearly and concisely, we consider a more general
case where all watermark pixels are i.i.d. sampled from the same watermark
distribution as Tree-Ring but without a specific pattern for math simplicity.
Then we study the more complicated real scenario by empirical experiments.

A.1 Preliminaries

We following the notation convention of [2, 4], representing 2D spatial domain
signals using lower case letters indexed by m,n (e.g. x[m,n]) and 2D frequency
domain signals using upper case letters indexed by u, v (e.g. X[u, v]). We use F
and F−1 to denote DFT and inverse DFT, respectively. The energy of a signal
X[u, v] is defined as

EX =
∑
u,v

|X[u, v]|2. (1)

A signal can be represented as the sum of a real-valued signal and a complex-
valued signal, X[u, v] = Xre[u, v] + jXim[u, v]. It can also be represented as
the sum of a conjugate symmetric signal and a conjugate asymmetric signal,
X[u, v] = Xcs[u, v] +Xca[u, v]. If a spatial domain signal is real-valued, then its
frequency-domain counterpart is conjugate symmetric [4]:

F {xre[m,n]} = Xcs[u, v] =
X[u, v] +X∗[u, v]

2
, (2)

where X∗[u, v] = Xre[u, v]− jXim[u, v] is the conjugate of X[u, v].
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Fig. 1: Visualisation of the analysis. Tree-Ring discards the imaginary part of the
spatial domain initial latent noise x[m,n] for diffusion denoising, but this operation
discards half of the energy from all watermarked frequency-domain pixels. These pixels
also have their variance reduced by half.

A.2 Tree-Ring’s Pipeline

As visualized in Fig. 1, Tree-Ring proposes to add a watermark to a frequency
domain initial latent noise X[u, v] (of size N × N) by substituting the value
of M pixels within a watermark region mask M. For these watermarked pixels
X[u, v] ∈ M (corresponds with w used in the paper main content), Tree-Ring
samples their values from a circularly-symmetric complex normal distribution
NC
(
0, N2

)
= N

(
0, N2

2

)
+jN

(
0, N2

2

)
. Other non-watermarked pixels X[u, v] /∈

M, individually, also follow this distribution, but the difference is that in Tree-
Ring’s context, X[u, v] /∈ M are spatially ensured to be conjugate symmetric
X[u, v] = Xcs[u, v], while X[u, v] ∈ M does not have such a guarantee. During
the analysis, we view each pixel as a random variable.

After adding the watermark to X[u, v], Tree-Ring transforms it back to the
spatial domain, x[m,n] = F−1 {X[u, v]}. The obtained x[m,n] would typically
have both the real and imaginary parts. However, since diffusion denoising would
always start with a purely-real noise signal, Tree-Ring discards the imaginary
part of x[m,n], turning it into x′[m,n] = xre[m,n], whose frequency domain
counterpart X ′[u, v] = F {x′[m,n]} is the conjugate symmetric part of the orig-
inal watermarked signal, X ′[u, v] = Xcs[u, v].

A.3 Distribution Shift in Watermarked Region

Eq. (2) implies that the frequency domain signal X ′[u, v] satisfies:
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X ′[u, v] = F {x′[m,n]} = F {xre[m,n]} = Xcs[u, v] =
X[u, v] +X∗[−u,−v]

2
.

(3)
For pixels within the watermark region X ′[u, v] ∈ M, X[u, v] and X∗[−u,−v]

are uncorrelated, and they both follow a circularly-symmetric complex normal
distribution NC

(
0, N2

)
. Viewing X ′[u, v] as a random variable, its distribution

is given by

X ′[u, v] ∼ 1

2

(
NC
(
0, N2

)
+NC

(
0, N2

))
= NC

(
0,

(
1

2

)2

· 2N2

)
= NC

(
0,

N2

2

)
.

(4)
Oppositely, pixels outside the watermark region X ′[u, v] /∈ M are conjugate

symmetric, which implies that X ′[u, v] = Xcs[u, v] = X[u, v] ∼ NC
(
0, N2

)
. The

distribution of non-watermarked pixels X ′[u, v] /∈ M are unchanged.
This shows that discarding the imaginary part from the spatial domain pix-

els x[m,n] changes the distribution of the frequency domain pixels within the
watermark region mask M from X[u, v] ∼ NC

(
0, N2

)
to X ′[u, v] ∼ NC

(
0, N2

2

)
.

A.4 From Energy’s Viewpoint

Discarding the imaginary part of x[m,n] also causes watermarked region X ′[u, v] ∈
M to lose half of its energy. Since X[u, v] ∼ NC

(
0, N2

)
, |X[u, v]|2 ∼ N2χ2(1).

Therefore, the expected energy of X[u, v] ∈ M is given by

E

 ∑
u,v∈M

|X[u, v]|2
 = (N2 −M)Eu,v∈M

[
|X[u, v]|2

]
= (N2 −M)N2. (5)

Similarly, |X ′[u, v]|2 ∼ N2

2 χ2(1) for X ′[u, v] ∈ M. Therefore, the expected
energy of X ′[u, v] ∈ M is given by

E

 ∑
u,v∈M

|X ′[u, v]|2
 = (N2 −M)Eu,v∈M

[
|X ′[u, v]|2

]
= (N2 −M)

N2

2
. (6)

The fraction of energy of X ′[u, v] ∈ M, compared to X[u, v] ∈ M, is given
by

η =
E
[∑

u,v∈M|X ′[u, v]|2
]

E
[∑

u,v∈M|X[u, v]|2
] =

(N2 −M)N
2

2

(N2 −M)N2
=

1

2
, (7)

So the watermarked region loses half of its energy.
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A.5 Distribution Shift in ℓ1 Distance

In this section, we clarify the systematic ℓ1-to-reference shift introduced by dis-
carding the imaginary part during the watermark injection process. To simplify
the math, we assume that the recovered watermark comes from the same dis-
tribution as the injected one. We consider four different watermarks ∈ M in
frequency domain:

– X̂[u, v] ∼ NC(0, N
2): Recovered watermark that never experience imaginary

part discarding.

– X̂ ′[u, v] ∼ NC(0,
N2

2 ): Recovered watermark that experienced imaginary part
discarding.

– Ŷ [u, v] ∼ NC(0, N
2): Null watermark recovered from unwatermarked images.

– Z[u, v] ∼ NC(0, N
2): The reference watermark to imprint.

Since X̂ ′
re[u, v] ∼ N

(
0,
(
N
2

)2) and Zre[u, v] ∼ N
(
0,
(

N√
2

)2)
are both Gaus-

sian, their combination is also Gaussian with summed variance:

(
X̂ ′

re[u, v]± Zre[u, v]
)
∼ N

(
0,

(
N

2

)2

+

(
N√
2

)2
)

= N

0,

(√
3

2
N

)2
 .

(8)
And similarly for the imaginary parts. Therefore,

(
X̂ ′

re[u, v]± Zre[u, v]
)2

+
(
X̂ ′

im[u, v]± Zim[u, v]
)2

∼

(√
3

2
N

)2

χ2(2), (9)

where the pdf of a χ2 (2)-distributed random variable is given by:

fχ2(2)(x) =
e−

x
2

2Γ (1)
(10)

Hence, the expected ℓ1 distance between X̂ ′[u, v] ∈ M and Z[u, v] ∈ M,
normalised by the count of watermarked pixels M , is given by:
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E
[
1

M
∥X̂ ′ − Z∥1

]
= E

 1

M

∑
u,v∈M

|X̂ ′[u, v]− Z[u, v]|


= E

 1

M

∑
u,v∈M

|(X̂ ′
re[u, v] + jX̂ ′

im[u, v])− (Zre[u, v] + jZim[u, v])|


= E

 1

M

∑
u,v∈M

√(
X̂ ′

re[u, v]− Zre[u, v]
)2

+
(
X̂ ′

im[u, v]− Zim[u, v]
)2

= Eu,v∈M

[√(
X̂ ′

re[u, v]− Zre[u, v]
)2

+
(
X̂ ′

im[u, v]− Zim[u, v]
)2]

=

√
3

2
N

∫
R

√
xfχ2(2)(x)dx =

√
3

2
N

√
π

2
.

(11)
Similarly, making use of X̂re[u, v], X̂im[u, v], Ŷre[u, v], Ŷim[u, v], Zre[u, v], Zim[u, v] ∼

N
(
0,
(

N√
2

)2)
, the pixel-number-normalized ℓ1 distance is given by

E
[

1

N2
∥X̂[u, v]− Z[u, v]∥1

]
= N

√
π

2
. (12)

E
[

1

N2
∥Ŷ [u, v]− Z[u, v]∥1

]
= N

√
π

2
. (13)

These expectations satisfy:

E
[
∥X̂ ′ − Z∥1

]
=

√
3

2
E
[
∥X̂ − Z∥1

]
=

√
3

2
E
[
∥Ŷ − Z∥1

]
. (14)

Generally speaking, discarding the imaginary part causes the ex-
pectation of ℓ1-to-reference distance to shift by

√
3
2 statistically. This

shift factor is derived under several assumptions. In practice, situations are more
complicated. Tree-Ring injects a fixed watermark pattern. Thus X̂, X̂ ′ and Z all
carries information of a specific pattern and correlates with each other. They are
not i.i.d samples. Both pattern matching and the distribution shift contributes
to the expectation of ℓ1 distance in Eq. (14).

A.6 Distribution Shift in Real Scenarios

As mentioned above, in practice, many other factors affect the distribution shift
of the ℓ1 distance to reference. These factors include the matching of pattern,
attacks, diffusion and inversion process, etc. To assess the distribution shift in
real scenarios, we conduct a set of control experiments.

In Control 1, we follow the original setup of Tree-Ring. The original setup
aims at distinguishing between the recovered watermark ŵ (shifted) and the
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Table 1: Control experiments to demonstrate the effect of distribution shift. We report
AUC in verification setting. In Control 1, distribution shift helps distinguish. In Control
2, distribution shift doesn’t help. We observe the big performance drop under Rotate
and C&S attacks.

Experiment Clean Rotate JPEG C&S Blur Noise Bright Avg

Control 1 1.000 0.935 0.999 0.961 0.999 0.944 0.983 0.975
Control 2 1.000 0.728 0.999 0.746 0.998 0.940 0.978 0.913

Table 2: Average ℓ1-to-reference distance in 2 control experiments. We use ∆ to denote
the difference between ∥ŵ∅ −w∥1 and ∥ŵ∅ −w∥1, ∥ŵ∅ −w∥1 and ∥ŵ′

∅ −w∥1. Larger
∆ means easier to distinguish.

Experiment Target Clean Rotate JPEG C&S Blur Noise Bright Avg

- ∥ŵ − w∥1 51.50 78.85 66.16 76.96 69.41 73.73 64.86 68.78

Control 1 ∥ŵ∅ − w∥1 83.92 83.96 84.35 84.58 90.84 83.10 83.30 84.86
∆ 32.43 5.11 18.18 7.63 21.43 9.37 18.44 16.08

Control 2 ∥ŵ′
∅ − w∥1 77.31 80.60 81.21 79.70 86.46 81.63 80.34 81.04
∆ 25.81 1.75 15.05 2.74 17.05 7.90 15.48 12.26

null watermark ŵ∅ (not shifted) recovered from the unwatermarked images, i.e.
∥ŵ − w∥1 v.s. ∥ŵ∅ − w∥1.

In Control 2, we shift null watermark ŵ∅ to the same extent as the operation
of discarding imaginary part does. Then we get a shifted null watermark ŵ′

∅.
We distinguish between ŵ and ŵ′

∅, i.e. ∥ŵ−w∥1 v.s. ∥ŵ′
∅ −w∥1. Here, both ŵ

and ŵ′
∅ are shifted to the same extent, so we eliminate the help of distribution

shift.

We compare the results of Control 1 and 2 in Tab. 1. We can find general
performance drop under all attacks in Control 2. The average AUC decreases
from 0.975 to 0.913, making it more challenging to distinguish watermarked and
non-watermarked images without the help of distribution shift. Further observa-
tion reveals that the major drop occurs in Rotation and Crop & Scale attacks,
indicating that distribution shift contributes substantially to the robustness to
Rotate and Crop & Scale attacks. This also implies that the original Tree-Ring
watermark pattern cannot handle these attacks.

Meanwhile, we stat the average ℓ1-to-reference distance in these two control
experiments and compare them in Tab. 2. Without the help of distribution shift
in Control 2, the expectations of ∥ŵ∅ − w∥1 and ∥ŵ′

∅ − w∥1 are closer, espe-
cially under Rotation and C&S attacks, indicating overlapped distribution. This
implies a lower AUC and more difficulty in distinguishing, consistent with the
results in Tab. 1.
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B Discarding Imaginary Part As Standalone
Watermarking Approach

We demonstrate the operation of discarding the imaginary part can be used as
a standalone watermarking approach. Concretely, for each initial noise instance
intended for watermarking, rather than injecting a ring watermark into the fre-
quency spectrum X, we opt to inject a random Gaussian noise ∼ NC(0, N) into
the same region. Note that the injected noise are i.i.d. sampled for each case
thus different from each other. Although originating from the same distribution,
the newly introduced Gaussian noise typically lacks conjugate symmetry. Con-
sequently, when transforming to the spatial domain, it necessitates discarding
the excess imaginary parts. This results in a distribution shift in watermarked
noise, thus the actually injected noise is from NC(0,

N
2 ).

As discussed in previous sections, this shift induces deviations in the ℓ1 dis-
tance and energy of the watermarked noise from the non-watermarked noise.
During verification, we explore three different methods to distinguish the wa-
termarked and the non-watermarked. Specifically, we compute the ℓ1 distance
between the recovered noise and three different references: (1) random Gaus-
sian noise ∼ NC(0, N) (2) zero (3) zero but with ℓ2 distance (corresponding to
distinguishing the energy between the watermarked and the non-watermarked).
Empirical results are presented in Tab. 3. We can find all the mentioned methods
effectively detect the presence of the watermark. When we use zero as the refer-
ence, the distinction is most pronounced, highlighting its superior discriminatory
performance.
Relation with Tree-Ringrand [5] provides a variant called Tree-Ringrand that
also injects noise as the watermark. However, they inject the same noise pat-
tern for all generated images and intend to rely on pattern matching for wa-
termark verification. The proposed method in this section distinguishes itself
from Tree-Ringrand by injecting i.i.d. sampled noise for each generated image.
The AUC for Tree-Ringrand [5] and ours is 0.918 and 0.901, respectively. The
closely matched performances indicate that the deviation introduced by discard-
ing imaginary part offers very robust discriminative power. This suggests that
discarding imaginary part can effectively distinguish between watermarked and
non-watermarked images even without relying on the specific noise pattern.

C Failure Cases of Multi-Channel Rings

As discussed in the main text, we can imprint the ring watermarks onto multiple
channels to increase the capacity. However, we find that this often leads to the
generation of ring-like artifacts, evident in a substantial proportion of cases,
illustrated in Fig. 2. So we only imprint the ring watermark on a single channel
by default.
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Table 3: Quantitative results when discarding imaginary part is used as a stan-
dalone watermarking approach. We calculate the distance between the recovered noise
and different references for distinguishment between the watermarked and the non-
watermarked. Note that when the reference is Zero and the metric is ℓ2, it actually
distinguishes by energy. AUC is reported.

Ref Metric Clean Rotate JPEG C&S Blur Noise Bright Avg

Gaussian ℓ1 0.970 0.837 0.812 0.907 0.841 0.663 0.783 0.831
Zero ℓ1 0.998 0.908 0.925 0.967 0.879 0.747 0.881 0.901
Zero ℓ2 0.999 0.908 0.925 0.967 0.883 0.741 0.881 0.901
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Fig. 2: Generated artifacts when we imprint the ring watermarks on multiple channels.

D More Ablations and Comparisons

D.1 Results on Different Diffusion Models

RingID is a universal method that can be applied to different diffusion models.
Tab. 4 shows the results on more diffusion models. It is worth noting that the
performance of RingID gradually improves from the older version of SD to the
newer version of SD.

D.2 Comparison with More Methods

Tab. 5 compares RingID with more methods on the watermark verification task.
We can find that RingID achieves the best AUC and TPR@1%FPR under
both clean and adversarial settings, showcasing strong robustness.

E More Qualitatives

Fig. 3 gives more qualitative results.



Supplementary for RingID 9

Table 4: Empirical results of RingID on different diffusion models. Identification ac-
curacy is reported.

Models #Assigned Keys Clean Rotate JPEG C&S Blur Noise Bright Avg

SD 1.4 128 0.950 0.920 0.950 0.350 0.950 0.930 0.910 0.851
SD 1.5 128 0.960 0.940 0.960 0.340 0.950 0.940 0.910 0.857
SD 2.1 128 1.000 0.980 1.000 0.280 0.980 1.000 0.940 0.883

SD 1.4 2048 0.970 0.810 0.950 0.080 0.970 0.900 0.820 0.786
SD 1.5 2048 0.990 0.800 0.970 0.110 0.950 0.950 0.850 0.803
SD 2.1 2048 1.000 0.860 1.000 0.080 0.970 0.950 0.870 0.819

Table 5: Comparison with more methods on verification.

Methods AUC/T@1%F (Clean)↑ AUC/T@1%F (Adv)↑ FID↓ CLIP Score ↑

DwtDctSvd [1] 1.0 / 1.0 0.702 / 0.262 25.01 0.359
RivaGAN [6] 0.999 / 0.999 0.854 / 0.448 24.51 0.361
Tree-Ring [5] 1.0 / 1.0 0.975 / 0.694 25.93 0.364

RingID 1.0 / 1.0 0.995 / 0.926 26.13 0.365
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Fig. 3: More qualitative results. Images are generated by SD 2.1 with Stable-Diffusion-
Prompts [3].
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