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Abstract. In this paper, we propose an efficient feature pruning strategy for 3D
small object detection. Conventional 3D object detection methods struggle on
small objects due to the weak geometric information from a small number of
points. Although increasing the spatial resolution of feature representations can
improve the detection performance on small objects, the additional computational
overhead is unaffordable. With in-depth study, we observe the growth of compu-
tation mainly comes from the upsampling operation in the decoder of 3D detector.
Motivated by this, we present a multi-level 3D detector named DSPDet3D which
benefits from high spatial resolution to achieves high accuracy on small object
detection, while reducing redundant computation by only focusing on small ob-
ject areas. Specifically, we theoretically derive a dynamic spatial pruning (DSP)
strategy to prune the redundant spatial representation of 3D scene in a cascade
manner according to the distribution of objects. Then we design DSP module
following this strategy and construct DSPDet3D with this efficient module. On
ScanNet and TO-SCENE dataset, our method achieves leading performance on
small object detection. Moreover, DSPDet3D trained with only ScanNet rooms
can generalize well to scenes in larger scale. It takes less than 2s to directly pro-
cess a whole building consisting of more than 4500k points while detecting out
almost all objects, ranging from cups to beds, on a single RTX 3090 GPU. Code.

Keywords: 3D small object detection · Spatial pruning · Efficient inference

1 Introduction

3D object detection is a fundamental scene understanding problem, which aims to detect
3D bounding boxes and semantic labels from a point cloud of 3D scene. With the recent
advances of deep learning techniques on point cloud understanding [7, 13, 34, 35], 3D
detection methods have shown remarkable progress [39, 40, 46, 56]. However, with 3D
object detection being widely adopted in fields like robotics [30, 57] and autonomous
driving [2] which require highly precise and fine-grained perception, small object detec-
tion becomes one of the most important yet unsolved problems. In autonomous driving
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DSPDet3D

4500k+ points, single pass single GPU, less than 2s

Fig. 1: Trained with only rooms from ScanNet, our DSPDet3D generalizes well to process a
whole house with dozens of rooms. It takes less than 2s to generate fine-grained detection results
with a RTX 3090 single GPU.

scenarios [12], we observe a significant performance gap between cars and pedestrians.
In indoor scenes [4,9] where the size variance is much larger (e.g. a bed is 1000x larger
than a cup), detecting small objects is more difficult. We focus on indoor 3D object
detection task where scenes are crowded with objects of multiple categories and sizes.

For indoor 3D object detection, although great improvement has been achieved in
both speed and accuracy on previous benchmarks [1, 9, 43], they are still far from gen-
eral purpose 3D object detection due to the limited range of object size they can han-
dle. For instance, these methods focus on furniture-level objects such as bed and table,
while smaller ones like laptop, keyboard and bottle are ignored. With the arrival of 3D
small object benchmarks [37, 50, 51] which contain objects with wider size variance
(e.g. from tabletop object like cup to large furniture like bed), it is shown that previous
3D detectors get very low accuracy on small objects and some even fail to detect any
small objects. This is because extracting fine-grained representation for a large scene is
too computationally expensive, so current methods aggressively downsamples the 3D
features, which harms the representation of small objects.

In this paper, we propose a dynamic spatial pruning approach for 3D small object
detection. Although increasing the spatial resolution of the feature representations is a
simple and effective way to boost the performance of 3D small object detection, the
large computational overhead makes this plan infeasible for real application. With in-
depth study, we observe the memory footprint mainly comes from the huge number
of features generated by the upsampling operation in the decoder of 3D detector. In-
spired by the fact that small objects only occupy a small proportion of space, we adopt
a multi-level detection framework to detect different sizes of objects in different levels.
As the multi-level detector has already detected out larger objects in lower resolution,
there are many redundant features in the scene representations of higher resolution. To
this end, we propose to dynamically prune the features after detecting out objects in
each level, which skips the upsampling operation at regions where there is no smaller
object. Specifically, we first theoretically derive a pruning mask generation strategy to
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Fig. 2: Detection accuracy (mAP@0.25 of all categories) and speed (FPS) of mainstream 3D
object detection methods on TO-SCENE dataset. Our DSPDet3D shows absolute advantage on
3D small object detection and provides flexible accuracy-speed tradeoff by simply adjusting the
pruning threshold without retraining.

supervise the pruning module, which prunes as much features as possible while not
affecting the features of object proposals. Then we design a dynamic spatial pruning
(DSP) module according to the theoretical analysis and use it to construct a 3D object
detector named DSPDet3D. On the popular ScanNet [9] dataset, DSPDet3D improves
the mAP of all categories by 3% and mAP of small object by 14% compared with
current state-of-the-art. On TO-SCENE [50] dataset with more tabletop objects, we im-
prove the mAP of all categories by 8% while achieving leading inference speed among
all mainstream indoor 3D object detection methods.

2 Related Work

Indoor 3D object detection: Since PointNet and PointNet++ [34, 35], deep learning-
based 3D detection methods for point clouds begin to emerge in recent years, which
can be mainly divided into three categories: voting-based [6,33,47,49,54], transformer-
based [26, 28] and voxel-based [14, 38, 39, 46] methods. Inspired by 2D hough voting,
VoteNet [33] proposes the first voting-based 3D detector, which aggregates the point
features on surfaces into object center by 3D voting and predicts bounding boxes from
the voted centers. Drawing on the success of transformer-based detector [3] in 2D do-
main, GroupFree3D [26] and 3DETR [28] adopts transformer architecture to decode
the object proposals into 3D boxes. As extracting point features require time-consuming
sampling and aggregation operation, GSDN [14] proposes a fully convolutional detec-
tion network based on sparse convolution [7, 13, 19, 52], which achieves much faster
speed. FCAF3D [38] and TR3D [39] further improves the performance of GSDN with
a simple anchor-free architecture. Our method also adopts voxel-based architecture con-
sidering its efficiency and scalability.

Small object detection: Small object detection [45] is a challenging problem in
2D vision due to the low-resolution features. To tackle this, a series of methods have
been proposed, which can be categorized into three types: (1) small object augmen-
tation and oversampling methods [17, 25, 58]; (2) scale-aware training and inference
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strategy [11, 31, 41, 42]; (3) increasing the resolution of features or generating high-
resolution features [5, 10, 21, 22, 48, 53]. However, there are far less works about 3D
small object detection due to the limit of data and network capability. BackToReal-
ity [51] proposes ScanNet-md40 benchmark which contains small objects and finds
many current methods suffer a lot in small object detection. TO-SCENE [50] proposes
a new dataset and learning strategy for understanding 3D tabletop scenes. However, it
relies on densely sampled points from CAD models, which is infeasible in practical
scenarios where the points from small objects are very sparse. In contrast, we aim to
directly detect small objects from naturally sampled point clouds.

Network pruning: Network pruning can be divided into two categories: archi-
tecture pruning [15, 16, 18, 20, 27, 29] and spatial pruning [24, 36, 55]. Architecture
pruning aims to remove a portion of weights from a neural network to shrink the size
of a network, which includes unstructured pruning [15, 18, 29] and structured prun-
ing [16, 20, 27]. The former removes network weights without a predefined structure,
while the latter removes whole channels or network layers. On the contrary, spatial
pruning does not prune the parameters of a network, but spatially removing redundant
computation on the feature maps. DynamicViT [36] prunes the tokens in vision trans-
former with an attention masking strategy. SPS-Conv [24] dynamically prunes the con-
volutional kernel to supress the activation on background voxels in sparse convolution
layer. Ada3D [55] proposes a pruning framework for 3D and BEV features. Our dy-
namic spatial pruning method also belongs to spatial pruning, which directly removes
redundant voxel features level by level according to the distribution of objects.

3 Approach

In this section, we describe our DSPDet3D for efficient 3D small object detection. We
first revisit the multi-level 3D detector and analyze the computational cost distribution.
Then we propose dynamic spatial pruning with theoretical analysis on how to prune
features without affecting detection performance. Finally we design DSP module ac-
cording to the theoretical analysis and use it to construct DSPDet3D.

3.1 Analysis on Multi-level 3D Detector

Preliminaries: We choose multi-level FCOS-like [44] 3D detector [38,39] with sparse
convolution [7,13] for small object detection due to its high performance on both accu-
racy and speed (more detail can be found in Table 1 and 2).

As shown in Figure 3 (middle), after extracting backbone features, multi-level de-
tector iteratively upsamples the voxel feature representations to different levels. In each
level, all voxels are regarded as object proposals to predict bounding boxes and category
scores. Generative upsampling is widely adopted in this kind of architectures [14,38,39]
to expand the voxels from object surfaces to the whole 3D space, where object proposals
located at object centers can produce accurate predictions. During training, ground-truth
bounding boxes are assigned to different levels and each box assigns several nearby
voxels as positive object proposals. Only box predictions from positive object propos-
als will be supervised. While at inference time all voxel features from the decoder are
used to predict bounding boxes, which are then filtered by 3D NMS.
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Fig. 3: Comparison of the decoder in typical multi-level 3D object detector [39] and our
DSPDet3D. Note that the sparsity of voxels in decoder is changed due to the generative up-
sampling operation. After detecting out objects in a level, DSPDet3D prunes redundant voxel
features according to the distribution of objects before each upsampling operation. Red boxes
indicate all pruned voxels and ‘scissor’ boxes indicate voxels pruned in the previous layer. {O}
is the set of all objects and {Oi} is the set of objects assigned to level i.

Increasing spatial resolution: Based on multi-level architecture, a simple way to
boost the performance of small object detection is to increase the spatial resolution of
feature maps, i.e., voxelizing the point clouds into smaller voxels to better preserve geo-
metric information. Taking TR3D [39] for example, we double its spatial resolution and
show the results in Figure 4. It can be seen that the performance on small object really
benefits from larger resolution, but the computational overhead grows dramatically at
the same time. As 3D object detection is usually adopted in tasks which requires real-
time inference under limited resources, such as AR/VR and robotic navigation, directly
increasing spatial resolution is infeasible. Notably, we find the computation growth is
imbalanced: the decoder layers (including detection heads) account for the most mem-
ory footprint and have larger memory growth ratio than the backbone. This indicates the
generative upsampling operation will significantly increase the number of voxels when
the spatial resolution is high, which is the main challenge for scaling up the spatial
resolution of multi-level detectors.

3.2 Dynamic Spatial Pruning

Since small objects only occupy a small proportion of space, we assume there is a large
amount of redundant computation in decoder layers, especially when the resolution is
high. For instance, if a bed is detected in Layer 4, the region near this bed may be less
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Fig. 4: The memory footprint distribution of different multi-level detectors. Layer 4 to Layer 1
refer to decoder layers (including detection heads) from coarse to fine. If doubling the spatial res-
olution of TR3D, the performance on 3D small object detection improves from 52.7% to 62.8%
while memory footprint increases dramatically. We find decoder layers accounts for most of the
costs. DSPDet3D efficiently reduces redundant computation on these layers, achieving both fast
speed and high accuracy.

informative for detecting other objects in the follow decoder layers. If we can skip the
upsampling operation at these regions, the voxels will be sparsified level by level, as
shown in Figure 3 (right). In this way, small objects can be detected in Layer 1 from
only a small number of voxels. Inspired by this, we propose to dynamically prune the
voxel features according to the distribution of objects.

However, pruning a voxel will not only reduce the number of object proposals in the
following levels, but also change the following voxel features computed based on the
pruned voxel. Therefore, in order to reduce the redundant computation of multi-level
detector without degrading the detection performance, a carefully designed pruning
strategy is required. We give theoretical derivation as below.

Problem formulation: For each scene, we denote {O} as the set of all objects,
{Oi} as the set of objects assigned to level i1 during training, fi ∈ RN×(3+C) as
the voxel features of level i. We aim to prune fi after detecting out {Oi}, where the
objective is to remove as many voxels as possible while keeping the predictions of
{O}\{Oi} unaffected after the pruning. For each object oj in level j (j < i), we
assume the prediction of it is unaffected if the voxel features at level j near its center
cj are unaffected. We make this assumption because most true positive predictions are
from object proposals located at the center of bounding boxes [14, 44]. We denote the
expected unaffected neighborhood as Cj(cj , P ), which means a cube centered at cj
with P × P × P voxels at level j. Given the symmetry, P should be odd. Then we
formulate the objective of our pruning strategy at level i as:

minimize
Ki

∑
x,y,z

Mi[x][y][z],Mi =
∧i−1

j=1 Ki(cj),

s.t. ∀j < i, Cj(cj , P ) ∩ Ai,j(¬Ki(cj) ⋆ fi) = ∅ (1)

1 We adopt the same definition of level as in Figure 3, where level i is finer than level i+ 1.
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where Mi ∈ RN is a binary pruning mask sharing the same length with fi, where 0
indicates removing and 1 indicates keeping during the pruning operation ⋆. Ki(·) is the
generation strategy of pruning mask for each object, which generates a binary pruning
mask conditioned on the object center. Ai,j(f) is defined as the affecting field of f ,
which represents the voxels at level j that will be affected by pruning f at level i.
Without loss of generality, here we choose only one object at each level for simplicity
of presentation.

Overview of problem solving: We solve (1) by mathematical induction. Specifi-
cally, for pruning strategy Mi at level i, we first consider how to generate pruning mask
Ki(ci−1) to ensure the predictions of {Oi−1} are unaffected. Then we show that by fol-
lowing our pruning strategy Ki, ‘the predictions of {Oj} are unaffected’ can be derived
by ‘the predictions of {Oj+1} are unaffected’.2

Solving Ki(ci−1): To make sure Ci−1(ci−1, P ) ∩ Ai,i−1(·) = ∅, we need to
compute the affecting field of each voxel vi in level i. Obviously, the upper bound of
affecting field of vi expands in shape of cube with sparse convolution. Assume there
are m sparse convolution with stride 1 and kernel xk (1 ≤ k ≤ m) between pruning
and generative upsampling in level i, one generative transposed convolution with stride
2 and kernel y, and n sparse convolution with stride 1 and kernel zk (1 ≤ k ≤ n) until
detecting out objects in level i − 1. Then the affecting field from pruning (level i) to
detecting (level i− 1) can be written as:

Ai,i−1(vi) = Ci−1(vi, aff({xk}, y, {zk})) (2)

where aff({xk}, y, {zk}) is the range of affecting field represented by the kernel sizes,
which we will detail in supplementary material. Since the shape of the expected unaf-
fected voxel features is a P × P × P cube, Ki(ci−1) can be formulated as:

Ki(ci−1)[x][y][z] = I(2 · |x− ci−1|∞ ≤ rSi)

r = ⌈P + aff({xk}, y, {zk})− 2

2
⌉ (3)

where Si is the size of voxel in level i. I(·) is the indicative function. x = (x, y, z) is
the voxel coordinates of fi.

Recursion of Ki: We now derive when the pruning strategy Ki in (3) also works
for cj (j < i − 1). We can regrad cj as the center of object in level i − 1 and use
(3) to generate the pruning mask. In this way, Ci−1(cj , P ) are unaffected. As Cj(cj , P )
is covered by Ci−1(cj , P ), so Cj(cj , P ) is unaffected as well. We should also ensure
pruning in level i has no cumulative impact on pruning in level i− 1:

(Ki−1(cj) ⋆ fi−1) ⊆ Ci−1(cj , P ) (4)

this means when generating pruning mask of cj in level i − 1 using Ki−1, the kept
voxels should be covered by the unaffected voxels after pruning in level i. So we have:

r · Si−1 ≤ P · Si−1 (5)

The minimum P can be acquired by solving (5). In this case, strategy Ki in (3) works
for all cj (j < i).

2 We provide illustrated examples in supplementary material for better understanding.
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Fig. 5: Illustration of DSPDet3D. The voxelized point clouds are fed into a high-resolution sparse
convolutional backbone, which output four levels of scene representations. Four dynamic spatial
pruning (DSP) modules are stacked to construct a multi-level decoder and detect objects from
coarse to fine. DSP module utilizes a light-weight learnable module to predict the pruning mask.
During inference, we discretize the pruning mask and use it to guide pruning before generative
upsampling. While during training we interpolate the pruning mask to next level and prune the
voxel features after generative upsampling.

3.3 DSPDet3D

Based on the theoretical analysis, we devise a dynamic spatial pruning (DSP) module to
approximate the ideal pruning strategy. We further construct a 3D small object detector
named DSPDet3D with the proposed DSP module.

DSP module: As shown in Figure 3, we modify the layers of a typical multi-level
decoder to DSP modules, which prunes redundant voxel features after detecting out
objects at each level for efficient feature upsampling. Formally, given the upsampled
voxel feature fU

i and the backbone feature fB
i at level i, DSP module first add them for

detection. However, fU
i may be much sparser than fB

i due to pruning, directly adding
by taking union of them is inefficient. Therefore, we propose a new operator called
partial addition to fit our pruning strategy:

fi = fB
i
−→
+fU

i (6)

where addition is constrained to be operated only on the voxels of fU
i . Then objects

are detected using a shared detection head across all levels: {Oi} = Detect(fi). Once
objects at level i are detected out, we prune the voxel features according to the derived
strategy described in Section 3.2. Here we devise a light-weight MLP-based learnable
pruning module to decide where smaller objects (i.e. objects in level j (j < i)) may
appear, and then prune other locations:

f̄i = t(M̂i) ⋆ fi, M̂i = MLPi(fi) (7)

where M̂i is the pruning mask predicted from fi, which represents the probability of
retention for each voxel. We utlize FocalLoss [23] to supervise M̂i with the generated
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Mi in (1). During inference, a threshold function t(·) sets probability lower than τ to
be 0, others be 1 to guide pruning. After pruning, the generative upsampling is applied
to acquire features for the next level: fU

i−1 = GeConv(f̄i).
During training, as M̂i may not be so accurate (especially at beginning), we find

applying the above learnable pruning module makes training difficult to converge. In-
stead, we switch the pruning to weak mode for context preservation. As shown in Figure
5, the weak pruning is applied after generative upsampling. For level i, we upsample
the pruning mask M̂i+1 to level i with nearest neighbor interpolation. Then we sort
the interpolated scores and keep only Nmax voxels with the highest scores. This weak
pruning mechanism aims to stablize training, which only works when the amount of
voxels is too large to conduct following operations.

Since our theoretical analysis sets the expected unaffected neighborhood to be a
P × P × P cube, we also modify the assigning strategy of positive object proposals
accordingly for robust training. Specifically, for a ground-truth bounding box of oi as-
signed to level i, we sample the nearest Npos voxels to ci inside the cube centered at
ci with length P · Si. If there are less than Npos voxels in the cube, we simply sample
all voxels inside it. Our assigning method is independent of the size of bounding box,
which ensures there are enough positive proposals even for small objects.

DSPDet3D: Based upon the top-performance multi-level detector TR3D [39], we
remove the max pooling layer to increase the spatial resolution of backbone features.
Then we replace the decoder in TR3D with four stacked DSP modules to remove redun-
dant voxel features level by level, which achieves efficient upsampling without affecting
the detection performance. To train DSPDet3D, we keep the same loss for classification
and box regression as in TR3D and add additional FocalLoss to supervise M̂i with Mi.

Compare with FCAF3D: Similar to our training-time weak pruning, FCAF3D [38]
also adopts a pruning strategy in the decoder to prevent the number of voxels from
getting too large, which is unable to remove redundant features in early decoder layers
during inference. Moreover, it directly utilizes the classification scores for bounding
boxes to sort and prune the voxel features, which cannot accurately preserve geometric
information for small objects.

4 Experiment

In this section, we conduct experiments to investigate the performance of our approach
on 3D small object detection. We first describe the datasets and experimental settings.
Then we compare DSPDet3D with the state-of-the-art 3D object detection methods. We
also design ablation experiments to study the effectiveness of the proposed methods.
Finally we transfer DSPDet3D to extremely large scenes to show its efficiency and
generalization ability.

4.1 Experimental Settings

Datasets and metrics: We conduct experiments on two indoor datasets including Scan-
Net [9] and TO-SCENE [50]. ScanNet is a richly annotated dataset of indoor scenes
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Table 1: 3D objects detection results and computational costs of different methods on ScanNet-
md40. DSPDet3D with the best pruning threshold is highlighted in gray. We set best scores in
bold, runner-ups underlined.

Method Decoder
mAP mAPS Speed Memory

@0.25 @0.5 @0.25 @0.5

VoteNet Voting 51.02 33.69 0.30 0 13.4 1150
VoteNetS Voting 48.62 31.55 1.04 0 8.5 1500
H3DNet Hybrid 53.51 39.23 3.08 0.90 7.2 1550

GroupFree3D Transformer 56.77 41.39 11.7 0.81 7.8 1450
GroupFree3DS Transformer 29.44 11.94 0.20 0 3.2 2000

RBGNet Voting 55.23 32.64 5.81 0 6.6 1700
FCAF3D Multi-level 59.49 48.75 18.38 8.21 12.3 850

CAGroup3D Voting 60.29 49.90 16.62 8.63 3.1 3250
TR3D Multi-level 61.59 49.98 27.53 12.91 10.8 1250

FCAF3D-higher Multi-level 62.65 51.01 27.68 16.23 7.1 4000
TR3D-higher Multi-level 65.18 54.03 41.70 29.56 5.2 4450
Ours(τ = 0) Multi-level 65.39 54.59 44.79 31.55 4.4 4200

Ours(τ = 0.3) Multi-level 65.04 54.35 43.77 30.38 12.5 700

with 1201 training scenes and 312 validation scenes. Each object in the scenes are anno-
tated with texts and then mapped to category IDs. We follow the ScanNet-md40 bench-
mark proposed by [51], which contains objects in 22 categories with large size variance.
TO-SCENE is a mixed reality dataset which provides three variants called TO_Vanilla,
TO_Crowd and TO_ScanNet with different numbers of tabletop objects and scene
scales. We choose the room-scale TO_ScanNet benchmark, which contains 3600 train-
ing scenes and 800 validation scenes with 70 categories. However, TO_ScanNet adopts
non-uniform sampling to acquire about 2000 points per tabletop object, which is infea-
sible in practical settings. To this end, we downsample the small objects and control the
density of them to be similar with other objects and backgrounds. We name this mod-
ified version as TO-SCENE-down benchmark. We take the point clouds without color
as inputs for all methods. More details about ScanNet-md40 and TO-SCENE-down
benchmarks can be found in supplementary material.

We report the mean average precision (mAP) with threshold 0.25 and 0.5. To mea-
sure the performance on different categories, we use two kinds of metrics: mAP and
mAPS , which refer to the mean AP of all objects and of small objects respectively.
Here we define categories of small object as ones with average volume smaller than
0.05m3 for both benchmarks.

Implementation details: We implement our approach with PyTorch [32], Minkow-
skiEngine [7] and MMDetection3D [8]. We follow the same training strategy / hyper-
parameters as TR3D [39] for fair comparison. Training converges within 4 hours on a 4
GPU machine. The stride of the sparse convolution in the preencoder of DSPDet3D is
set to 2, thus the voxel size of fB

1 is 4cm and Si equals to 2i· 2cm. We set Npos = 6 and
Nmax = 100000 during training. The weight of the FocalLoss between Mi and M̂i is
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Table 2: 3D objects detection results and computational costs of different methods on TO-
SCENE-down benchmark. DSPDet3D with the best pruning threshold is highlighted in gray.
We set best scores in bold, runner-ups underlined.

Method Decoder
mAP mAPS Speed Memory

@0.25 @0.5 @0.25 @0.5

VoteNet Voting 26.72 14.01 14.51 4.78 12.8 1300
VoteNetS Voting 31.87 14.89 21.75 7.40 7.6 1650
H3DNet Hybrid 27.69 17.38 14.83 7.39 5.1 1650

GroupFree3D Transformer 32.41 20.43 20.17 10.13 7.7 1700
GroupFree3DS Transformer 40.14 23.55 33.33 16.15 2.4 2200

RBGNet Voting 40.42 30.27 29.69 21.61 5.0 1850
FCAF3D Multi-level 45.13 37.21 37.18 31.65 11.9 1000

CAGroup3D Voting 54.28 47.58 48.49 43.85 2.2 3500
TR3D Multi-level 55.58 45.95 52.72 44.01 9.9 1400

FCAF3D-higher Multi-level 57.23 50.39 53.07 48.76 6.3 4250
TR3D-higher Multi-level 63.96 56.06 62.84 57.14 4.1 4600
Ours(τ = 0) Multi-level 66.81 59.41 66.53 61.57 4.1 5300

Ours(τ = 0.5) Multi-level 66.12 58.55 65.82 60.73 13.9 800

0.01. In terms of block structure, we have {xk} = ∅, y = 3 and {zk} = {3, 3}. So we
set r = 7 and P = 7 according to (3).

4.2 Comparison with State-of-the-art

We compare our method with popular and state-of-the-art 3D object detection meth-
ods, including VoteNet [33], H3DNet [54], GroupFree3D [26], RBGNet [47], CA-
Group3D [46], FCAF3D [38] and TR3D [39]. We also follow [50] to reduce the radius
of ball query in the PointNet++ backbone for VoteNet and GroupFree3D. The mod-
ified models is distinguished by subscript S. Note that the original TR3D only uses
two detection head at level 2/3 and removes the last generative upsampling. However,
detecting small objects heavily relies on high-resolution feature map, so we add the
upsampling back. This will make it slightly slower but much more accurate on the 3D
small object detection benchmarks.

For all methods, we use their official code and the same training strategy / hyperpa-
rameters to train them on ScanNet-md40 and TO-SCENE-down.

Table 1 and 2 shows the experimental results on ScanNet-md40 and TO-SCENE-
down respectively. Consistent with the observation of [51], we find point-based (VoteNet,
H3DNet, RBGNet) and transformer-based (GroupFree3D) methods almost fail to de-
tect small objects on ScanNet-md40. This is because the PointNet++ backbone used
by these methods adopts set abstraction (SA) operation to aggressively downsample
the point clouds and extract scene representation. Since the number of small objects
in ScanNet is limited, furthest point sampling has a low probability to sample points
on small objects, which leads to inaccurate representation of small objects. For meth-
ods (CAGroup3D, FCAF3D, TR3D) with sparse convolutional backbone, they achieve
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Fig. 6: Visualization of pruning process on ScanNet. We show the kept voxels in each level under
different thresholds. The memory footprint of each level is also listed at bottom.

relatively much higher mAPS due to sparse convolution [7,13] can extract fine-grained
scene representation with high efficiency. However, two-stage method like CAGroup3D
is both slow and memory-consuming. Multi-level methods like FCAF3D and TR3D
are efficient and get good performance on small object detection due to the FPN-like
architecture, but they are still limited by resolution. On the contrary, our DSPDet3D
with a proper threshold takes advantage of the high-resolution scene representation
to achieve much higher performance. Furthermore, DSPDet3D is the most memory-
efficient model among all mainstream methods.

4.3 Ablation Study

We conduct ablation studies on ScanNet-md40 to study the effects of hyperparameters
and different design choices.

Pruning process: We visualize the pruning process under different thresholds in
Figure 6, where the voxels in each level after pruning are shown. We also list the mem-
ory footprint of each level. It can be seen that our method significantly reduce the mem-
ory footprint by pruning most of the uninformative voxels. Our pruning module only
keeps regions where there are smaller objects than current level.

Hyperparameters: We study two hyperparameters: r and Npos, which is highly
relevant to 3D small object detection. Note that r = ⌈P+9−2

2 ⌉, thus r and P should be
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Table 3: Ablation studies on several design choices. We control the speed of each method to 10
FPS and report the accuracy in mAP@0.25 and mAPS@0.25.

Method mAP mAPS

Remove partial addition 55.3 35.5
Addition by taking union 57.9 36.4
Addition by interpolation 62.1 40.9
Spherical keeping mask 63.0 41.1
Remove training-time pruning – –
Positive proposal inside bounding box 62.4 40.7
The full design of DSP module 65.1 44.1
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Fig. 7: Ablation studies on the value of r and Npos. For each value we report performance under
different pruning threshold τ .

changed simultaneously. As shown in Figure 7 (left), setting r = 7 achieves the best
performance. If r is smaller than 7 then r > P , which conflicts with Equation (5) and
the features will be affected by pruning. While a larger r will make the pruning less ag-
gressive, resulting in a large number of redundant voxel features. Figure 7 (right) shows
that the number of positive object proposals should be set properly, which is important
to balance the ratio between positive and negative samples during classification.

Design choices: We also study the design choices of DSPDet3D in Table 3. Observ-
ing the second, third and fourth rows, we conclude that the partial addition is important
for efficient feature fusion. Although taking union can preserve more information, this
operation will reduce the sparsity of voxels and thus make our pruning less efficient.
The fifth row shows that generate the keeping mask according to the shape of affect-
ing field is better than using a spherical shape. According to the sixth row, removing
training-time pruning will significantly increase the memory footprint during training,
which makes the network unable to train. The seventh row validates the effectiveness
of our assigning method for positive object proposals.

4.4 Transferring to Larger Scenes

We further validate the efficiency and generalization ability of different 3D detectors by
transferring them to scenes of much larger scale. We first train 3D detectors on rooms
from ScanNet training set in a category-agnostic manner, which is done by regarding
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Fig. 8: Visualization of the transferring results of different 3D object detectors. The 3D detector is
trained on rooms from ScanNet and directly adopted to process a whole building-level 3D scene
from Matterport3D.

every labeled object as the same category. Then we directly adopt them to process the
building-level scenes in Matterport3D [4]. We find previous methods almost all fail to
process the extremely large scenes due to unaffordable memory footprint, so we only
compare DSPDet3D with FCAF3D as shown in 8. It is shown that FCAF3D cannot
detect out any small object and even struggles on relatively large objects like chairs
when the scene is too large. On the contrary, DSPDet3D is able to accurately detect
small objects like cups and thin pictures.

5 Conclusion

In this paper, we have presented an efficient feature pruning strategy for 3D small object
detection. Inspired by the fact that small objects only occupy a small proportion of
space, we adopt a multi-level detection framework to detect different sizes of objects
in different levels. Then we present a dynamic spatial pruning strategy to prune the
voxel features after detecting out objects in each level. Specifically, we first design
the dynamic spatial pruning strategy by theoretical analysis on how to prune voxels
without affecting the features of object proposals. Then we propose dynamic spatial
pruning (DSP) module according to the strategy and use it to construct DSPDet3D.
Extensive experiments on ScanNet and TO-SCENE datasets show that our DSPDet3D
achieves leading detection accuracy and speed. We also conduct transferring experiment
on Matterport3D to show DSPDet3D also generalizes well to extremely large scenes.
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