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1 ModelNet40

We report similar long-tail problems in the ModelNet40 [3] dataset as in Figure
1. To further validate the performance of the proposed 3DAdvDiff, we perform
experiments on the ModelNet40 dataset. We select the top 8 classes to train
the PVD model for shape completion with enough training data. The results are
shown in Table 1 and 2. The proposed 3DAdvDiffens outperforms existing attack
methods remarkably on both black-box and against defenses.

Much like the ShapeNet dataset, black-box adversarial attacks typically per-
form poorly on categories within the ModelNet40 dataset that have a larger
volume of training data. However, the test set of ModelNet40 is not uniformly
selected. Instead of selecting a fixed proportion from the training data, Mod-
elNet40 chooses 100 point clouds from all the top categories. As a result, the
black-box Attack Success Rate (ASR) on ModelNet40 is relatively higher than
that on the ShapeNet dataset. However, our proposed 3DAdvDiffens still per-
forms remarkably better than the previous attack methods.

2 Acceleration

The original PVD model adopts the DDPM [1] sampling for generating point
clouds, which use 1000 sampling steps. An effective acceleration method to im-
prove the sampling of DDPM is to use DDIM [2] sampling. We implement DDIM
sampling for the PVD model with only 200 sampling steps. The results are
shown in Table 3. We significantly improve the sampling speed without largely
decreasing the generation quality. Improving time efficiency is a hot topic in the
community, with many acceleration methods being introduced. Therefore, we
believe the time efficiency of diffusion model based adversarial attacks can be
further enhanced in the future.

3 Visual Results

We further give the visual results of our generated 3D adversarial point clouds
in Figure 2 and 3.

https://orcid.org/0000-0001-6646-6514
https://orcid.org/0000-0003-4223-8220


2 X. Dai et al.

PointNet++
DGCNN
PRC N

um
ber of O

bjects

500

A
SR

 (%
)

0

20

40

60

80

100

Chair Sofa Airplane Bookshelf Bed Vase Monitor Table Toilet Bottle Mantel TV stand Plant

Fig. 1: The black-box ASR on the ModelNet40 dataset. We use the top 13
classes from the ModelNet dataset to demonstrate the long-tailed dataset problem. We
use PGD with ℓinf = 0.16 on PointNet to evaluate the black-box attack success rate
(ASR).

4 Multi-View Adversarial Shape Completion

The shape completion tasks performed by the PVD model generate 20 different
views for a specified partial shape to generate 20 different point clouds, which
enables us to locate the most vulnerable views for generating adversarial point
clouds. A similar finding is also addressed by Zhao et al. [4]. Therefore, it further
enhances the performance of the proposed attacks as 3D deep learning models
are sensitive to the transformations of 3D point clouds.

5 Adversarial Shape Generation

Diffusion models also have the ability to directly generate complete 3D point
clouds without the need for a given partial shape. We further evaluated the
performance of our proposed 3DAdvDiff in the context of adversarial shape gen-
eration, which we refer to as 3DAdvDiff-Gen. As demonstrated in Table 4 and 5,
the 3DAdvDiff model, when used for adversarial shape generation, outperforms
shape completion in black-box attacks, showing an average increase of 7.8% in
Attack Success Rate (ASR). However, since shape generation does not inher-
ently support multi-view generation during its original training, the white-box
ASR is somewhat compromised without identifying the vulnerable transforma-
tions. Despite this, both time efficiency and training efficiency are enhanced. It
should be noted, however, that the quality of adversarial shape generation is
somewhat worse compared to shape completion. This could potentially be due
to the absence of guidance on partial shape. We leave a better design of the
shape generation in future works.
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Table 1: The attack success rate (ASR %) of transfer attack on the Mod-
elNet40 dataset. The adversarial examples of existing attack methods are generated
from the PointNet model. The Average ASR is calculated among the seven black-box
models (3DAdvDiffens is calculated among the five black-box models).

Dataset Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average

Chair

PGD 99.9 11.6 9.2 27.5 4.5 15.2 7.1 9.0 12.0
KNN 99.9 11.2 10.5 14.2 4.5 8.9 6.7 9.2 9.3
GeoA3 99.9 7.1 4.6 8.1 3.5 5.2 6.5 4.9 5.7
SI-Adv 99.9 65.4 37.4 30.4 20.2 13.8 22.8 19.4 29.9
AdvPC 99.9 5.1 2.6 17.2 2.4 6.2 4.2 6.8 6.4
PF-Attack 96.8 17.5 19.7 42.4 15.2 10.1 8.9 16.0 18.5
3DAdvDiff 99.9 85.4 60.8 70.6 32.1 40.8 50.6 38.9 54.2
3DAdvDiffens 99.9 99.8 99.9 99.5 98.7 90.4 99.9 94.8 96.6

Dataset Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average

All

PGD 99.9 22.8 18.8 54.5 18.3 16.1 15.4 23.4 24.1
KNN 99.9 29.6 23.4 27.5 22.3 25.9 26.5 24.5 25.7
GeoA3 99.8 15.3 9.5 15.6 10.3 10.6 12.4 10.8 12.1
SI-Adv 99.9 60.4 30.1 58.4 34.8 36.8 24.5 36.8 40.2
AdvPC 99.9 12.4 9.3 23.4 9.5 10.1 8.3 10.8 12.0
PF-Attack 99.1 51.4 31.3 67.4 35.4 35.4 23.1 41.2 40.7
3DAdvDiff 99.9 90.1 65.8 85.4 52.8 63.9 51.8 67.4 68.2
3DAdvDiffens 99.9 99.8 99.9 99.9 98.6 91.2 99.9 96.3 97.2

Table 2: The attack success rate (ASR %) of different adversarial attack
methods against defenses. All attacks are evaluated under white-box settings
against the PointNet model.

Method ASR SRS SOR DUP-Net IF-Defense HybridTraining
PGD 99.9 61.3 17.6 16.5 14.3 0.4
KNN 99.9 94.5 85.4 48.9 22.4 12.1
GeoA3 99.8 55.3 28.6 22.1 13.6 1.5
SI-Adv 92.5 75.1 22.1 20.3 18.6 19.1
AdvPC 99.9 84.8 21.4 19.8 20.6 0.4
PF-Attack 99.1 47.5 77.3 43.0 29.2 13.6
3DAdvDiff 99.9 95.6 90.5 88.3 52.1 31.5
3DAdvDiffens 99.9 98.7 96.0 95.4 43.7 98.6

6 Limitation

Given the unique characteristics of 3D point clouds, they necessitate a larger vol-
ume of training data compared to 2D images when training diffusion models. At
present, all existing 3D diffusion models are trained using the large-scale classes
in the ShapeNet dataset. This, however, restricts the generalizability of the pro-
posed diffusion adversarial attacks to relatively smaller datasets. Nonetheless, we
are optimistic that with the continued advancement of 3D diffusion models, a
large-scale and balanced 3D dataset will become available in the future. Further-
more, while we have managed to enhance the sampling speed of our proposed
3DAdvDiff with DDIM sampling, the generation speed of the proposed attack
still lags behind PGD-based attacks. However, with the rapid development of
diffusion models, the time efficiency problem is addressed in many recent works.
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Table 3: The attack performance with DDPM and DDIM sampler. All attacks
are evaluated under white-box settings against the PointNet model on all selected
classes of the ShapeNet dataset.

ASR Time(s) CD
DDPM 90.1 60.8 0.14
DDIM 89.9 13.5 0.18

Table 4: The attack success rate (ASR %) of adversarial shape completion
and shape generation. The adversarial examples of existing attack methods are
generated from the PointNet model on the ShapeNet’s Chair class. The Average ASR
is calculated among the seven black-box models.

Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 14.9 8.9 19.0
3DAdvDiff-Gen 90.1 54.2 25.4 32.1 21.2 7.6 24.5 22.5 26.8

Our future goal is to further boost the efficiency of 3DAdvDiff by incorporating
acceleration techniques from diffusion models.

7 Ethics Concerns

The proposed 3DAdvDiff brings new challenges to 3D deep learning models.
Adversaries may adopt our attacks to generate malicious point clouds to attack
the 3D deep learning classification models. However, our proposed 3DAdvDiff
can also be utilized for adversarial training to enhance the robustness of 3D deep
learning models. The proposed attack can further encourage the development of
3D adversarial defenses. Therefore, our proposed 3DAdvDiff can achieve positive
impacts on improving the 3D deep learning model robustness.
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Table 5: The generation quality on the ShapeNet dataset. The CD distance is
multiplied by 10−2.

Method 3DAdvDiffens 3DAdvDiffens-Gen
HD 0.098 0.80
CD 0.14 0.36
MSE 1.18 3.05
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Fig. 2: The generated adversarial point clouds of 3DAdvDiffens.
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Fig. 3: The generated adversarial point clouds. The adversarial examples are
randomly sampled from ShapeNet dataset.
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