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In this appendix, we present an extended ablation study in Section A-1, details our
competing methods in Section A-2, provide the classwise performance in Section A-3,
and provide qualitative illustrations in Figure A-2.

A-1 Supplementary Ablations

We propose supplementary ablations to evaluate the impact of several design choices.

Table A-1: Supplementary Ablation. Performance (weighted F1) on TreeSatAI-TS of alternate
VHR encoders (a-c) and masking schemes (d-e).

Experiment All VHR S2 S1

Default 74.2 70.5 62.9 56.7

a linear w. random init 66.8 57.3 58.9 54.8
b ViT 70.5 70.8 64.0 52.6
c linear from ScaleMAE 68.9 51.2 66.7 52.2

d Spatial masking 73.2 70.1 63.2 54.6
e Modality masking 72.4 70.2 61.2 55.4

Alternate VHR Encoder. To train OmniSat on both VHR (0.2 m) and Sentinel (10m)
images, we must embed patches of 50×50 pixels. We consider here alternative encoders
to CNNs: a linear layer (Tab. A-1.a) and a ViT with 10×10 patches (Tab. A-1.b). The
results suggest that 50× 50 patches are too large to use linear projection. While ViTs
reach slightly higher unimodal performance, CNNs allow us to bypass maxpool indices
to the decoders leading to higher multimodal performances.

Using Pre-trained VHR models. Rescaling the 50 × 50 patches to the 224 × 224
resolution of ScaleMAE or SatMAE proved impractical in terms of memory. Instead, we
use the pre-trained patch encoder of ScaleMAE by rescaling our 50×50 patches to 16×16,
removing the infrared channel, and adding a projection layer to our token size D = 256
(Tab. A-1.c). Interestingly, this leads to a cross-modal distillation which improves the
results for S2. The VHR and multimodal performance remain below OmniSat, which
can be attributed to the lack of a NIR channel.
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Masking Strategies. We report the results for spatially consistent masking (patches
are masked for all modalities simultaneously, Tab. A-1.d) and modality masking (the
patches of a random modality are all masked, Tab. A-1.e). Our random masking strategy
performs better.

Relative vs. Absolute Positional Encoding. We evaluate the impact of replacing the
relative positional encoding of tokens, based on the patch position, with an absolute
position encoding, based on the position of the patches in their tile—similar to what is
classically done for image processing.

With an absolute positional encoding, OmniSat reaches an F1-score of 58.4 and 73.0
when fine-tuned with 10% and 100% of the training set of TreeSatAI-TS, respectively.
This is 2.7 and 1.2% below a model trained with relative positional encodings. We
conclude that relative positional encodings are better suited for analyzing EO images.
While the upper patches of natural images are bound to correspond to the sky, and
the lower patches contain ground, no such analogy can be made for EO data, whose
distribution is equivariant through small horizontal translation.

Impact of Pre-training on Monomodal Performance. We aim to determine how our
multimodal pre-training scheme improves the monomodal performance (e.g., +13.2%
for Sentinel-2 in full supervision). We consider two mechanisms that may lead to more
discriminative features: (i) multimodality allows us to train the modality combiner
network C with more data, or (ii) our cross-modal and token-wise alignment-based
losses provide a strong supervisory signal. We propose an experiment to verify which
mechanism is the leading reason of our scheme’s strong performance.

We pre-train OmniSat on TreeSatAI-TS in mono- and multimodal settings with a
constant amount of tokens. More precisely, we pre-train OmniSat using all input tokens
from the S2 modality only, and using all 3 modalities but only 33% of patches. This
means that each experiment considering the same number P of input tokens. We then
train a single linear layer to map these representations to class scores (linear probing)
using 10 and 100% of the annotated S2 data. Finally, we evaluate the quality of these
linear mappings on the test set using only the S2 modality.

The model trained with a multimodal pretext task reaches a F1-score of 44.7 for
10% and 46.3 for 100% of the training data. The model trained only with S2 performs
significantly worse: 26.9 for 10% and 29.8 for 100% of data. This result suggests that
the key to the efficacy of our pretraining scheme is the supervisory signal of per-patch
contrastive and reconstruction objectives, rather than just increasing the number of tokens
viewed by the transformer backbone.

A-2 Adapting Competing Methods

We adapt competing methods to allow them to handle single images and time series
at different resolutions. We performed multiple tests for each approach and kept the
configurations leading to the competing approach’ highest performance.

– Multimodality. We train methods that are not natively multimodal (PSE [5], ViT [2],
DOFA [9], SatMAE, ScaleMAE) using a late-fusion scheme [6] by concatenating
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the embeddings learned in each modality, as suggested by Ahlswede et al. [1]. For
UT&T [3], initially designed for VHR images and Sentinel-2 time series, we add a
branch for Sentinel-1 integration, which is identical to the Sentinel-2 branch except
for the first layer.

– Handling Temporal Data. To evaluate image models (SatMAE, ScaleMAE, CROMA)
on time series, we convert image sequences to single images by concatenating for
each pixel and channel channel-wise the median observation for the four seasons:
spring, summer, fall, and winter [7].

– Handling VHR Data. To evaluate methods designed for low-resolution images
(PSE, LTAE [4]) in a multimodal setting that includes VHR images, we concatenate
their final embedding to the the one of a ResNet network.

– Scaling Models. The considered datasets are smaller than the ones typically used
to train large ViT-based models, making them prone to overfitting. To address this
issue we select a ViT-Small [2] backbone for SatMAE, ScaleMAE and CROMA.
For DOFA, we use a ViT-Base, the smallest pretrained model available.

– Multi-Class Prediction. To evaluate ViT-based models on classification experi-
ments, we insert a linear layer that maps the embedding of the class token ⟨CLS⟩ to
a vector of class scores. For the UT&T model, we compute a spatial average of the
last feature map, followed by a similar linear projection.

A-3 Supplementary Results

We report the performance of different approaches for each class for the two datasets
graphically in Figure A-1 and as a table in Table A-2. OmniSat is able to parse complex
scenes including mixed forest, cultures, and complex urban areas. In particular, Omnisat
leverage temporal dynamics to distinguish between different vegetation species.

Failure Case. We report in the bottom half of Figure A-2 hard examples from our three
datasets and compare the prediction of OmniSat and other models. For the TreeSatAI-TS
example, the Sentinel-2 optical time-series is highly occluded: over 80% of acquisitions
are covered by clouds. Furthermore, the forest tile contains a large variety of tree
species organized in densely connected canopy, making its classification particularly
hard. Indeed, the texture of the images in closed forests does not bring additional
discriminative information.

The example from FLAIR is a scrap yard, which is almost entirely covered by
broken vehicles. Since FLAIR’s annotations focus on the ground rather than transient or
stationary objects, identifying the actual land cover in such scenarios is very challenging.

The image taken from PASTIS contains a mix of several different crop types, includ-
ing the class mixed cereal which can already correspond to a parcel with various cereal
types. This leads to a hard classification problem for all methods.
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Fig. A-1: Class-Wise Performance. We plot the performance of different models for each class,
sorted by decreasing frequency. OmniSat improves the performance across the board, and for rare
classes in particular.
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Scale-MAE 47.3 53.2 32.4 42.7 38.5 64.4 63.8 38.3 51.7 71.5 78.2 25.4 11.8 55.1 64.0 18.2

OmniSat 73.4 74.1 58.9 62.5 56.5 74.9 72.9 60.0 69.5 77.6 85.4 64.6 46.2 68.5 76.1 43.4
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Scale-MAE 70.0 90.1 72.0 87.1 47.1 81.3 65.1 95.2 72.3 53.7 88.8 70.2 39.7 45.7

OmniSat 75.8 91.8 73.2 88.2 54.4 81.3 70.6 95.2 73.4 72.1 87.5 71.1 36.0 48.5

PASTIS-HD
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Proportion in % 94.4 63.7 61.9 46.4 29.0 19.4 17.3 20.0 12.3 19.8 15.1 22.6 12.7 42.7 14.9 17.7 19.6 15.3

UT&T 53.5 97.1 78.3 77.5 63.1 57.5 25.4 49.2 54.9 69.9 50.7 50.5 50.6 22.0 60.0 59.0 46.3 36.9 13.8
CROMA 60.1 97.1 87.1 88.9 64.2 86.5 41.1 64.5 74.2 76.5 51.2 74.3 61.3 26.1 53.3 59.1 45.9 22.4 9.1
Scale-MAE 42.2 97.1 84.2 83.3 56.4 53.6 15.1 24.1 54.9 39.1 27.5 43.9 41.5 12.3 48.1 34.2 30.4 12.5 2.6

OmniSat 69.9 97.2 90.1 92.2 82.6 89.0 64.7 75.0 82.7 88.1 48.5 81.3 56.7 52.6 56.9 85.7 48.4 34.8 31.7

Table A-2: Class-Wise Performance. We report the F1-score for each class for TreeSatAI-TS,
FLAIR, and PASTIS-HD for multilabel classification. We also report the unweighted class-
averaged F1-score (Macro-F1). We can observe that OmniSat outperforms UT&T [3] and Scale-
MAE [8] on nearly all classes for both datasets. In particular, we observe the most significant
gains for classes with discriminative temporal dynamics, such as broadleaf tree species and the
vineyards class.
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Fig. A-2: Qualitative Results. We report predictions of OmniSat and two competing models on
tiles from our datasets, including a failure case (bottom). OmniSat can detect classes with recog-
nizable temporal dynamics such as agricultural lands or mixed forest areas with both coniferous
� and deciduous trees 
. Other methods, and in particular ScaleMAE, struggle to detect these
classes.
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