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Abstract. The diversity and complementarity of sensors available for Earth Ob-
servations (EO) calls for developing bespoke self-supervised multimodal learning
approaches. However, current multimodal EO datasets and models typically focus
on a single data type, either mono-date images or time series, which limits their
impact. To address this issue, we introduce OmniSat, a novel architecture able to
merge diverse EO modalities into expressive features without labels by exploit-
ing their alignment. To demonstrate the advantages of our approach, we create
two new multimodal datasets by augmenting existing ones with new modalities.
As demonstrated for three downstream tasks—forestry, land cover classification,
and crop mapping—OmniSat can learn rich representations without supervision,
leading to state-of-the-art performances in semi- and fully supervised settings. Fur-
thermore, our multimodal pretraining scheme improves performance even when
only one modality is available for inference. The code and dataset are available at
https://github.com/gastruc/OmniSat.

Keywords: Earth observation · Multi-modality · Self-supervised learning

1 Introduction

Self-supervised multimodal learning has recently gathered significant interest within
computer vision [38, 82, 102]. Earth Observation (EO) is particularly well-suited for
developing and evaluating such approaches [29, 51], thanks to the large amount of open-
access data captured by sensing technologies with complementary capabilities [36, 79].
Combining different sources of EO observations is crucial for several high-impact
applications, including environmental [21, 80, 83] and climate monitoring [56, 97], as
well as improving food security [66]. Moreover, learning with few or no labels is essential
for developing regions with limited data annotation capabilities [5, 55, 62].

Despite this potential, most multimodal EO datasets and models focus on a single
data type, either mono-date images or time series. This limitation prevents them from
simultaneously leveraging the spatial resolution of aerial images [57, 64], the temporal
and spectral resolutions of optical satellite time series [26], and the resilience of radar to
weather effects [4,65]. Additionally, existing approaches are often limited for a given set
of sensors, limiting their applicability.

To address these challenges, we introduce OmniSat, a novel architecture designed for
the self-supervised fusion of diverse EO data. Existing multimodal approaches often map
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multiple unrelated observations from different modalities to one pivot modality [38, 82]
or a shared latent space [39, 84]. In contrast, OmniSat merges multiple views of the
same area from different modalities into a single representation combining the specific
information of each modality [14, 41, 73].

In computer vision, obtaining finely aligned multimodal observations generally re-
quires specialized sensors [54, 59, 67] or the computation of complex mappings between
modalities [23, 75]. On the other hand, EO data can be naturally aligned with georef-
erencing. To leverage this property, we adapt multimodal contrastive learning [49, 72]
and cross-modal masked auto-encoding techniques [43] to learn rich multimodal EO
representations with a generalist fusion scheme and without annotations.

To address the scarcity of EO datasets with a diverse range of heterogeneous modal-
ities (see Tab. 1), we enrich the TreeSatAI [2] and PASTIS-R [33, 34] datasets with
new aligned modalities. This allows us to evaluate OmniSat’s ability to handle an arbi-
trary number of inputs with varying natures and resolutions. Our contributions can be
summarized as follows:

– We introduce OmniSat, a new model that learns to combine varied sources of EO
observations in a self-supervised manner, resulting in richer joint representations
that capture the unique characteristics of each modality.

– We augment two EO benchmarks to create the first datasets with three modalities of
different natures (very high resolution images, optical and SAR time series).

– We demonstrate that OmniSat can leverage diverse modalities to learn rich repre-
sentations, establishing new states-of-the-art for tree species, crop type, and land
cover classification. Furthermore, our cross modal self-supervised training scheme
improves performance even when only one modality is available during inference.

2 Related Work
This section provides an overview of self-supervised and multimodal learning, emphasiz-
ing the specificities of their usage for Earth observation. Lastly, we highlight the scarcity
of multimodal EO datasets with diverse data types.

Self-Supervised Learning. This technique consists in learning expressive data repre-
sentations without labels by using a pretext task. This approach has been particularly
successful for natural language [52] and image [70] analysis. Initially focused on dis-
criminative tasks [37, 68, 100], recent self-supervised approaches for images can be
categorized as contrastive or generative.

Contrastive methods minimize the distance between representations of paired sam-
ples, often the same image under different transformations, and maximize the distance
with other samples [15, 17, 46]. More efficient methods only consider positive samples
and avoid mode collapse by introducing various asymmetries [18, 42] or normaliza-
tion [16]. Such approaches have been successfully adapted to EO, for which samples are
paired according to their location [89] or time of acquisition [7, 63].

Generative methods reason at the level of individual token—a small portion of the
input, typically a patch for images [25]. The objective is to reconstruct the masked
tokens of an input image in pixel [10,45,95] or feature space [6]. This principle has been
successfully adapted to EO analysis [20, 30, 99], and was further extended to handle
multiple spatial scales [74], multimodality [29,51], or hyperspectral observations [50,60].
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Table 1: Publicly Available Multimodal EO Datasets. We provide in parenthesis the spatial
resolutions of the single-date images and labels, and the temporal resolutions of time series. S1/S2
denotes Sentinel-1 and 2. ⋆ : modalities added in this work.

Dataset
Modalities

Labels
images (single date) time series

SpaceNet6 [81] SAR+optical (0.5m-2m) ✗ building footprint (<1m)

TreeSatAI [2] aerial + S1/S2 (0.2-10m) ✗ forestry (60m)

BigEarthNet [86] S1/S2 (10m) ✗ land cover (100m)

DFC20 [76] S1/S2 (10m) ✗ land cover (500m)

MDAS [48] S1/S2 + hyperspectral (2.2-10m) ✗ land cover (0.25m)

DOFA [96] NAIP + Gaofen + S1/S2 + EnMAP (1-30m) ✗ ✗

PASTIS-R [33, 34] ✗ S1/S2 (30-140 / year) agriculture (10m)

SSL4EO-S12 [92] ✗ S1/S2 (4 / year) ✗

DFC21-DSE [61] ✗ S1/S2 + LS8 (3-9/year) human activity (500m)

MapInWild [28] ✗ S1/S2 (4 / years) protected areas (10m)

SEN12MS-CR-TS [27] ✗ S1/S2 (30 / years) cloud cover (10m)

MultiSenGE [93] ✗ S1/S2 (30-140 / years) land cover (10m)

FLAIR [31] aerial (0.2m) S2 (20-114 / year) land cover (0.2m)

Satlas [12] NAIP (0.5 -2m) S2 (8-12 / year) various

PASTIS-HD ⋆ SPOT 6-7 (1.5m) S1/S2 (30-140 / year) agriculture (10m)

TreeSatAI-TS aerial (0.2m) ⋆ S1/S2 (10-70 / year) forestry (60m)

Several hybrid approaches combine the discriminative power of contrastive methods
and the scalability of generative objectives for natural images [70,101] and EO data [29].
Our proposed OmniSat model also implements both mechanisms. A key feature is that
we leverage the precise alignment between different sources of EO data to contrastively
match small patches of different modalities rather than entire images or time series.

Self-Supervised Multimodal Learning. Multimodal computer vision has received a
lot of interest [13], notably due to the success of cross-modal pre-training [72]. Recent
models align the embeddings of heterogeneous modalities such as video and sound
[49], depth and images [44], text and image [3, 9], or multiple combinations of these
modalities [38, 39, 82, 84].

Multimodal learning also has a long history in EO [58, 71, 98] due to the large
variety and complementarity of sensors [36, 79]. However, recent transformer-based
architectures [90] for EO are often limited to one type of modality, be it a single
image [20, 74] or time-series [34, 87]. For example, CROMA [29] and PRESTO [88]
are specifically designed for paired optical and radar observations, but cannot handle
Very High Resolution (VHR) data. USat [51] considers images with different resolutions,
but only takes a single date within a time series. UT&T [31] can natively take single
and multi-date observations of different modalities, but cannot be easily pre-trained in a
self-supervised manner since it relies on convolutions and an ad-hoc late fusion scheme.
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VHR aerial 0.2 m VHR aerial 0.2 m ⋆VHR satellite 1.5 m

Sentinel-2 time series ⋆ Sentinel-2 time series PASTIS: Sentinel-2 time series

→→

⋆ Sentinel-1 time series PASTIS-R: Sentinel-1 time series

→→

(a) FLAIR (b) TreeSatAI-TS (c) PASTIS-HD

Fig. 1: Datasets. We represent three tiles from the considered multilabel classification datasets:
FLAIR (a), TreeSatAI-TS (b) and PASTIS-HD (c). TreeSatAI-TS is a new dataset built by replacing
the single-date Sentinel-1 and 2 images of TreeSatAI [2] by year-long time series. PASTIS-HD (c)
adds VHR satellite images to PASTIS-R [34]. ⋆ : modalities added in this work.

Multimodal EO Datasets. As reported in Table 1, many multimodal EO datasets use
Sentinel-1 [11] and 2 [26] data for applications ranging from land cover to forestry
analysis and fire detection. We also note that most multimodal datasets only contain
data of one type: mono-date image or time series. Several datasets (BigEarthNet [86],
DFC20 [76], MDAS [48]) select a single date from time series. However, single Sentinel-
1 and 2 acquisitions can be significantly affected by rain and cloud cover, respectively.
Furthermore, capturing the temporal dynamics is crucial to characterize the phenology
of vegetation [91],

FLAIR [31] is the first multimodal EO dataset to propose both very high spatial
resolution (≤ 2m) and high temporal resolution (> 4 images/year). Satlas [12] combines
Sentinel-2 time series and for 5% to tiles (continental US), very high definition NAIP
images. The functional map of the World [19] integrates observations from various
sensors, but most areas are only observed with one sensor. Two other datasets contain
time series and single images from multiple sources, but were not available at the time
of writing this article: IARPA-SMART [40] and DOFA [96].

To showcase how OmniSat can consume an arbitrary number of modalities with
different spatial, spectral, and temporal resolutions, we selected two commonly used
EO benchmarks, TreeSatAI [2] and PASTIS-R [34], whose focus on crop type mapping
and forestry differs from the land cover analysis of FLAIR. We added new modalities to
these datasets to reach three distinct data types: VHR aerial images, optical time series,
and SAR time series. See Fig. 1 for an illustration, and Sec. 4.1 for more details on how
we extended these datasets.

3 Method

We consider a tile x observed through a set M of M distinct sensors or modalities.
The goal of the OmniSat model is to learn in a self-supervised fashion to combine



Cross-Modal Token Alignment 5

very-high

resolution

image

optical

time series

radar

time series

E1

E2

E3

C

D1

D2

D3

Lcontrast

Lreconstr
x1
P

x2
P

x3
P

f1
P

f2
P

f3
P

masked

f⋆
P

Fig. 2: OmniSat Architecture. We illustrate OmniSat for M = 3 modalities, and a tile split into
P = 4 patches. The M × P input tokens xM

P are encoded by M modality-specific encoders
EM, yielding the token representations fM

P . The module C combines them into multimodal
patch representations f⋆

P. The token embeddings fM
P are supervised by a contrastive cross-modal

objective. We also use a reconstruction objective: the masked multimodal representations f⋆
P are

decoded by modality-specific networks DM to reconstruct their corresponding inputs in xM
P .

all modalities M into a multimodal representation f⋆. We first provide details about
OmniSat’s architecture in Sec. 3.1. We then explain our our training scheme, which
consists of a cross-modal contrastive objective (Sec. 3.2) and a multimodal masked
encoding task (Sec. 3.3). Finally, we present the implementation details in Sec. 3.4. The
overall method is represented in Fig. 2.

3.1 Architecture

This section presents the tokenization process, the structures of the encoder and decoder
for each modality, and the architecture of the modality combiner network.

Multimodal Tokenization. All available modalities are spatially aligned through georef-
erencing. This allows us to divide the tile x into a set P of P non-overlapping patches
consistently across all modalities: xM

p = {xm
p }m∈M corresponds to M distinct views of

the same patch p with different modalities. Each modality m takes its values in a space
Ωm such that xm

p ∈ Ωm. We index tokens with pairs (m, p), defined for each modality
m and patch p, for a total of M × P tokens.

Time series from Sentinel satellites may experience registration errors spanning sev-
eral meters, complicating their precise alignment with high-resolution imagery. However,
using temporal sequences of satellite data mitigates these errors as aggregation over time
tends to balance out misalignments.
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(c) Modality Combining Network.

Fig. 3: OmniSat Architecture. OmniSat is composed of dedicated patch encoders for image (a)
and time series b, here represented for a length of L = 4 time stamps. The modality combining
module C is depicted in (c) with P = 2 and M = 3. Elements colored in orange are learned
networks or parameters.

Encoder-Decoder for Images. We split image tiles split into small square patches:
Ωimg = RC×W×W with W the size of the patches in pixels and C the number of
channels. As shown in Fig. 3a, we encode these inputs with a sequence of convolutions
and max-pool layers until the spatial dimension is fully collapsed. Decoding involves a
symmetric sequence of convolutions and un-pooling layers. Contrary to existing masked
auto-encoders, we pass the pooling indices from the encoder’s max-pooling to the
decoder’s un-pooling in the manner of SegNet [8]. This dispenses the encoder from
learning the intra-patch spatial configuration. This allows the image encoder to focus on
the radiometric information, which may be more relevant depending on the application.

Encoder-Decoder for Time Series. Each temporal patch is represented by L sequential
observations with C channels: ΩTS = RC×L, each associated with a time stamp. We
encode the temporal patches using a Lightweight Temporal Attention Encoder (LTAE)
model [32], an efficient network for geospatial time series processing. We decode vector
representations into time series by repeating the vector L times across the temporal
dimension, adding a temporal encoding for each time step, and using an MLP to map
the results to size C. See Fig. 3b for an illustration.

Optical time series are notoriously affected by clouds [85]. This may affect the
validity of the reconstruction task: the decoder cannot know which observations are
cloudy, making the reconstruction objective unpredictable. To circumvent this issue, we
use the temporal attention maps of the encoder’s LTAE to select dates to reconstruct:
cloudless observations are more informative and should have a higher attention score [78].
We only consider in the reconstruction loss Lreconstr the top 25% dates in terms of the
LTAE’s attention maps.

Modality Combining Network. The modality combining network C, represented in
Fig. 3c, takes the M × P token embeddings fM

P , some of whom can potentially be
masked. We equip each token with a Euclidean relative positional encoding [94], cal-
culated based on their patch’s position {r(p, q) | (p, q) ∈ P2}, allowing each token to
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selectively consider its spatial surroundings. As most EO data are captured from above
(satellite or aerial), their distribution is invariant by horizontal translation, making this
choice of encoding preferable to an absolute position encoding.

The modality combining module C starts with a series of B residual self-attention
blocks connecting all tokens across modality. We then perform cross-attention between
the resulting token embeddings gMP ∈ Rd×M×P and P copies f comb

P of a modality
combining token f comb ∈ Rd learned as a free parameter. Each copy of f comb

p is spatially
located at the patch p for the relative positional encoding r. The module C outputs P
multimodal encodings f⋆

P combining all available modalities for each patch:

gMP = self-attention
(
fM
P ; r

)
(1)

f⋆
P = cross-attention

(
f comb
P , gMP ; r

)
. (2)

3.2 Contrastive Objective

We denote by fm
p the d-dimensional encodings of the input patch xm

p given by their
dedicated encoders. We propose to supervise the embeddings fm

p with a contrastive
objective encouraging spatial consistency across modalities. Indeed, while each modality
captures distinct characteristics of p, all encodings fm

p share the same latent variable:
the semantic content of the patch.

In practice, we want fm
p to be closer to fn

p for n ̸= m, than to fn
q for other patches

q ̸= p. We define B as the set of patches within the current batch of observations. We
adapt the classic InfoNCE loss [69] to our setting with two main differences, illustrated
in Fig. 4. (i) Each token (m, p) has M − 1 positive matches: the tokens corresponding to
the same patch p but viewed in another modality n ̸= m; and (ii) as EO observations are
generally spatially regular, nearby patches may be visually indistinguishable. Therefore,
we exclude from the negative matches of (m, p) all tokens in modality m and which are
too close to p. To this end, we remove the set T (m, p) of tokens with modality m and
whose patches are in the same tile as p. Our loss function Lcontrast is defined as such:

Lcontrast =
1

M |B|
∑

(m,p)∈M×B

log

( ∑
n̸=m exp(⟨fm

p , fn
p ⟩/γ)∑

(n,q)∈M×B\T (m,p) exp(⟨fm
p , fn

q ⟩/γ)

)
, (3)

with γ a temperature parameter, and ⟨·, ·⟩ the scalar product in Rd. This function,
specifically designed for geospatial data, allows us to contrast individual patches across
modalities, which is not typically feasible for natural images. However, as the contrastive
objective aligns multimodal representations, the patch encoders may be encouraged to
overlook the distinct attributes of their respective modality. Instead, they may focus only
on features shared by all modalities, i.e., their common denominator. To ensure that
encoders also capture modality-specific information, we incorporate a reconstruction
objective, detailed in Sec. 3.3.

3.3 Multimodal Reconstruction Objective

During training, we mask a fraction of tokens K ⊂ M×P and replace their embeddings
with a learned vector fmask ∈ Rd. Note that the masking can differ across modalities,
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1
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q2 - - - - - - - + - + o o

Fig. 4: Contrastive Loss. We represent the to-
ken matching matrix for two tiles Tile1 and Tile2
viewed across 3 modalities m1, m2, and m3.
Tile1 is composed of the patches p1 and p2, while
Tile2 comprises q1 and q2. In contrast to classic
approaches which ignore the diagonal and assign
each sample with a single positive match, our
loss defines operates at the patch level, considers
multiple positives per token, and excludes tokens
in a block-diagonal fashion.

+ positive match
- negative match
o ignored

and some patches may be entirely masked. All tokens are then processed by the modality
combining network C, which outputs P multimodal embeddings f⋆

P:

f⋆
P = C

(
{fm

p }(m,p)̸∈K ∪ {fmask}(m,p)∈K

)
. (4)

To encourage the patch embeddings f⋆
P to capture information from all modalities,

we build a multimodal reconstruction objective. We denote by Dm : Rd 7→ Ωm the
dedicated decoder of each modality m and write the reconstruction loss as:

Lreconstr =
1

|K|
∑

(m,p)∈K

1

dim(Ωm)

∥∥Dm(f⋆
p )− xm

p

∥∥2 , (5)

with dim(Ωm) the dimension of Ωm. The total loss is the sum of Lreconstr and Lcontrast.

3.4 Implementation Details

We detail here the specific parameters chosen in all our experiments.

Tokenization. We split each tile along a regular spatial grid to produce a set of non-
overlapping patches P consistent across all modalities. For TreeSat and FLAIR, we use
a 10× 10 m grid, meaning that the VHR input tokens are small image patches of size
50× 50 with 0.2 m per pixel. The patches of Sentinel observations with a resolution of
10m are single-pixel temporal sequences of spectral measurements. For PASTIS-HD,
we use a 40× 40 m grid, meaning that the VHR patches are of size 40× 40 with 1.0 m
per pixel. The patches of Sentinel observations [26] are 4× 4 image time series which
we spatially flatten before encoding.

Hyperparameters. To show the versatility of OmniSat, we use the same configuration
throughout all experiments. The embedding size is d = 256, resulting in image encoders
and decoders with 3.6M and 1.8M parameters, 403k and 96k for optical time series,
and 402k and 95k for radar time series. The modality combiner module is composed
of B = 6 residual self-attention blocks and a single cross-attention block, for a total
of 3.6M parameters. We train our model on 3 A6000 GPUs with a batch size of 128



Cross-Modal Token Alignment 9

multimodal tiles per GPU and set the contrastive temperature γ to 0.1. We train our
model with the ADAM optimizer [53], with a learning rate of 10−4 for pretraining and
2× 10−5 for fine-tuning, and a ReduceLROnPlateau scheduler [1] with a patience of 10
epochs and a decay rate of 0.1. When re-implementing competing methods, we use the
hyperparameters of their open-source repository.

4 Experiments

We evaluate OmniSat’s performance across three multimodal datasets, including two new
datasets introduced in this work, and presented in Sec. 4.1. We outline our experimental
protocol and our adaptation of competing methods in Sec. 4.2. We then present our
quantitative results and analysis in Sec. 4.3 and conduct an ablation study in Sec. 4.4.

4.1 Datasets

Weconsider three multimodal datasets: FLAIR [31], and the augmented TreeSatAI-TS [2]
and PASTIS-HD [33, 34]. See Fig. 1 for an illustration of these two last datasets.

TreeSatAI-TS: TreeSatAI [2] is a multimodal dataset for tree species identification,
containing 50,381 tiles of 60 × 60 m with multi-label annotations for 20 classes and
all taken in Germany. Each tile is associated with a very high resolution RGB and
near-infrared (NIR) image (0.2 m pixel resolution), a single Sentinel-2 multi-spectral
image (10 m per pixel resolution, 10 bands), and a single Sentinel-1 radar image (10 m
per pixel resolution, 3 bands: two polarization channels and their ratio).

Motivated by the fact that fine-grained vegetation discrimination relies heavily on
temporal dynamics information [91], we introduce TreeSatAI-TS1. This extended version
uses open-source data to add Sentinel-1 and Sentinel-2 time series to each tile, spanning
the closest available year to the VHR observation for Sentinel-2. Note that due to the
weather patterns and position of the area of interest with respect to Sentinel-2’s orbit, the
optical time series is particularly irregular and occluded, with up to 50% of acquisitions
being non-exploitable. Despite this challenge, we included the raw observations without
pre-processing, whereas TreeSatAI’s single-date images have been manually selected.

PASTIS-HD: The PASTIS dataset [33], is designed for semantic and panoptic seg-
mentation of agricultural parcels using Sentinel-2 time series and covers 18 crop types
across 2, 433 image time series with dimensions of 1280 × 1280 m. Each series con-
tains between 38 and 61 observations with 10 spectral bands. PASTIS-R [34] adds the
corresponding Sentinel-1 radar time series. We only used the ascendent time series of
Sentinel-1 for our training and evaluation, for a total of 169,587 radar images with three
bands.

To enhance the spatial resolution and utility of PASTIS, we introduce PASTIS-
HD2, which integrates contemporary VHR satellite images (SPOT 6-7 [24]). We apply
orthorectification and pansharpening, resample the resulting images to a 1m resolution,
and finally convert them to 8 bits. We follow the protocol of Irvin et al. [51] to use the

1The dataset is available at https://huggingface.co/datasets/IGNF/TreeSatAI-Time-Series.
2The dataset is available at https://huggingface.co/datasets/IGNF/PASTIS-HD.

https://huggingface.co/datasets/IGNF/TreeSatAI-Time-Series
https://huggingface.co/datasets/IGNF/PASTIS-HD
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dense annotations for a multi-label classification task: each patch is associated with the
labels of all of its pixels. This conversion allows us to evaluate all methods in the same
setting and configuration as TreeSatAI.

FLAIR. The FLAIR dataset [31] combines VHR aerial images with time series data.
It comprises 77,762 aerial tiles (512× 512 pixels, 0.2 m resolution) with five channels
(RGB, near-infrared, and a normalized digital surface model) taken in France, alongside
corresponding Sentinel-2 time series (10 m resolution, 10 spectral bands, 20 to 114
observations per year). We apply the same processing as PASTIS to use the dense
annotation for a multi-label classification task.

4.2 Experimental Setting

This section details our experimental protocol and our adaption of competing algorithms.

Evaluation Protocol. All experiments follow a similar setting:
– Pre-training (optional). Methods that support self-supervised pre-training (Om-

niSat, SatMAE [20], ScaleMAE [74], CROMA [29]) are pre-trained for up to 250
epochs on the entire training set without access to labels.

– Fine-Tuning. We propose two settings for fine-tuning:
• Fully Supervised Fine-Tuning. We train the resulting models using all the

labels in the training set.
• Semi-Supervised Fine-Tuning. We use a portion of 10% or 20% of the training

set, stratified by the distribution of classes, to fine-tune the models. For models
without pre-training, this corresponds to supervision in the low-data regime.

– Unimodal and Multimodal Evaluation. We evaluate all methods using each avail-
able modality independently and combining all supported modalities.

Adapting Competing Approaches. We report the performance of several methods
taken from the literature on our considered datasets: LightGBM [2], PRESTO [88],
and MOSAIKS [77]. However, few existing methods can operate on single- and multi-
date data at the same time. To ensure a fair evaluation of competing approaches, we
modify various state-of-the-art models to handle a broader combination of modalities.
We provide details on these changes in the appendix.

4.3 Numerical Experiments and Analysis

In this section, we report our model’s performance and efficiency compared to other
approaches across the considered datasets and propose our analysis.

TreeSatAI-TS. Tab. 2 presents the performance of different models on TreeSatAI and
TreeSatAI-TS. We report several key observations:

– Benefit of Time Series. For the original TreeSatAI dataset with single-date Sentinel-
1/2 observations, none of the pre-training schemes significantly improve performance
beyond simple baselines such as ResNet, PSE, or MLP, even in a semi-supervised
setting. In particular, single-date S1 observations yield low performance for all
methods (below 20 F1-score), emphasizing the need to use the entire time series.
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Table 2: Performance on TreeSatAI-TS. We report the weighted F1 for multi-label tree species
classification on TreeSatAI (TSAI) and our extended TreeSatAI-TS (TSAI-TS) dataset when
fine-tuning with 10% and 100% of training labels. The first line of the table is the modality
used for evaluation. We distinguish methods that are best for one modality within a dataset,
best in a dataset across all modalities, and the best overall performance. ⋆: late feature fusion
with a ResNet pre-trained on ImageNet. �: Foundation model trained on extensive external data.
†: model evaluated on this dataset for the first time.

Model
pre- All Sentinel-1 Sentinel-2 VHR Image

training 10% 100% 10% 100% 10% 100% 10% 100%

Evaluated on TreeSatAI: single date for Sentinel-1 and Sentinel-2

† PSE [35] None 47.2⋆ 68.1⋆ 11.5 14.6 48.5 58.3 - -
† ViT [25] None 42.7 57.1 8.7 17.5 39.8 57.3 36.7 51.7
MLP [2] None 42.6⋆ 71.5⋆ 3.4 10.1 22.1 52.0 - -
ResNet [2] ImageNet - - - - - - 58.8 70.1
LightGBM [2] ImageNet - 54.3⋆ - 11.9 - 48.2 - 44.0
PRESTO [88] � - - - 19.8 - 46.3 - -
† DOFA [96] � 59.5 71.6 11.6 19.3 48.2 57.0 51.6 67.5

MOSAIKS [22, 77] TSAI - - - - - 56.0 - -
† CROMA [29] TSAI 49.6 61.0 10.1 12.7 47.8 55.7 - -
† SatMAE [20] TSAI 46.1 61.5 - - 40.3 49.7 44.1 61.4
† ScaleMAE [74] TSAI 47.6 62.5 - - 46.7 55.2 46.9 63.6

OmniSat (ours) TSAI 56.2 70.4 5.3 6.4 48.4 57.1 52.8 68.9

Evaluated on TreeSatAI-TS: Sentinel-1 and Sentinel-2 time series spanning one year

† PSE+LTAE [35] None 59.4⋆ 71.2⋆ 42.6 52.4 44.0 57.2 - -
† UT&T [31] ImageNet 43.8 56.7 42.3 55.2 41.5 57.0 44.3 55.9
† DOFA [96] � 41.8 71.3 0.0 0.0 25.0 39.4 51.6 67.5

† Scale-MAE [74] TSAI-TS 44.1 60.4 - - 11.0 31.5 46.9 63.6

OmniSat (ours) None 52.2 73.3 31.6 55.9 33.9 49.7 51.4 71.0
OmniSat (ours) TSAI-TS 61.1 74.2 48.2 56.7 51.4 62.9 58.3 70.5

OmniSat exhibits significantly improved results on TreeSatAI-TS, with or with-
out pretraining. Image models struggles to extract meaningful features temporally
aggregated temporal observations, while OmniSat learn rich dynamic features.
The foundation model DOFA [96], with 111M parameters and a large closed-
source training set, outperforms all models when evaluated on single-date modalities.
However, OmniSat reaches higher performances on TreeSatAI-TS with only 10
million parameters, which we attribute to its ability to leverage temporal modalities.

– Benefits of Multimodality. When using all modalities, OmniSat outperforms all
competing methods by a margin of 3% F1-score. The multimodal performance of
OmniSat and CROMA, which learn to combine data sources, is strictly superior
to the F1-score of their best modality by 3.7% and 5.3% points, respectively. Con-
versely, the performance of methods that rely on late-fusion (SatMAE, ScaleMAE,
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Table 3: Performance on PASTIS-HD. We report the macro-averaged F1-score for crop-type
multi-class classification on the PASTIS-HD dataset. We distinguish methods that are best for one
modality, best in a dataset across all modalities. ⋆: late feature fusion with a ResNet. †: model
evaluated on this dataset for the first time.

Model
pre- All Sentinel-1 Sentinel-2 VHR image

trained 20% 100% 20% 100% 20% 100% 20% 100%

† UTAE [33, 34] None 36.8⋆ 46.9⋆ 20.1 40.7 32.7 37.6 - -
† ResNet50 [47] ImageNet - - - - - - 57.6 59.3
† UT&T [31] ImageNet 54.2 53.5 58.8 62.8 54.9 61.3 51.1 49.8
† DOFA [96] � 53.7 55.7 36.7 41.5 50.8 53.4 47.9 54.8

† Scale-MAE [74] PASTIS-HD 42.0 42.2 - - 41.2 46.1 48.8 51.9
† CROMA [29] PASTIS-HD 57.5 60.1 55.3 56.1 53.0 56.7 - -

OmniSat (ours) No 42.0 59.1 58.2 60.2 51.7 60.1 47.3 52.8
OmniSat (ours) PASTIS-HD 62.6 69.9 60.8 69.0 61.8 70.8 54.6 59.3

Table 4: Performance on FLAIR. We report the macro-averaged F1-score for land cover multi-
class classification on the FLAIR dataset. We distinguish methods that are best for one modality
and best in a dataset. †: model evaluated on this dataset for the first time.

Model
pre- All Sentinel-2 VHR Image

trained 10% 100% 10% 100% 10% 100%

† UT&T [31] ImageNet 44.2 48.8 57.4 62.0 58.9 65.5
† DOFA [96] � 70.6 74.9 57.0 61.0 66.8 72.1

† ScaleMAE [74] FLAIR 63.1 70.0 52.5 61.0 61.2 67.3

OmniSat (ours) No 62.5 70.0 56.1 65.4 64.7 71.5
OmniSat (ours) FLAIR 60.6 73.4 56.8 65.4 65.2 71.6

ViT) is comparable to their best modality. This demonstrates the value of learning to
combine information from different sources end-to-end.

– Benefits of Cross-Modal Pre-Training. With access to all modalities, our self-
supervised pre-training improves by 0.9% point the F1-score of the model fine-tuned
on 100% of labels, compared to not pre-training, and 8.9% when using only 10%
of labels. This shows that our pre-training leads to more expressive multimodal
features. Interestingly, when performing inference with Sentinel-2 time series alone,
the performance increase linked to the pre-training becomes 13.2% with 100% labels
and 17.5% with 10%. This illustrates that our self-supervised pre-training scheme
improves the features learned by each encoder despite not relying on annotated data.

Experiments on PASTIS-HD. The analysis of the performance of various models on
PASTIS-HD is reported in Tab. 3, and is consistent with the ones of TreeSatAI-TS.
First, by learning to combine all modalities despite their different resolutions, OmniSat
achieves state-of-the-art results on this benchmark. Second, our cross-modal pretraining
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Fig. 5: Efficiency. We report the best performance of different models between TreeSatAI and
TreeSatAI-TS, with pre-training and fine-tuning using 100% of labels. The area of the markers is
proportional to the training time, broken down in pre-training and fine-tuning when applicable.

significantly improves OmniSat’s performance in the multimodal (+10.8 pF1-score with
100% of training label) and all single-modality settings (8.8 points for Sentinel-1, 10.7
for Sentinel-2, and 6.5 for the VHR images).

Experiments on FLAIR. We report in Tab. 4 the results on the bimodal FLAIR dataset
for multilabel classification. OmniSat outperforms the much larger ScaleMAE [74] and
UT&T [31] models with 100% of labels and both modalities by 3.4%. Our pre-training
scheme had a smaller impact than for the TreeSatAI-TS experiment. We attribute this to
the fact that only two modalities are available, which decreases the supervisory power
of our cross-modal contrastive objective and our multimodal reconstruction loss. This
highlights a limitation of OmniSat: the model needs to be pre-trained on a modality-rich
dataset to achieve its best performance.

Efficiency Evaluation. We plot in Fig. 5 the best performance between TreeSatAI and
TreeSatAI-TS for different models according to their size and training time. OmniSat is
more compact, faster to train, and performs better than all evaluated models, including
the DOFA foundation model. The highly-specialized combination of PSE, LTAE, and
ResNet is a strong contender, outperforming significantly larger models with generic
encoding-decoding schemes.

4.4 Ablation Study

In this section, we report the results of several experiments evaluating the impact and
validity of our main design choices, see Tab. 5.

a) Encoder/Decoder Architecture. We propose several improvements to the standard
image encoder-decoder scheme used in computer vision to accommodate the specificities
of EO data. In particular, passing the max-pool indices from the image patch encoder
to its decoder allows the learned representation to focus on characterizing the spectral
signature instead of fine-grained spatial information, and leads to a performance increase
of 0.7% in the full supervision setting.
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Table 5: Ablation Study. We present the impact of several design choices on the TreeSatAI-TS
dataset, measured in terms of macro-averaged F1-score.

Experiment 10% 100% Experiment 10% 100%

OmniSat 61.1 74.2 b) no contrastive loss 55.6 73.4
a) no index bypass 57.5 73.5 b) naive contrastive loss 57.8 72.2
a) no date filtering 58.2 71.6 b) no reconstruction loss 59.0 72.2

As clouds frequently obstruct optical time series, we use a unsupervised date-filtering
scheme to reconstruct only meaningful acquisitions. This approach leads to a significant
improvement of 3.6%, showcasing the benefit of developing modality-aware approaches
for EO.

b) Role of Loss Functions. When training without contrastive loss, we observe a de-
crease in performance of 0.8% in the fully supervised regime, and a more pronounced
drop of 5.5% in the semi-supervised regime. This demonstrates how learning consistent
encoding across encoders facilitates their subsequent fusion. Interestingly, when imple-
menting a naive contrastive loss that considers all negative examples from the batch, the
decrease is greater than simply removing this loss (2% in full supervision). This strategy
may introduce indistinguishable negative examples and perturb the learning process.

We also remove the reconstruction loss, meaning that only the encoders are learned
contrastively during pre-training. This results in a drop of 2% F1-score point, illustrating
the importance of pre-training the transformer C alongside its encoders.

Limitations. All datasets used in our experiments are based in Europe, primarily due
to the availability of open-access annotations. This regional focus prevents us from
evaluating our model’s performance in tropical and developing countries, which present
unique challenges in terms of label provision, heterogeneity, and complex classes.

A limitation of our pre-training scheme is its dependence on a sufficient number of
aligned modalities, as illustrated by its moderate impact on the bimodal FLAIR dataset.

5 Conclusion

We introduced OmniSat, a new architecture for the self-supervised modality fusion
of Earth Observation (EO) data from multiple sources. To facilitate its evaluation, we
augmented two existing datasets with new modalities of different natures and resolutions.
We experimentally showed that leveraging diverse modalities with a flexible model
improves the model’s performance in both fully and semi-supervised settings. Moreover,
our training scheme can exploit the spatial alignment of multiple modalities to improve
our model’s unimodal performance. Finally, we proposed several improvements to
leverage the unique structure of EO data in the architecture of our model, such as
automatic date filtering for reconstructing time series. We hope that our promising results
and new datasets will encourage the computer vision community to consider EO data as a
playing field for evaluating and developing novel self-supervised multimodal algorithms.
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