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Distilling Diffusion Models into Conditional GANs

-Supplementary Material-

We elaborate on the training and evaluation details for Diffusion2GAN in Supple-
ment A and Supplement B, respectively. Following this, we provide an additional
explanation of our proposed E-LatentLPIPS in Supplement C. In Supplement D,
we offer a quantitative comparison with GigaGAN. Then, we discuss the noise
and ODE solution pair dataset in Supplement E. We also explain the limitations
of our work in Supplement F and its societal impact in Supplement G. Finally,
we present additional visuals of Diffusion2GAN and also qualitatively demon-
strate that Diffusion2GAN is capable of synthesizing well-aligned and diverse
images using a single prompt in Supplement H.

A Training Details

A.1 Text-to-Image Synthesis

Parameterization. We distill Stable Diffusion [24,26] into Diffusion2GAN us-
ing the PyTorch framework [23]. Throughout our experiments, we utilize the
U-Net architecture employed in Stable Diffusion, initializing the U-Net weights
with the pre-trained weights of Stable Diffusion. As the Stable Diffusion was orig-
inally designed to predict a denoising noise ϵ(xt, c, t) given a noisy sample xt,
we modify the noise prediction parameterization to the data prediction param-
eterization using the following equation, though with a slight abuse of notation:

G(xt, c, t) =
xt − σtϵ(xt, c, t)

αt
, (1)

where σt and αt are manually defined diffusion schedule. Since Diffusion2GAN
performs noise-to-latent mapping, translating pure Gaussian noise z = xT to a
target latent x = x0, the data prediction parameterization mentioned above can
be re-written as follows:

G(z, c) =
z− σT ϵ(z, c, T )

αT
. (2)

While it is essential to employ the data prediction parameterization for the
generator, as the Diffusion2GAN’s objective is to predict a target latent rather
than a denoising noise, we empirically discover that adopting the noise prediction
parameterization for the discriminator does not lead to instability issues.
Two-stage Diffusion2GAN training. We observe enhanced stability and in-
creased diversity in image generation when employing a two-stage training ap-
proach for Diffusion2GAN. In the initial stage, Diffusion2GAN is exclusively
trained using the ODE distillation loss. Subsequently, we fine-tune the ODE-
distilled one-step generator by incorporating the ODE distillation, conditional
GAN, and single-sample R1 losses. Experimentally, we discover that training
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Diffusion2GAN with a different conditional GAN loss weight typically results in
stable convergence. Increasing the weight of the conditional GAN loss compo-
nent enhances the fidelity of generated images but decreases image diversity. We
speculate this occurs because the conditional GAN loss prioritizes realistic im-
age synthesis over accurately learning the original ODE trajectory of the teacher
model. Detailed hyperparameters are provided in Table A1.

A.2 Conditional Image Synthesis on CIFAR10-32px

Consistency Distillation training. In Table 6, we present FID [6] of Con-
sistency Distillation (CD) [31] on CIFAR10 [15]. We implement a conditional
version of CD and train it for 150k iterations with a batch size of 512, resulting
in 307.2M = 4×150k×512 number of function evaluations (NFE). Note that the
official unconditional CD was trained for 800k iterations to achieve an FID of
3.55, while our conditional CD implementation achieves a nearly identical FID
of 3.67 with only 400k training iterations, entailing 819.2M NFE.
ODE distillation training. We distill a pre-trained EDM [10] on CIFAR10
into a single-step generator only using ODE distillation loss. To create the noise
and ODE solution pairs, we simulate the pre-trained EDM 18 times using a Heun
sampler [10]. When training the ODE distilled generator, we adhere to using the
original parameterization of EDM, as the EDM is originally designed to perform
data prediction. The hyperparameter details are presented in Table A1.

B Evaluation Details

We evaluate our model on two widely used datasets, COCO2014 and COCO2017.
We include the evaluation on COCO2017, as progressive distillation [28] and
DPM solver [19] only report results on this dataset. We use FID [6] and CLIP-
score [5] to assess image realism and text-to-image alignment. Following Giga-
GAN’s protocol [9], we resize the generated images 512px to 256px, reprocess
them to 299px, and then feed them into the InceptionV3 network for FID and
Precision & Recall calculations [16, 27]. FID [6, 22] is computed on 40,504 real
images from the COCO2014 validation dataset and 30,000 fake images generated
using 30,000 randomly sampled COCO2014 validation prompts, while Precision
& Recall are calculated on 10,000 images due to their heavy computation. For
COCO2017 dataset, we use 5,000 image-text pairs for FID and CLIP-score calcu-
lations. Precision & Recall metrics on COCO2017 are omitted, as we heuristically
find that 5,000 real samples are insufficient to yield valid measurements of im-
age fidelity and diversity. Instead, we introduce a new diversity score, calculated
using DreamSim [3], to quantify the range of variation in the generated images.
Note that the resizing processes in the evaluation pipeline are performed using
an antialiasing bicubic resizer, as recommended by Parmar et al . [22].
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Table A1: Hyperparameters for Diffusion2GAN training. We denote pixel
blitting and geometric transformations as bg [11] and bg with color transformations
as bgc [11, 34]. For additional technical details, please refer to the original papers:
LPIPS [33], Cutout [2], Non-saturation loss [4], Adam optimizer [14], RAdam opti-
mizer [17], EDM [10], SD 1.5 [25], SDXL-Base-1.0 [24], Noise augment before D [9,32],
Heun sampler [10], and DDIM sampler [30]. E-LatentLPIPS∗ refers to the ensemble of
E-LatentLPIPS with vanilla LatentLPIPS.

Model hyperparameters CIFAR10 32px SD-CFG-3 64px SD-CFG-8 64px SDXL-CFG-7 128px

z dimension 3×32×32 4×64×64 4×64×64 4×128×128
x dimension 3×32×32 4×64×64 4×64×64 4×128×128
LODE

distill loss type LPIPS E-LatentLPIPS∗ E-LatentLPIPS E-LatentLPIPS
E-LatentLPIPS augmentation - bg + cutout bgc + cutout bgc + cutout
LODE

distill loss strength 1.0 1.0 1.0 1.0
LGAN loss type - Non-saturation Non-saturation Non-saturation
LGAN loss strength - 0.25 0.25 1.0
Single-sample R1 strength - 0.01 0.01 -
Single-sample R1 interval - 16 16 -
Mix-and-match augmentation False True True True
Optimizer RAdam Adam Adam Adam
Batch size 512 256 2048→1024 1024→512
Accumulation 1 1 1 1
G learning rate 4e-4 1e-4→1e-5 1e-4→1e-5 1e-4→1e-5
G β1 for Adam 0.9 0.9 0.9 0.9
G β2 for Adam 0.999 0.999 0.999 0.999
D learning rate - 1e-4→1e-5 1e-4→1e-5 1e-4→1e-5
D β1 for Adam 0.9 0.9 0.9 0.0
D β2 for Adam 0.999 0.999 0.999 0.99
Weight decay strength 0.0 1e-2 1e-2 1e-2
Weight decay strength on attention 0.0 1e-5 1e-5 1e-5
Dropout rate 0.1 0.0 0.0 0.0
# D updates per G update - 1 1 1
G ema start 20k 4k 4k 4k
G ema beta 0.9999 0.9999 0.9999 0.9999
Precision bfloat16 bfloat16 bfloat16 bfloat16
G backbone EDM SD 1.5 SD 1.5 SDXL-Base-1.0
D backbone - SD 1.5 SD 1.5 SDXL-Base-1.0
Multi-scale training - True True True
Noise augment before D False False False True

Training specifications CIFAR10 32px SD-CFG-3 64px SD-CFG-8 64px SDXL-CFG-7 128px

Diffusion generator EDM SD 1.5 SD 1.5 SDXL-Base-1.0
Numerical solver Heun DDIM DDIM DDIM
Denoising steps 18 50 50 50
# ODE pairs 1.0M 3.0M 12.0M 8.0M
NFE for dataset generation 35.0M 150.0M 600.0M 400.0M

Training specifications CIFAR10 32px SD-CFG-3 64px SD-CFG-8 64px SDXL-CFG-7 128px

G Model size 61.5M 859.5M 859.5M 2567.5M
D Model size - 859.6M 859.6M 2567.7M
First stage iterations 150k 150k 50k 20k
Second stage iterations - 10k 10k 30k
NFE for training 76.8M 51.2M 153.6M 97.3M
GPU type A100 A100-80GB A100-80GB A100-80GB
# GPUs for training 8 16 64 128
GPU days 6.0 43.6 119.2 356.8
FID 3.16 9.29 13.39 25.49
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Fig.A1: Single sample overfitting experiment. LatentLPIPS fails to achieve over-
fitting, even in a single-sample overfitting experiment. However, by applying diverse
differentiable augmentations to the inputs of LatentLPIPS, we can successfully recon-
struct the target latent. Blit indicates Horizontal flip + 90-degree rotation + integer
translation. Geometric indicates isotropic scaling + arbitrary rotation + anisotropic
scaling + fractional translation. Color indicates random brightness + random satura-
tion + random contrast. For technical details on the differentiable augmentations, we
recommend referring to the papers [11,34].

C.1 Toy Experiment

We conducted a single image reconstruction experiment to study how LatentLPIPS
behaves. Beginning with a 512-pixel target image, denoted as Itarget ∈ R3×512×512,
we utilized the VAE encoder of Stable Diffusion to obtain its latent vector,
resulting in xtarget = Encode1/8×(Itarget) ∈ R4×64×64. Subsequently, we ran-
domly initialized a trainable latent vector xsource with the same dimensions as
xtarget. The objective of this experiment is to determine whether LatentLPIPS
can achieve a latent vector xsource that precisely reconstructs xtarget using the
following LatentLPIPS objective and a gradient-based optimizer:

dLatentLPIPS(xtarget,xsource) = ℓ(F (xtarget), F (xsource)), (3)

where F is a VGG network trained in the latent space of Stable Diffusion, and
ℓ(·, ·) is a distance metric. While a well-designed single sample overfitting is typ-
ically considered feasible, our analysis suggests that LatentLPIPS struggles with
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optimization, resulting in a high loss value, as shown in Figure A1. Moreover,
we observed systematic wavy and patchy artifacts in the reconstructed image
decoded by the source latent. We hypothesize that this limitation arises from a
suboptimal loss landscape created by the latent version of the VGG network.

Inspired by E-LPIPS [13] and the observation that only a portion of the region
has been successfully reconstructed using the source latent, we apply geometric
augmentations and cutout [2] to both the source and target latents. To ensure
differentiability for backpropagation, we employ off-the-shelf differentiable aug-
mentations [11,34]. Upon introducing these augmentations, we notice improved
convergence of LatentLPIPS, suggesting that the poor optimization can be alle-
viated by applying an appropriate combination of differentiable augmentations.
Through toy experiments, we have confirmed that LatentLPIPS converges faster
and better as we introduce more augmentations, including augmentations related
to color (random brightness, saturation, and contrast), as shown in Figure A1.

In text-to-image experiments, we found that the combination of generic ge-
ometric transformations and cutout achieves the best FID on the SD-CFG-3
dataset, while additionally using the color-related augmentations proves benefi-
cial for the SD-CFG-8 and SDXL-CFG-7 datasets. Furthermore, we discovered
that on SD-CFG-3, Diffusion2GAN achieves better FID when E-LatentLPIPS
is combined with vanilla LatentLPIPS.

C.2 Perceptual Score of LatentLPIPS vs. LPIPS

In Section 3.1, we described learning LatentLPIPS, following the procedure from
LPIPS [33]. This involves training an ImageNet [1] classifier and then tuning it
to perceptual scores.

In Table A2, we present ImageNet classification accuracies. The LPIPS net-
work uses VGG16 [29] as a backbone, which achieves 71.59% accuracy. We note
that a batch-norm version of the backbone achieves 73.36%. The ImageNet clas-
sification score on latent codes drops to 64.25%, while the batch-norm vari-
ant recovers some performance on 68.26%. We found the batch-norm variant
trains more stably. We followed the default PyTorch training code and parame-
ters https://github.com/pytorch/examples/blob/main/imagenet/main.py,
but discovered that we had to reduce the initial learning rate for the non-
batch-norm variant. We selected the batch-norm version to form the basis of
LatentLPIPS. While the ImageNet classification scores are lower, they are com-
petitive in terms of perceptual quality measurement. More importantly, as noted
in the original LPIPS work, ImageNet classification scores do not necessarily cor-
relate with perceptual quality – ImageNet classification is merely a pretext task
to yield a representation with high perceptual quality.

In Table A3, we show the perceptual scores on the Berkeley-Adobe Per-
ceptual Patch Similarity (BAPPS) dataset [33]. The dataset provides different
types of perturbations, “traditional” hand-crafted perturbations, ones from CNN-
generated algorithms, and outputs from real algorithms for image reconstruction
tasks (colorization, video interpolation, superresolution, and video deblurring).

https://github.com/pytorch/examples/blob/main/imagenet/main.py
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We followed the protocol from LPIPS [33], learning a linear calibration on 5 dif-
ferent intermediate layers. Across the different sets, LatentLPIPS achieves sim-
ilar, sometimes higher scores, as vanilla LPIPS. This indicates that while some
details that are advantageous for classification are lost during compression, the
perceptually important details are preserved. This result aligns with the goal of
designing the latent space [25] in the first place. In conclusion, our LatentLPIPS
is able to capture a representation that aligns with human perception, at similar
performance to vanilla LPIPS, while enabling faster computation. Please note
that extra training for LatentLPIPS was performed to distill SDXL-Base-1.0 into
Diffusion2GAN because Stable Diffusion 1.5 and SDXL-Base-1.0 do not share
the same latent space.

Table A2: ImageNet classification scores. The backbone networks in ∗ are used
for LPIPS [33] & LatentLPIPS calculations. ImageNet accuracy on the Latent code
is lower than on pixels, as information is lost during compression. However, ImageNet
classification is merely a proxy task for achieving a strong representation to align
with human perception. The perceptual scores in Table A3 are competitive, indicating
perceptual information is retained.

Perceptual metric VGG16 VGG-bn

Pixels 71.59∗ 73.36
Latent 64.25 68.26∗

Table A3: Perceptual scores. LatentLPIPS achieves similar and sometimes higher
perceptual scores than vanilla LPIPS [33] on the BAPPS dataset.

Perceptual metric Traditional CNN Real

LPIPS [33] 73.36 82.20 63.23
LatentLPIPS 74.29 81.99 63.21

D Quantitative Comparison with GigaGAN

We compare Diffusion2GAN with GigaGAN [9] using additional metrics, in-
cluding Clip-score [5] and Precision & Recall [16]. We utilize the officially pro-
vided GigaGAN samples [8] to compute these metrics. As shown in Table A4,
Diffusion2GAN achieves a higher recall than GigaGAN, suggesting that Diffu-
sion2GAN suffers less from diversity collapse than GigaGAN. Despite slightly
worse FID and Clip-score, Diffusion2GAN achieves almost comparable perfor-
mance while using only about 1% of the compute resources.
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Table A4: Comparison to text-to-image GigaGAN generator on COCO2014.
While our Diffusion2GAN model shows a slightly higher FID [6] compared to Giga-
GAN [9], it exhibits a higher recall value [16], indicating that Diffusion2GAN can
generate more diverse images than GigaGAN.

model FID-30k (↓) CLIP-30k (↑) Precision (↑) Recall (↑) A100 days

GigaGAN [9] 9.09 0.32 0.74 0.60 4783.0
Diffusion2GAN 9.29 0.31 0.74 0.64 43.6

E Discussion on Noise and ODE Solution Pair Dataset

In this paper, we create noise-image (latent) pairs using a pre-trained diffusion
model and a deterministic sampler. This prompts fundamental questions: should
these pairs strictly adhere to a one-to-one correspondence, and can they be
randomly re-paired while still maintaining this correspondence? To explore these
questions, we generate noise-image pairs using a stochastic sampler. Specifically,
we utilize a pre-trained EDM [10] and generate 50k noise-image pairs using an
EDM’s stochastic sampler. Subsequently, we train a one-step model using ODE
distillation loss with LPIPS, as explained in Section 3.1. However, the one-step
model with stochastic pairs cannot minimize the ODE distillation loss, resulting
in an FID over 200. This phenomenon also occurs when we randomly re-wire 50k
deterministic noise-image pairs without replacement. This result contradicts our
earlier findings, where a model trained using ODE distillation loss achieved an
FID score of 8.51 using 50k diffusion-simulated deterministic noise-image pairs,
as presented in Table 6. These results suggest that for effective ODE distillation,
noise-image pairs should be deterministically generated and inherit a specific
relationship formed by simulating the ODE of a pre-trained diffusion model.

F Limitations

Although our method achieves faster inference while maintaining image quality,
it does have several limitations. First, our current approach simulates a fixed
classifier-free guidance scale, a common technique for adjusting text adherence,
but does not support varying CFG values at inference time. Exploring meth-
ods like guided distillation [21] could be a promising direction. Second, as our
method distills a teacher model, the performance limit of our model is bound by
the quality of the original teacher’s output. To enhance the quality of generated
noise-image pairs, employing advanced diffusion models like EDM2 [12], which
is better compatible with deterministic sampling, could be advantageous. Addi-
tionally, leveraging real text and image pairs is a potential avenue to learn a stu-
dent model that outperforms the original teacher model. Third, Diffusion2GAN
only supports one-step image synthesis as it was trained to translate given noise
into an RGB image directly. However, extending Diffusion2GAN to multi-step
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generation could result in future performance improvement. Last, while Diffu-
sion2GAN alleviates the diversity drop by introducing ODE distillation loss and
a conditional GAN framework, we have found that the diversity drop still occurs
as we scale up the student and teacher models. We leave further investigation of
this problem for future work.

G Societal Impact

Our work aims to develop a one-step image synthesis framework, which could sig-
nificantly improve the accessibility and affordability of generative visual models.
By reducing the multi-step synthesis process into a single step, our technology
promises to democratize the creation of visual content, enabling a broader range
of users to harness the power of generative models for creative expression and
innovation. Additionally, by reducing the need for extensive computation during
both training and inference stages, our framework also helps decrease electricity
usage and CO2 emissions. However, as this technology becomes more accessible,
it is crucial to address concerns about potential misuse, especially in areas like
sexual harassment and synthetic media manipulation.

Generative visual models have the potential to facilitate the creation of highly
convincing deep fake videos and enable sophisticated impersonation techniques,
presenting significant challenges for the trustworthiness of online information.
Moreover, they can be utilized to generate content that may incite instances of
sexual harassment. While our technology boasts compelling advantages regard-
ing efficiency, it is imperative to acknowledge and tackle the potential societal
repercussions and ethical dilemmas linked with the widespread integration of
generative visual models.

H More Visual Results

We provide additional visuals from Diffusion2GAN in Figures A2 and A3. Next,
we present a visual comparison with Stable Diffusion 1.5 teacher and selected
distillation models, including Diffusion2GAN, in Figure A4. We also present
additional visual comparison between Stable Diffusion 1.5 [26], GigaGAN [9],
InstaFlow-0.9B [18], and our Diffusion2GAN using COCO2014 prompts in Fig-
ures A5 and A6. Furthermore, we demonstrate that SDXL-Diffusion2GAN can
generate diverse images from a single prompt while maintaining better text-to-
image alignment compared to SDXL-Turbo and SDXL-Lightning in Figures A7
and A8.
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“Russian Blue cat exploring a 
garden, surrounded by vibrant 
flowers.”

"Skiers enjoying the pristine 
slopes of the Swiss Alps on a 
sunny day.”

＂Still life colorful himalayas birds.” (1024px)

"Dreamy puppy surrounded by floating bubbles."

"Traditional gondolas lined up 
along the water, ready to 
transport visitors.”

"Stylish woman posing confidently 
with oversized sunglasses."

"border collie surfing a small wave, 
with a mountain on background.”

Fig.A2: High-quality generated images using our one-step Diffusion2GAN framework.
Our model can synthesize a 512px/1024px image at an interactive speed of 0.09/0.16
seconds on an A100 GPU, while the teacher model, Stable Diffusion 1.5 [26]/SDXL [24],
produces an image in 2.59/5.60 seconds using 50 steps of the DDIM [30].
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“A painting of an adorable rabbit sitting on a colorful 
splash.” (1024px)

"A cinematic digital artwork of a 
floating ship in the sky."

"CG art of a majestic castle, 
evoking a sense of splendor."

"A marble sculpture of the 
virgin mary."

"Spaghetti aglio e olio with meats 
captured in a warm, golden light.”

"Breathtaking view of the Colosseum 
against a sunny sky in Rome."

"A cool astronaut floating in space."

Fig.A3: High-quality generated images using our one-step Diffusion2GAN framework.
Our model can synthesize a 512px/1024px image at an interactive speed of 0.09/0.16
seconds on an A100 GPU, while the teacher model, Stable Diffusion 1.5 [26]/SDXL [24],
produces an image in 2.59/5.60 seconds using 50 steps of the DDIM [30].
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SD 1.5 Teacher 2-step  LCM-LoRA Diffusion2GAN (Ours)InstaFlow-0.9B

Fig.A4: Visual comparison to Stable Diffusion 1.5 teacher [26] with a classifier-free
guidance scale [7] of 8 and selected distillation student models, including InstaFlow-
0.9B [18], LCM-LoRA [20], and our Diffusion2GAN. The same noise input was used to
generate images in the same row. Our method Diffusion2GAN achieves higher realism
than the 2-step LCM-LoRA and InstaFlow-0.9B.
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Stable Diffusion 1.5 GigaGAN Diffusion2GANInstaFlow-0.9B

Fig.A5: Visual comparison to Stable Diffusion 1.5 [26] with a guidance scale of
8 [7] and selected one-step generators, GigaGAN [9], InstaFlow-0.9B [18], and Dif-
fusion2GAN trained on SD-CFG-8. We observe that Diffusion2GAN produces more
realistic images compared to GigaGAN and InstaFlow-0.9B, while maintaining com-
parable visual quality with Stable Diffusion 1.5.



13

Stable Diffusion 1.5 GigaGAN Diffusion2GANInstaFlow-0.9B

Fig.A6: Visual comparison to Stable Diffusion 1.5 [26] with a guidance scale of
8 [7] and selected one-step generators, GigaGAN [9], InstaFlow-0.9B [18], and Dif-
fusion2GAN trained on SD-CFG-8. We observe that Diffusion2GAN produces more
realistic images compared to GigaGAN and InstaFlow-0.9B, while maintaining com-
parable visual quality with Stable Diffusion 1.5.
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"A cinematic shot of a little pig priest wearing sunglasses."

Fig.A7: Diversity of generated images from one-step diffusion distillation
models. By altering the random seed used for sampling Gaussian noises, Diffu-
sion2GAN can generate diverse images that closely align with the provided prompt.
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"3D render baby parrot, Chibi, adorable big eyes. In a garden with butterflies, 
greenery, lush, whimsical and soft, magical, octane render, fairy dust."
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Fig.A8: Diversity of generated images from one-step diffusion distillation
models. By altering the random seed used for sampling Gaussian noises, Diffu-
sion2GAN can generate diverse images that closely align with the provided prompt.
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