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Abstract. We propose a method to distill a complex multistep diffusion
model into a single-step conditional GAN student model, dramatically
accelerating inference, while preserving image quality. Our approach in-
terprets diffusion distillation as a paired image-to-image translation task,
using noise-to-image pairs of the diffusion model’s ODE trajectory. For
efficient regression loss computation, we propose E-LatentLPIPS, a per-
ceptual loss operating directly in diffusion model’s latent space, utilizing
an ensemble of augmentations. Furthermore, we adapt a diffusion model
to construct a multi-scale discriminator with a text alignment loss to
build an effective conditional GAN-based formulation. E-LatentLPIPS
converges more efficiently than many existing distillation methods, even
accounting for dataset construction costs. We demonstrate that our one-
step generator outperforms cutting-edge one-step diffusion distillation
models – SDXL-Turbo and SDXL-Lightning – on the COCO benchmark.

1 Introduction

Diffusion models [23, 81, 86] have demonstrated unprecedented image synthesis
quality on challenging datasets, such as LAION [79]. However, producing high-
quality results requires dozens or hundreds of sampling steps. As a result, most
existing diffusion-based image generation models, such as DALL·E 2 [65], Im-
agen [73], and Stable Diffusion [69], suffer from high latency, often exceeding
10 seconds and hindering real-time interaction. If our model only requires one
inference step, it will not only improve the user experience in text-to-image syn-
thesis, but also expand its potential in 3D and video applications [22, 64]. But
how can we build a one-step text-to-image model?

One simple solution is to just train a one-step model from scratch. For exam-
ple, we can train a GAN [15], a leading one-step model for simple domains [33].
Unfortunately, training text-to-image GANs on large-scale and diverse datasets
is still challenging, despite recent advances [30, 76]. The challenge lies in GANs
needing to tackle two difficult tasks all at once without any supervision: (1)
finding correspondence between noises and natural images, and (2) effectively
optimizing a generator model to perform the mapping from noises to images.
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This “unpaired” learning is often considered more ill-posed, as mentioned in Cy-
cleGAN [101], compared to paired learning, where conditional GANs [27] can
learn to map the input to output, given ground truth correspondences.

Our key idea is to tackle the above tasks one by one. We first find the cor-
respondence between noises and images by simulating the ODE solver with a
pre-trained diffusion model. Given the established corresponding pairs, we then
ask a conditional GAN to map noises to images in a paired image-to-image
translation framework [27,61]. This disentangled approach allows us to leverage
two types of generative models for separate tasks, achieving the benefits of both:
finding high-quality correspondence using diffusion models, while achieving fast
mapping using conditional GANs.

In this work, we collect a large number of noise-to-image pairs from a pre-
trained diffusion model and treat the task as a paired image-to-image translation
problem [27], enabling us to exploit tools such as perceptual losses [11, 28, 97]
and conditional GANs [15,27,56]. In doing so, we make a somewhat unexpected
discovery. Collecting a large database of noise-image pairs and training with a
regression loss without the GAN loss can already achieve comparable results to
more recent distillation methods [54,84], at a significantly lower compute budget,
if the regression loss is designed carefully.

First, in regression tasks, using perceptual losses (such as LPIPS [97]) bet-
ter preserves perceptually important details over point-based losses (such as L2).
However, perceptual losses are fundamentally incompatible with Latent Diffusion
Models [69], as they require an expensive decoding from latent to pixel space.
To overcome this, we propose LatentLPIPS, showing that perceptual losses can
directly work in latent space. This enables a fourfold increase in batch size,
compared to computing LPIPS in pixel space. Unfortunately, we observe that
the latent-based perceptual loss has more blind spots than its pixel counter-
parts. While previous work has found that ensembling is helpful for pixel-based
LPIPS [35], we find that it is critical for the latent-based version. Working in
latent space with our Ensembled-LatentLPIPS, we demonstrate strong perfor-
mance with just a regression loss, comparable to guided progressive distilla-
tion [54]. Additionally, we employ a discriminator in the training to further im-
prove performance. We develop a multi-scale conditional diffusion discriminator,
leveraging the pre-trained weights and using our new single-sample R1 loss and
mix-and-match augmentation. We name our distillation model Diffusion2GAN.

Using the proposed Diffusion2GAN framework, we distill Stable Diffusion
1.5 [69] into a single-step conditional GAN model. Our Diffusion2GAN can learn
noise-to-image correspondences inherent in the target diffusion model better
than other distillation methods. It also outperforms recently proposed distillation
models, UFOGen [93] and DMD [94], on the zero-shot one-step COCO2014 [45]
benchmark. Furthermore, we perform extensive ablation studies and highlight
the critical roles of both E-LatentLPIPS and multi-scale diffusion discriminator.
Beyond the distillation of Stable Diffusion 1.5, we demonstrate the effectiveness
of Diffusion2GAN in distilling a larger SDXL [63], exhibiting superior FID [20]
and CLIP-score [19] over one-step SDXL-Turbo [77] and SDXL-Lightning [44].
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SDXL Teacher SDXL-Turbo SDXL-Diffusion2GAN (Ours)SDXL-Lightning

Fig. 1: Visual comparison to SDXL teacher [63] with a classifier-free guidance scale [24]
of 7 and selected distillation student models, including SDXL-Turbo [77], SDXL-
Lightning [44], and our SDXL-Diffusion2GAN. All images in a given row were generated
using the same noise input, except for SDXL-Turbo, which requires a distinct noise size
of 4× 64× 64. Compared to other distillation models, our SDXL-Diffusion2GAN more
closely adheres to the original ODE trajectory. Please visit our website for more results.

https://mingukkang.github.io/Diffusion2GAN/
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2 Related Work

Diffusion models. Diffusion models (DMs) [23, 81, 86] are a family of gen-
erative models consisting of the diffusion process and denoising process. The
diffusion process progressively diffuses high-dimensional data from data distri-
bution to easy-to-sample Gaussian distribution, while the denoising process aims
to reverse the process using a deep neural network trained on a score-matching
objective [85–87]. Once trained, these models can generate data from random
Gaussian noise, using numerical integrators [1, 2, 31]. Diffusion models have en-
abled numerous vision and graphics applications, such as image editing [6,18,53],
controllable image synthesis [58, 96], personalized generation [13, 39, 72], video
synthesis [4,17,22], and 3D content creation [43,64]. However, the sampling typ-
ically requires tens of sampling steps, leading to slower image generation speed
than other generative models, such as GANs [15] and VAEs [37]. In this work,
our goal is to accelerate the model’s inference while maintaining image quality.
Diffusion distillation. Accelerating the sampling speed of diffusion models is
crucial for enhancing practical applications, as well as reducing energy costs
for inference. Several works have proposed reducing the number of sampling
steps using fast ODE solvers [31,49,50] or reducing the computational time per
step [8, 41, 42]. Another effective method for acceleration is knowledge distilla-
tion [3, 16, 21, 47, 48, 51, 54, 74, 84, 91, 100]. In this approach, multiple steps of a
teacher diffusion model is distilled into a fewer-step student model. Luhman et
al . [51] propose Lp regression training between student’s output from a Gaus-
sian noise xT and its corresponding ODE solution x0. Despite its simplicity, such
direct regression produces blurry outputs and does not match the image synthe-
sis capabilities exhibited by other generative models. To enhance image quality,
InstaFlow [48] straightens high-curvature ODE trajectory via ReFlow [47] and
distills the linearized ODE trajectory to the student model. Consistency Distil-
lation (CD) [52,84] trains a student model to predict a consistent output for any
noisy sample xt+1 and its single-step denoising xt. Recently, several studies have
proposed using a GAN discriminator to enhance distillation performance. For
example, CTM [36] and SDXL-Turbo [77] utilize an improved StyleGAN [76,78]
discriminator to train a one-step image generator. In addition, UFOGen [93],
SDXL-Lightning [44], and LADD [75] adopt a pre-trained diffusion model as
a strong discriminator, demonstrating their abilities in one-step text-to-image
synthesis. Although these works are concurrent, we will compare our method
with SDXL-Turbo and SDXL-Lightning for a more comprehensive comparison.
Conditional Generative Adversarial Networks [27,56] have been a commonly-
used framework for conditional image synthesis. The condition could be an im-
age [9,27,46,60,68,101], class-label [5,29,34,57,59], and text [30,67,76,92,95]. In
particular, cGANs have shown impressive performance when helped by a regres-
sion loss to stabilize training, as in image translation [27, 61, 62, 88, 98, 101].
Likewise, we approach diffusion model distillation by employing the image-
conditional GAN, along with a perceptual regression loss [97]. Early works [90,91]
combine GANs with the forward diffusion process, but do not aim at distilling
a pre-trained diffusion model into a GAN.
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3 Method

Our goal is to distill a pre-trained text-to-image diffusion model into a one-step
generator. That is, we want to learn a mapping x = G(z, c), where the one-
step generator network G takes input noise z and text c, and maps them to the
output image x produced by the diffusion model. We assume that the student
and teacher share the same architecture, so that we can initialize the student
model G using weights of the teacher model. For our method section, we assume
Latent Diffusion Models [69] with x, z ∈ R4×64×64. Later, we also adopt our
method to the SDXL model [63].

In the rest of this section, we will elaborate on the design and training prin-
ciples of our framework. We begin by describing distillation as a paired image-
to-image translation problem in Section 3.1. Then, we introduce our Ensembled
Latent LPIPS regression loss (E-LatentLPIPS) in Section 3.2. Just using this re-
gression loss improves training efficiency and significantly improves distillation
performance for latent diffusion models. Lastly, we present an improved discrim-
inator design that reuses a pre-trained diffusion model (Section 3.3). It is worth
noting that our findings extend beyond the specific type of latent space diffusion
models [69,70] and apply to a pixel space model [31] as well.

3.1 Paired Noise-to-Image Translation for One-step Generation

With the emergence of diffusion probabilistic models [23,86], Luhman et al . [51]
suggest that the multi-step denoising process of a pre-trained diffusion model can
be reduced to a single step by minimizing the following distillation objective:

LODE
distill = E{z,c,x}

[
d(G(z, c),x)

]
, (1)

where z is a sample from Gaussian noise, c is a text prompt, G denotes a UNet
generator with trainable weights, x is the output of the diffusion model sim-
ulating the ordinary differential equation (ODE) trajectory with the DDIM
sampler [82], and d(·, ·) is a distance metric. Due to the computational cost
of obtaining x for each iteration, the method uses pre-computed pairs of noise
and corresponding ODE solutions before training begins. During training, it
randomly samples noise-image pairs and minimizes the ODE distillation loss
(Equation 1). While the proposed approach looks simple and straightforward,
the direct distillation approach yields inferior image synthesis results compared
to more recent distillation methods [48,54,74,84].

In our work, we hypothesize that the full potential of direct distillation has
not yet been realized. In our experiments on CIFAR10, we observe that we can
significantly improve the quality of distillation by (1) scaling up the size of the
ODE pair dataset and (2) using a perceptual loss [97] (as opposed to the pixel-
space L2 loss in Luhman et al .). In Table 6, we show the training progression on
the CIFAR10 dataset, and compare its performance to Consistency Model [84].
Surprisingly, the direct distillation with the LPIPS loss can achieve lower FID
than the Consistency Model at smaller amount of total compute, even accounting
for the extra compute to collect the ODE pairs.
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Fig. 2: E-LatentLPIPS for latent space distillation. Training a single iteration
with LPIPS [97] takes 117ms and 15.0GB extra memory on NVIDIA A100, whereas
our E-LatentLPIPS requires 12.1ms and 0.6GB on the same device. Consequently, E-
latentLPIPS accelerates the perceptual loss computation time by 9.7× compared to
LPIPS, while simultaneously reducing memory consumption.

3.2 Ensembled-LatentLPIPS for Latent Space Distillation

The original LPIPS [97] observes that the features from a pretrained classifier
can be calibrated well enough to match human perceptual responses. Moreover,
LPIPS serves as an effective regression loss across many image translation appli-
cations [61,89]. However, LPIPS, built to be used in the pixel space, is unwieldy
to use with a latent diffusion model [69]. As shown in Figure 2, the latent codes
must be decoded into the pixel space (e.g., 64 → 512 resolution) before comput-
ing LPIPS with a feature extractor F and a distance metric ℓ.

dLPIPS
(
x0,x1) = ℓ

(
F (Decode8×(x0)), F (Decode8×(x1))

)
(2)

This defeats the primary motivator of LDMs, to operate in a more efficient latent
space. As such, can we bypass the need to decode to pixels, and directly compute
a perceptual distance in latent space?
Learning LatentLPIPS. We hypothesize that the same perceptual properties
of LPIPS can hold for a function directly computed on latent space. Following the
procedure from Zhang et al . [97], we first train a VGG network [80] on ImageNet,
but in the latent space of Stable Diffusion. We slightly modify the architecture by
removing the 3 max-pooling layers, as the latent space is already 8× downsam-
pled, and change the input to 4 channels. We then linearly calibrate intermediate
features using the BAPPS dataset [97]. This successfully yields a function that
operates in the latent space: dLatentLPIPS(x0,x1) = ℓ(F (x0), F (x1)).

Interestingly, we observe that while ImageNet classification accuracy in latent
space is slightly lower on latent codes than on pixels, the perceptual agreement
is retained. This indicates that while compression to latent space destroys some
of the low-level information that helps with classification [26], it keeps the per-
ceptually relevant details of the image, which we can readily exploit. Additional
details are in the Supplement C.
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(a) Target (b) LPIPS
(LPIPS = 0.016)

(c) LatentLPIPS
(0.490)

(d) E-LatentLPIPS
(0.001)

Fig. 3: Single image reconstruction. To gain insight into the loss landscape of our
regression loss, we conduct an image reconstruction experiment by directly optimizing
a single latent with different loss functions. Reconstruction with LPIPS roughly repro-
duces the target image, but at the cost of needing to decode into pixels. LatentLPIPS
alone cannot precisely reconstruct the image. However, our ensembled augmentation,
E-LatentLPIPS, can more precisely reconstruct the target while operating directly in
the latent space.

Ensembling. We observe that the straightforward application of LatentLPIPS
as the new loss function for distillation results in producing wavy, patchy arti-
facts. We further investigate this in a simple optimization setup, as shown in
Figure 3, by optimizing a randomly-sampled latent code towards a single target
image. Here we aim to recover the target latent using different loss functions:
argminx̂ d(x̂,x), where x is the target latent, x̂ the reconstructed latent, and
d either the original LPIPS or LatentLPIPS. We observe that the single image
reconstruction does not converge under LatentLPIPS (Figure 3 (c)). We hypoth-
esize this limitation is due to a suboptimal loss landscape formed by the latent
version of the VGG network.

Inspired by E-LPIPS [35], we apply random differentiable augmentations [32,
99], general geometric transformations [32], and cutout [10], to both generated
and target latents. At each iteration, a random augmentation is applied to both
generated and target latents. When applied to single image optimization, the
ensemble strategy nearly perfectly reconstructs the target image, as shown in
Figure 3 (d). The new loss is named Ensembled-LatentLPIPS, or E-LatentLPIPS
for short.

dE-LatentLPIPS(x0,x1) = ET
[
ℓ
(
F (T (x0)), F (T (x1))

)]
, (3)

where T is a randomly sampled augmentation. Applying the loss function to
ODE distillation:

LE-LatentLPIPS
(
G, z, c,x

)
= dE-LatentLPIPS(G(z, c),x), (4)

where z denotes a Gaussian noise, and x denotes its target latent. As illustrated
in Figure 2 (right), compared to its LPIPS counterpart, the computation time
is significantly lower, due to (1) not needing to decode to pixels (saving 79 ms



8 Kang et al.

Pre-trained 
Diffusion

Pre-generate noise-prompt-latent triples

SD
Decoder

<latexit sha1_base64="QqSk6+CS8mDvq1thYIIR5+ZhWuk=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZk004ZmMkNyRyhD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx1IYdN1vp7Cyura+UdwsbW3v7O6V9w+aJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxbea3nrg2IlIPOIl5L6RDJQLBKFrpsRtSHPlByqb9csWtujOQZeLlpAI56v3yV3cQsSTkCpmkxnQ8N8ZeSjUKJvm01E0Mjykb0yHvWKpoyE0vnSWekhOrDEgQafsUkpn6eyOloTGT0LeTWUKz6GXif14nweC6lwoVJ8gVm38UJJJgRLLzyUBozlBOLKFMC5uVsBHVlKEtqWRL8BZPXibNs6p3Wb24P6/UbvI6inAEx3AKHlxBDe6gDg1goOAZXuHNMc6L8+58zEcLTr5zCH/gfP4A4JCREQ==</latexit>c

<latexit sha1_base64="/PDT2vWe6o6iXUiQXS5t2Ep0wuw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPrAtJZPeaUMzmSHJCHXoX7hxoYhb/8adf2OmnYW2HggczrmXnHv8WHBtXPfbWVpeWV1bL2wUN7e2d3ZLe/sNHSWKYZ1FIlItn2oUXGLdcCOwFSukoS+w6Y9uMr/5iErzSN6bcYzdkA4kDzijxkoPnZCaoR+kT5NeqexW3CnIIvFyUoYctV7pq9OPWBKiNExQrdueG5tuSpXhTOCk2Ek0xpSN6ADblkoaou6m08QTcmyVPgkiZZ80ZKr+3khpqPU49O1kllDPe5n4n9dOTHDVTbmME4OSzT4KEkFMRLLzSZ8rZEaMLaFMcZuVsCFVlBlbUtGW4M2fvEgapxXvonJ+d1auXud1FOAQjuAEPLiEKtxCDerAQMIzvMKbo50X5935mI0uOfnOAfyB8/kDA5KRKA==</latexit>z

<latexit sha1_base64="i611ljtRSUtPwh6Uac12R1JS11Y=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0WoICURX8uiC11WsA9oQ5lMpu3QSSbM3Ag19EvcuFDErZ/izr9xmmahrQcu93DOvcyd48eCa3Ccb2tpeWV1bb2wUdzc2t4p2bt7TS0TRVmDSiFV2yeaCR6xBnAQrB0rRkJfsJY/upn6rUemNJfRA4xj5oVkEPE+pwSM1LNLt5UuDSSc4Kwd9+yyU3Uy4EXi5qSMctR79lc3kDQJWQRUEK07rhODlxIFnAo2KXYTzWJCR2TAOoZGJGTaS7PDJ/jIKAHuS2UqApypvzdSEmo9Dn0zGRIY6nlvKv7ndRLoX3kpj+IEWERnD/UTgUHiaQo44IpREGNDCFXc3IrpkChCwWRVNCG4819eJM3TqntRPb8/K9eu8zgK6AAdogpy0SWqoTtURw1EUYKe0St6s56sF+vd+piNLln5zj76A+vzB06Gkjs=</latexit>

G(·, ·)

<latexit sha1_base64="lv9EkgYsisnb+2r4S893MAdiR+M=">AAACAnicbZDLSsNAFIZP6q3WW9SVuBksQgUpiXhbFl3osoK9QBvKZDpph04uzEyEGoIbX8WNC0Xc+hTufBsnbQVt/WHg4z/nMOf8bsSZVJb1ZeTm5hcWl/LLhZXVtfUNc3OrLsNYEFojIQ9F08WSchbQmmKK02YkKPZdThvu4DKrN+6okCwMbtUwoo6PewHzGMFKWx1z56rU9rHqu15ynx6iHybpQccsWmVrJDQL9gSKMFG1Y362uyGJfRoowrGULduKlJNgoRjhNC20Y0kjTAa4R1saA+xT6SSjE1K0r50u8kKhX6DQyP09kWBfyqHv6s5sRTldy8z/aq1YeedOwoIoVjQg44+8mCMVoiwP1GWCEsWHGjARTO+KSB8LTJROraBDsKdPnoX6Udk+LZ/cHBcrF5M48rALe1ACG86gAtdQhRoQeIAneIFX49F4Nt6M93FrzpjMbMMfGR/fqzqW/A==</latexit>

G(z, c)

<latexit sha1_base64="dasf5QzN237RWZiN+UItoDGYkUc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPrAtJZPeaUMzmSHJiGXoX7hxoYhb/8adf2OmnYW2HggczrmXnHv8WHBtXPfbWVpeWV1bL2wUN7e2d3ZLe/sNHSWKYZ1FIlItn2oUXGLdcCOwFSukoS+w6Y9uMr/5iErzSN6bcYzdkA4kDzijxkoPnZCaoR+kT5NeqexW3CnIIvFyUoYctV7pq9OPWBKiNExQrdueG5tuSpXhTOCk2Ek0xpSN6ADblkoaou6m08QTcmyVPgkiZZ80ZKr+3khpqPU49O1kllDPe5n4n9dOTHDVTbmME4OSzT4KEkFMRLLzSZ8rZEaMLaFMcZuVsCFVlBlbUtGW4M2fvEgapxXvonJ+d1auXud1FOAQjuAEPLiEKtxCDerAQMIzvMKbo50X5935mI0uOfnOAfyB8/kDAIiRJg==</latexit>x

<latexit sha1_base64="/PDT2vWe6o6iXUiQXS5t2Ep0wuw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPrAtJZPeaUMzmSHJCHXoX7hxoYhb/8adf2OmnYW2HggczrmXnHv8WHBtXPfbWVpeWV1bL2wUN7e2d3ZLe/sNHSWKYZ1FIlItn2oUXGLdcCOwFSukoS+w6Y9uMr/5iErzSN6bcYzdkA4kDzijxkoPnZCaoR+kT5NeqexW3CnIIvFyUoYctV7pq9OPWBKiNExQrdueG5tuSpXhTOCk2Ek0xpSN6ADblkoaou6m08QTcmyVPgkiZZ80ZKr+3khpqPU49O1kllDPe5n4n9dOTHDVTbmME4OSzT4KEkFMRLLzSZ8rZEaMLaFMcZuVsCFVlBlbUtGW4M2fvEgapxXvonJ+d1auXud1FOAQjuAEPLiEKtxCDerAQMIzvMKbo50X5935mI0uOfnOAfyB8/kDA5KRKA==</latexit>z
<latexit sha1_base64="dasf5QzN237RWZiN+UItoDGYkUc=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPrAtJZPeaUMzmSHJiGXoX7hxoYhb/8adf2OmnYW2HggczrmXnHv8WHBtXPfbWVpeWV1bL2wUN7e2d3ZLe/sNHSWKYZ1FIlItn2oUXGLdcCOwFSukoS+w6Y9uMr/5iErzSN6bcYzdkA4kDzijxkoPnZCaoR+kT5NeqexW3CnIIvFyUoYctV7pq9OPWBKiNExQrdueG5tuSpXhTOCk2Ek0xpSN6ADblkoaou6m08QTcmyVPgkiZZ80ZKr+3khpqPU49O1kllDPe5n4n9dOTHDVTbmME4OSzT4KEkFMRLLzSZ8rZEaMLaFMcZuVsCFVlBlbUtGW4M2fvEgapxXvonJ+d1auXud1FOAQjuAEPLiEKtxCDerAQMIzvMKbo50X5935mI0uOfnOAfyB8/kDAIiRJg==</latexit>x

Prompt <latexit sha1_base64="QqSk6+CS8mDvq1thYIIR5+ZhWuk=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oFtKZk004ZmMkNyRyhD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx1IYdN1vp7Cyura+UdwsbW3v7O6V9w+aJko04w0WyUi3fWq4FIo3UKDk7VhzGvqSt/zxbea3nrg2IlIPOIl5L6RDJQLBKFrpsRtSHPlByqb9csWtujOQZeLlpAI56v3yV3cQsSTkCpmkxnQ8N8ZeSjUKJvm01E0Mjykb0yHvWKpoyE0vnSWekhOrDEgQafsUkpn6eyOloTGT0LeTWUKz6GXif14nweC6lwoVJ8gVm38UJJJgRLLzyUBozlBOLKFMC5uVsBHVlKEtqWRL8BZPXibNs6p3Wb24P6/UbvI6inAEx3AKHlxBDe6gDg1goOAZXuHNMc6L8+58zEcLTr5zCH/gfP4A4JCREQ==</latexit>c

Fig. 4: Our Diffusion2GAN for one-step image synthesis. First, we collect diffu-
sion model output latents along with the input noises and prompts. Second, the gener-
ator is trained to map noise and prompt to the target latent using the E-LatentLPIPS
regression loss (Equation 4) and the GAN loss (Equation 6). While the output of the
generator can be decoded by the SD latent decoder into RGB pixels, it is a compute
intensive operation that is never performed during training.

for one image on an A100) and (2) (Latent)LPIPS itself operating at a lower-
resolution latent code than in pixel space (38→8 ms). While augmentation takes
some time (4 ms), in total, perceptual loss computation is almost 10× cheaper
(117→ 12 ms) with our E-LatentLPIPS. In addition, memory consumption is
greatly reduced (15→0.6 GB).

Experimental results of Table 1 demonstrate that learning the ODE mapping
with E-LatentLPIPS leads to better convergence, exhibiting lower FID compared
to other metrics such as MSE, Pseudo Huber loss [25,83], and the original LPIPS
loss. For additional details regarding the toy reconstruction experiment and dif-
ferentiable augmentations, please refer to the Supplement C.

3.3 Conditional Diffusion Discriminator

In Sections 3.1 and 3.2, we have elucidated that diffusion distillation can be
achieved by framing it as a paired noise-to-latent translation task. Motivated by
the effectiveness of conditional GAN for paired image-to-image translation [27],
we employ a conditional discriminator. The conditions for this discriminator in-
clude not only the text description c but also the Gaussian noise z provided
to the generator. Our new discriminator incorporates the aforementioned condi-
tioning while leveraging the pre-trained diffusion weights. Formally, we optimize
the following minimax objective for the generator G and discriminator D:

min
G

max
D

Ec,z,x[log(D(c, z,x))] + Ec,z[log(1−D(c, z, G(z, c)))]. (5)

For the generator, we minimize the following non-saturating GAN loss [14].

LGAN(G, z, c,x) = −Ec,z

[
log(D(c, z, G(z, c)))

]
. (6)

The final loss for the generator is LG = LE-LatentLPIPS+λGANLGAN. We provide
more details on the discriminator and loss functions.
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Fig. 5: Our multi-scale conditional discriminator design. We reuse the pre-
trained weights from the teacher model’s U-Net and augment it with multi-scale input
and output branches. Concretely, we feed the resized version of input latents to each
downsampling block of the encoder. For the decoder part, we enforce the discriminator
to make real/fake predictions at three places at each scale: before, at, and after the
skip connection. This multi-scale adversarial training further improves image quality.

Initialization from a pre-trained diffusion model. We demonstrate that
initializing the discriminator weights with a pre-trained diffusion model is ef-
fective for diffusion distillation. Compared to the implementation of GigaGAN
discriminator [30], using a pre-trained Stable Diffusion 1.5 U-Net [71] and fine-
tuning the model as the discriminator in the latent space results in superior
FID in Table 2. The adversarial loss is computed independently at each location
of the U-Net discriminator output. Note that the original U-Net architecture
conditions on text but not on the input noise map z. We further modify the dis-
criminator architecture to support z conditioning, simply by adding the input
with z processed through a single convolution layer with zero initialization in
the channel dimension. Note that the text conditioning for the diffusion discrim-
inator is naturally carried out by the built-in cross-attention layers in the Stable
Diffusion U-Net. We observe moderate improvement across all metrics.
Single-sample R1 regularization. While the conditional U-Net discrimina-
tor from pre-trained diffusion weights already achieves competitive results on
the zero-shot COCO2014 [45] benchmark, we have noticed considerable training
variance across different runs, likely due to the absence of regularization and
unbounded gradients from the discriminator. To mitigate this, we introduce R1
regularization [55] on each mini-batch for training the diffusion discriminator.
However, introducing R1 regularization increases GPU memory consumption,
posing a practical challenge, especially when the discriminator is a high-capacity
U-Net. To minimize memory consumption and accelerate training, we not only
adopt lazy regularization [34] with an interval of 16, but also apply R1 regu-
larization only to a single sample of each mini-batch. In addition to improved
stability, we also observe that the single-sample R1 regularization results in bet-
ter convergence, as shown in Table 2.
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Multi-scale in-and-out U-Net discriminator. GigaGAN [30] observes that
the GAN discriminator tends to focus on a particular frequency band, often
overlooking high-level structures, and introduces a multi-scale discriminator to
address this issue. Similarly, we propose a new U-Net discriminator design, as
shown in Figure 5, which enforces independent real/fake prediction at various
segments of the U-Net. Specifically, we modify the U-Net encoder to receive re-
sized inputs at each downsampling layer and attach three readout layers at each
scale of the U-Net decoder to make independent real/fake predictions, from the
U-Net skip connection features, the upsampled features from the U-Net bottle-
neck, and the combined features. At a high level, the new design enforces that all
U-Net layers participate in the final prediction, ranging from shallow skip con-
nections to deep middle blocks. This design enhances low-frequency structural
consistency and significantly increases FIDs, as observed in Table 2.
Mix-and-match augmentation. To further encourage the discriminator to
focus on text alignment and noise conditioning, we introduce mix-and-match
augmentation for discriminator training, similar to GigaGAN [30] and earlier
text-to-image GAN works [66, 95]. During discriminator training, we replace a
portion of the generated latents with random, unrelated latents from the target
dataset while maintaining the other conditions unchanged. This categorizes the
replaced latents as fake, since the alignments between the latent and its paired
noise and text are incorrect, thereby fostering improved alignments. Additionally,
we make substitutions to text and noise, contributing to the overall enhancement
of the conditional diffusion discriminator.

4 Experiments

Here, we study the effectiveness of our algorithmic designs with a systematic ab-
lation study in Section 4.1. Next, we compare our method with leading one-step
generators using a standard benchmark regarding image quality, text alignment,
and inference speed in Section 4.2. We then present human preference evaluation
results in Section 4.3. Additionally, we report the training speed (Section 4.4).
Training details. We distill Stable Diffusion 1.5 into our one-step generator
and train the model on two ODE datasets with different classifier-free guid-
ance (CFG), namely, the SD-CFG-3 dataset with 3 million noise-latent pairs
and the SD-CFG-8 dataset with 12 million pairs. We use the prompts from the
LAION-aesthetic-6.25 and -6.0 datasets to create the SD-CFG-3 and SD-CFG-8
datasets, respectively, and simulate the ODE using 50 steps of DDIM [82]. To
demonstrate the effectiveness of Diffusion2GAN for a larger text-to-image model,
we distill SDXL-Base-1.0 [63] into Diffusion2GAN using 8 million noise-latent
pairs named SDXL-CFG-7 dataset. These pairs were generated by SDXL-Base-
1.0 using prompts from the LAION-aesthetic-6.0 dataset. We simulate the ODE
of SDXL-Base-1.0 using 50 steps of DDIM. For further details on hyperparam-
eters and evaluation details, please refer to the Supplement A and B. Notably,
we did not use any real images from the LAION dataset.
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Table 1: Ablation study on SD-CFG-3 dataset. We distill Stable Diffusion
1.5 [71] into one-step generators using ODE distillation loss (Equation 1). All mod-
els are trained with a batch size of 256 for 20k iterations using 8 A100-80GB GPUs,
except for the LPIPS model and the larger batch-size model. For the LPIPS model,
we use a batch size of 64 and accumulate gradients four times due to its 62GB GPU
memory consumption per A100-80GB. The other models require nearly 68GB per GPU
for 256 batch training. Our E-LatentLPIPS achieves stronger performance than tradi-
tional LPIPS without decoding to pixels.

Method (Loss function) Loss space img/sec (↑) Batch size FID (↓) CLIP (↑) Pre. (↑) Rec. (↑)

ODE distillation (LPIPS [97]) Pixel 40.0 256 25.94 0.288 0.60 0.53
ODE distillation (MSE) Latent 138.4 256 110.55 0.222 0.21 0.33
ODE distillation (Pseudo Huber [83]) Latent 144.2 256 87.60 0.230 0.29 0.40
ODE distillation (LatentLPIPS) Latent 139.9 256 67.17 0.244 0.46 0.54
ODE distillation (E-LatentLPIPS) Latent 127.5 256 22.95 0.299 0.62 0.58

→ larger batch-size (8× more GPUs) Latent 128.0 2048 14.72 0.292 0.66 0.65

Table 2: Ablation study on SD-CFG-3 dataset. All models are initialized with the
weights of a pre-trained ODE distillation model targeting Stable Diffusion 1.5 [71] and
trained with a batch size of 256 using 16 A100-80GB GPUs. Each proposed component
plays a crucial role in improving both FID [20] and CLIP-score [19].

Method FID-30k (↓) CLIP-30k (↑) Precision (↑) Recall (↑)

ODE distillation (E-LatentLPIPS) 14.72 0.292 0.66 0.65
+ GigaGAN D [30] 13.97 0.293 0.68 0.64

ODE distillation (E-LatentLPIPS) 14.72 0.292 0.66 0.65
+ Diffusion D 12.04 0.300 0.70 0.65
+ z conditional D 11.97 0.302 0.70 0.65
+ Single-sample R1 10.60 0.303 0.73 0.65
+ Multi-scale training 9.58 0.308 0.72 0.66
+ Mix-and-match augmentation 9.45 0.310 0.73 0.65

Stable Diffusion 1.5 [71] (Teacher) 8.74 0.312 0.72 0.67

4.1 Effectiveness of Each Component

In Table 1, we conduct an ablation study on the choice of distance metric for ODE
distillation training. We consider L1, Pseudo Huber [83], LPIPS, LatentLPIPS,
and our E-LatentLPIPS metrics. As shown in Table 1, ODE distillation us-
ing MSE [51] achieves worse results on large-scale text-to-image datasets. Also,
introducing the Pseudo Huber metric improves FID significantly [84], but it re-
mains insufficient. However, if we apply a perceptual loss, such as pixel space
LPIPS and latent space E-LatentLPIPS, the ODE distillation presents FID near
20∼25, even trained using a small batch size. This suggests that the noise-to-
image translation task holds promise, and it would give better results once we
introduce a conditional discriminator to further improve the image quality.

Table 2 presents the ablation study regarding each component of Diffu-
sion2GAN’s discriminator. All generators are initialized with the pre-trained
weights of the best performing ODE distilled generator shown in Table 1. We
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Table 3: Comparison to recent text-to-image models on COCO2014. We
distill Stable Diffusion 1.5 [71] into Diffusion2GAN on the SD-CFG-3 dataset with a
batch size of 1024 using 64 A100-80GB GPUs. Diffusion2GAN significantly outperforms
the leading one-step diffusion distillation generators.

Multi-step generator Type # Param. FID-30k (↓) Inference time (s)

Stable Diffusion 1.5 [70] Diffusion 0.9B 8.74 2.59
PIXART-α [7] Diffusion 0.6B 10.65 -

One-step generator Type # Param. FID-30k (↓) Inference time (s)

GigaGAN [30] GAN 1.0B 9.09 0.13
InstaFlow-0.9B [48] Distillation 0.9B 13.10 0.09
UFOGen [93] Distillation 0.9B 12.78 0.09
DMD [94] Distillation 0.9B 11.49 0.09
Diffusion2GAN Distillation 0.9B 9.29 0.09

Table 4: Comparison to recent text-to-image models on COCO2017. On
the SD-CFG-3, Diffusion2GAN, distilled from Stable Diffusion 1.5 [71], demonstrates
better performance over UFOGen [93]. While Diffusion2GAN presents slightly better
FID [20] than ADD-M [77], it exhibits a lower CLIP-score [19].

Model # Step FID-5k (↓) CLIP-5k (↑) Inference time (s)

DPM solver [49] 25 20.1 0.318 0.88
Progressive distillation [54] 4 26.4 0.300 0.21
InstaFlow-0.9B [48] 1 23.4 0.304 0.09
UFOGen [93] 1 22.5 0.311 0.09
ADD-M [77] 1 19.7 0.326 0.09
Diffusion2GAN 1 19.5 0.311 0.09

Stable Diffusion 1.5 [71] (Teacher) 50 19.1 0.313 2.59

compare our diffusion-based discriminator to the state-of-the-art GigaGAN dis-
criminator [30]. As shown in Table 2, each component of Diffusion2GAN plays
a crucial role in enhancing FID and CLIP-score.

4.2 Comparison with Distilled Diffusion Models

Distilling Stable Diffusion 1.5. We compare Diffusion2GAN with leading
diffusion distillation models on COCO2014 and COCO2017 benchmarks in Ta-
bles 3 and 4. InstaFlow-0.9B achieves an FID of 13.10 on COCO2014 and 23.4
on COCO2017, while Diffusion2GAN attains 9.29 and 19.5, respectively. Similar
to our method, UFOGen [93], DMD [94], and ADD-M [77] use extra diffusion
models for adversarial training or distribution matching. Although these models
achieve lower FIDs compared to InstaFlow-0.9B, Diffusion2GAN still outper-
forms them, as Diffusion2GAN is trained to closely follow the original trajectory
of the teacher diffusion model, thus mitigating the diversity collapse issue while
maintaining high visual quality. Note that the concurrent work ADD-M exhibits
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Table 5: Comparison to recent text-to-image models on COCO2017. On
the SDXL-CFG-7 dataset, Diffusion2GAN, distilled from SDXL-Base-1.0 [63], demon-
strates better FID and CLIP-score [19] over SDXL-Turbo [77] and SDXL-Lightning [44].
Our proposed diversity score, DreamDiv, confirms that SDXL-Diffusion2GAN gener-
ates more diverse images compared to SDXL-Turbo while exhibiting better text-to-
image alignment compared to both SDXL-Turbo and SDXL-Lightning.

Model # Step FID-5k (↓) CLIP-5k (↑) DreamDiv-5k (↑) DreamSim-5k (↓)

SDXL-Turbo [77] 1 28.10 0.342 0.232 0.368
SDXL-Lightning [44] 1 30.14 0.324 0.315 0.345
SDXL-Diffusion2GAN 1 25.49 0.347 0.268 0.284

SDXL-Base-1.0 (Teacher) [63] 50 25.56 0.346 0.338 0.0

a higher CLIP-score compared to Diffusion2GAN. We hypothesize this is because
ADD-M conditions the discriminator using both image and text embeddings, as
shown in Table 1(b) of the ADD-M
Distilling SDXL-Base-1.0. To demonstrate Diffusion2GAN’s effectiveness for
a larger text-to-image model, we distill SDXL-Base-1.0 [63] into Diffusion2GAN
and evaluate its performance using FID and CLIP-score on COCO2017. Our
empirical analysis shows that Recall [40] is inadequate for measuring image di-
versity. Instead, we generate 8 images per prompt and calculate the average
pairwise perceptual distance using DreamSim [12], naming this metric Dream-
Div. This metric captures diversity through perceptual dissimilarity within the
same prompt. As shown in Table 5, SDXL-Diffusion2GAN achieves compara-
ble FID and CLIP-scores to the teacher SDXL-Base-1.0 while exhibiting higher
DreamDiv compared to SDXL-Turbo. SDXL-Lightning shows higher DreamDiv
but a lower CLIP-score than SDXL-Diffusion2GAN, indicating its high diversity
likely results from poor text-to-image alignment.

To quantify the ability to learn the diffusion teacher’s ODE trajectory, we
introduce DreamSim-5k. We simulate the ODE of both the target diffusion model
and each one-step generator using 5k randomly sampled noises and COCO2017
prompts. DreamSim-5k is computed by averaging DreamSim [12] scores between
image pairs generated from the same noise. A lower DreamSim-5k indicates
better preservation of the teacher model’s noise-image mapping. As shown in
Table 5, SDXL-Diffusion2GAN outperforms SDXL-Turbo and SDXL-Lightning
in learning the noise-image mapping of the SDXL-Base-1.0 teacher.

4.3 Human Preference Evaluation

We conduct human preference evaluations following the LADD human study
procedure [75]. For Stable Diffusion 1.5 distillation, Diffusion2GAN shows bet-
ter human preferences for both image realism and text-to-image alignment com-
pared to InstaFlow-0.9B (Figure 6). For SDXL-Base-1.0 distillation, SDXL-
Diffusion2GAN demonstrates comparable or superior image realism and text-
to-image alignment compared to SDXL-Turbo and SDXL-Lightning (Figure 6).
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Fig. 6: We evaluate human preferences for image realism and text-to-image alignment.

Model Total # saved FID-50k (↓)
# NFE images

Consist. Distill. [84] 819.2M 50k 3.67

ODE distillation

78.6M 50k 8.51
80.3M 100k 5.62
83.8M 200k 3.85(LPIPS [97])
94.3M 500k 3.25
111.8M 1.0M 3.16

Table 6: LPIPS regression achieves better
FID [20] than Consistency Distillation [84]
on CIFAR10 [38], while needing fewer num-
ber of function evaluations (NFE) for both
ODE pair generation and model training.

Model A100 days FID-30k (↓)

InstaFlow-0.9B [48] 183.2 13.10
ODE distillation 36.0 15.94
Diffusion2GAN 43.6 9.29

Table 7: Diffusion2GAN requires fewer
A100 GPU days for training and at-
tains a significantly lower FID compared
to InstaFlow [48]. The number of A100
days and FID for InstaFlow are ob-
tained from the original paper. We train
the ODE distillation model and Diffu-
sion2GAN using a batch size of 256.

4.4 Training Speed

Even with the cost of preparing the ODE dataset, Diffusion2GAN converges
more efficiently than existing distillation methods. On the CIFAR10 dataset,
we compare the total number of function evaluations of the generator during
training. Training with the LPIPS loss on 500k teacher outputs surpasses the FID
of Consistency Distillation [84] with a fraction of the compute budget (Table 6).
In text-to-image synthesis, our full version of Diffusion2GAN achieves superior
FID compared to InstaFlow while using significantly fewer GPU days (Table 7).

5 Conclusion

We have proposed a new framework Diffusion2GAN for distilling a pre-trained
multi-step diffusion model into a one-step generator trained with conditional
GAN and perceptual losses. Our study shows that separating generative model-
ing into two tasks—first identifying correspondences and then learning a map-
ping—allows us to use different generative models to improve the performance-
runtime tradeoff. Our one-step model is not only beneficial for interactive image
generation but also offers the potential for efficient video and 3D applications.
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