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We supplement the main paper (hereafter, MP) by adding details on S-GEAR’s
architecture (see Sec. A) and extend our original experimentations (see Sec. B).

A S-GEAR’s Details

The main paper gives a general overview of S-GEAR architecture, which com-
prises a visual encoder, the temporal content aggregation module, the proto-
type attention module, and the causal transformer decoder. While the visual
encoder [2, 9] – a standard ViT – and the temporal decoder [4, 9, 11]– causal
transformer based on masked-attention – are well-known architectures in the
literature, we specifically tailor the two intermediate modules to serve our pur-
poses. We provide the details of such blocks in Sec. A.1 and A.2. In Sec. A.3, give
details regarding the visual prototype initialization. Finally, in Sec. A.4, we give
details regarding the training strategy used to train S-GEAR with pre-extracted
features.
⋆ Equal second author contribution.
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Fig. 1: Standard causal transformer flow vs. TCA flow.
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A.1 Temporal Context Aggregation

Sequential models like LSTMs and causal transformers excel at handling tem-
poral frame sequences. However, relying on class tokens, they prioritize global
information [4, 11] and neglect spatial cues. To illustrate the difference between
the standard causal transformer and our proposed Temporal Context Aggregator
(TCA), we provide the reader with Fig. 1. Here, the left-hand side shows the
workflow of a standard causal transformer applied on a sequence of ViT frame
features composed of local feature tokens and a global class token. In this sce-
nario, the causal transformer omits the local information and only propagates
the global information in time to create causal representations [4,11]. Because lo-
cal tokens encode specific scene details within different regions, not propagating
their information hinders the model from understanding scene dynamics (e.g.,
how an object’s location changes as a particular action progresses). Therefore,
we design the TCA φ block. TCA extends the information flow by propagating
global and local tokens across time (see Fig. 1 right), building causal represen-
tations considering scene dynamics at a finer spatial scale.

TCA builds on the attention mechanism and processes intermediate features
It. Thus, It undergoes linear processing to generate the query (Qt), key (Kt),
and value (Vt) vector representations. Afterward, as shown in Fig. 2 (left), the
TCA uniquely aggregates keys and values from past frames to subsequent ones
before computing the attention matrix. This approach enables the queries of
each frame to access a rich set of keys and values infused with comprehensive
spatiotemporal information about past contexts, enabling better temporal de-
pendency [10]. Specifically, the Kt and Vt vectors are augmented as in Eqns. 1
and 2, respectively:

K̂t =

{
Kt if t = 0

δ(Kt, αt−1 · K̂t−1) otherwise
, (1)

V̂t =

{
Vt if t = 0

δ(Vt, αt−1 · V̂t−1) otherwise
, (2)

where K̂t and V̂t are the augmented keys and queries of frame ft, αt−1 is a learn-
able weight parameter that balances the quantity of the information transmitted
from past observations, and δ is a permutation invariant aggregation function.
Note that we tried different functions for δ (e.g., cumulative-max), but through
empirical analyses, we chose summation.

Once these vectors are obtained, the computation proceeds with the standard
self-attention operations. Precisely, Qt and K̂t compute the attention scores
through scaled matrix multiplication, then normalized into [0, 1] weights through
a softmax function. Afterward, the weights aggregate information between the
augmented feature tokens of V̂t and create causal representations It. Formally,
the procedure can be defined as follows:

It = softmax
(
QtK̂

⊤
t√
d

)
V̂t. (3)
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Fig. 2: The TCA block (left) generates detailed and sequential representations by ag-
gregating past observation values V and keys K into current ones. It follows a standard
attention mechanism to capture temporal dependencies. The PA block (right) performs
cross-modality attention to aggregate selected prototypes from visual queries and uses
a TOE weight matrix to encode temporal awareness. Note that the red gradient in
TOE represents the magnitude of learnable weights.

Now, the class token representations I
0

t of It encodes the global representation
of frame t enhanced by detailed contextual information of the past frames.

A.2 Prototype Attention

Recall that S-GEAR encodes semantic relationships between actions. To help the
encoding of such relationships, we integrate a Prototype Attention (PA) block γ
detailed in Fig. 2 (right). The PA module helps the network learn meaningful
representations by incorporating semantic information from the visual proto-
types. PA has two stages: (1) selecting the prototypes and (2) modeling the
relationship between features and prototypes.

Similar to TCA, we build PA upon the attention mechanism, giving in input
both the class tokens from the intermediate encodings generated by ViT – i.e.,
I0 = {I00 , I01 , . . . , I0T−1} and the visual prototypes ρυ. We rely on the relative
similarities between actions to address (1). Specifically, we begin by calculating
the cosine similarity between each I0t and the visual prototypes, obtaining the
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relative representation vector rI
0
t of frame t as in Eq. 4:

rI
0
t = cos(I0t , ρυ). (4)

Then, we select the top k most similar prototypes for each feature vector for
the remaining calculations. However, for simplicity, let us assume we select the
most similar prototype for each feature vector. After acquiring the estimated
prototypes, PA addresses (2) by modeling their relationship with the feature
encodings using the attention mechanism. In this case, the set of prototypes
represents both the key (K) and value (V ) vectors. Conversely, the query (Q)
vector is derived from I0. The first step of the relationship modeling is the
computation of the attention scores Wa through a scaled matrix multiplication
between Q and K as in Eq. 5:

Wa =
QK⊤

d
. (5)

Following the standard attention procedure, the next step in the attention pro-
cess should be normalizing and applying Wa to V and having the output features.
However, the selected prototypes do not have temporal continuity like the se-
quential frames and contradict the temporal causality built from TCA when the
fusion occurs (see Sec. 3.1 in MP). Inspired by [5], we introduce a Temporal
Order Encoding (TOE) weight vector shaped as a Toeplitz matrix to model the
temporal order between elements of V . We provide the reader with an exam-
ple to illustrate Toeplitz matrices and their unique structure. Here, we show a
5-element TOE as a 3× 3 Toeplitz matrix ∆ as in Eq. 6:

∆ =

w0 w1 w2

w3 w0 w1

w4 w3 w0

 , (6)

where wi represents the ith weight from the TOE for i ∈ {0, 1, ..., 4}. Notice that
a single weight represents each diagonal. Additionally, with a 3 × 3 matrix, we
can model the temporal relationships of a sequence of three elements. Hence, for
a sequence of T elements like V , we need a T × T Toeplitz matrix built from
a (2T − 1)-element TOE. Generalizing, the T × T ∆ functionality allows PA
to model the relative temporal position or order between elements of V when
aggregating features. To apply ∆ to V , we first sum ∆ with the normalized Wa

and then perform a matrix multiplication between the resulting matrix and V
as in Eq. 7:

Ĩ = (β(softmax(Wa)) + (1− β)∆)V, (7)
where β is a learnable scaling factor that balances the sum between Wa and ∆.
Ĩ ∈ RT×d now represents the selected visual prototypes fused with the current
context and with encoded relative temporal awareness.

A.3 Prototype Initialization

We initialize our visual prototypes ρυ using action samples generated by the pro-
posed architecture (detailed in Sec. 3.1 in MP). First, we train the network (PA
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Fig. 3: Training S-GEAR with pre-extracted features.

omitted) for action recognition on EK100 for the egocentric tasks and 50S for the
exocentric tasks. Then, without fine-tuning, we extract multiple representations
for each action class present in a dataset. The average of these representations
becomes the “typical action sample” used to initialize the corresponding class
prototype. We also experimented with other initialization methods like random
values and using the language prototypes ρℓ as initial values. However, such
methods did not provide significant improvements. Thus, the results we report
in MP rely on the first initialization approach.

A.4 Training S-GEAR With Pre-extracted Features

S-GEAR’s modular design allows it to work with different visual backbones,
although it’s primarily designed for end-to-end training with a ViT architecture
[2]. To ensure a fair comparison with the SOTA [3, 4, 11], we also train our
network using pre-extracted features from TSN, Faster R-CNN (FRCNN) and
irCSN backbones provided by Furnari et al. [3] and Girdhar et al. [4], respectively.

Our training process (see Fig. 3) is built upon aligning the pre-extracted
feature distribution with ρυ learned from S-GEAR in its end-to-end training
with ViT. These prototypes already capture the desired structure of the latent
space. By aligning with them, we simplify training when we lack the variability
introduced by typical video preprocessing techniques (i.e., random cropping or
flipping). To this end, given pre-extracted visual features χt ∀t ∈ [0, T − 1], we
first apply a linear transformation and then normalize them using the mean µρυ

and standard deviation σρυ from the learned prototypes as in Eq. 8:

It =
lin(χt)− µρυ

σρυ

. (8)
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Table 1: Weights associated with individual loss terms to train S-GEAR for each task.

Dataset LSem LReg LCls LPast LFeat

EK100 4.0 1.0 1.0 1.0 1.0
EK55 2.0 1.0 1.0 1.0 1.0
EG 2.0 1.0 1.0 0.1 1.0
50S 1.0 0.1 1.0 0.1 1.0

Hence, leveraging the pre-trained weights of PA, causal decoder, and classifica-
tion head from the end-to-end training, we fine-tune S-GEAR to adapt to the
new visual features It. During this process, ρυ remains unchanged.

B Experiments Extension

Here, we provide additional details regarding our experiments. In Sec. B.1, we
provide details regarding the weights used for each loss function to train S-GEAR
for each dataset. In Sec. B.2, we provide the results supporting the ablation
study on the anticipation time τa from Sec. 4.6 in the MP. In Sec. B.3, we give
details regarding the ensemble setup of our models used to obtain the multimodal
results on EK55/100 from the MP. In Sec. B.4, we try different combinations
of backbones and modalities on EK100’s validation set. Finally, in Sec. B.5, we
extend Sec. 4.7 from the MP and compare the semanticity learned from ρυ and
that encoded from ρℓ.

B.1 Composed Loss Weights

Here, we provide the specific weights for each loss term introduced in Sec. 3.3 of
the MP. Table 1 details these weights. Notice that we combine LSem and LReg

due to their similar purpose in MP. However, they are weighted individually
during optimization to account for their different magnitudes. Importantly, we
use the same weights for both EK100 and EK55 datasets, regardless of whether
training end-to-end with ViT features or using pre-extracted features. The sole
exception is LSem because visual prototypes remain frozen in the pre-extracted
feature training scenario (see Sec. A.4).

B.2 Ablation on τa

Here, we report the results of experiments in Sec. 4.6 of MP. Specifically, the
results correspond to Fig. 5 of MP exploring Top-5 Acc. on EK55 and EG for τa
spanning from 0.25s to 2.0s.
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Table 2: Results on the EK55 validation set regarding Top-5 Accuracy at different
Anticipation Time-Steps averaged across the three official splits. All results in this
table are obtained using only RGB modality.

Model Top-5 Accuracy % at different τa (s)

2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25

FN [1] 23.47 24.07 24.68 25.66 26.27 26.87 27.88 28.96
RL [7] 25.95 26.49 27.15 28.48 29.61 30.81 31.86 32.84
RU-LSTM [3] 25.44 26.89 28.32 29.42 30.83 32.00 33.31 34.47
SRL [8] 25.82 27.21 28.52 29.81 31.68 33.11 34.75 36.89
S-GEAR (ours) 28.57 29.95 31.34 32.87 34.48 34.92 36.49 37.49

Table 3: Results on the EGTEA Gaze+ validation set regarding Top-5 Accuracy at
different Anticipation Time-Steps averaged across the three official splits.

Model Top-5 Accuracy % at different τa (s)

2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25

FN [1] 54.06 54.94 56.75 58.34 60.12 62.03 63.96 66.45
RL [7] 55.18 56.31 58.22 60.35 62.56 64.65 67.35 70.42
RU-LSTM [3] 56.82 59.13 61.42 63.53 66.40 68.41 71.84 74.25
SRL [8] 59.69 61.79 64.93 66.45 70.67 73.49 78.02 82.61
HRO [6] 60.12 62.32 65.53 67.18 71.46 74.05 79.24 83.92
S-GEAR (ours) 58.85 61.52 64.99 70.56 71.93 73.71 79.26 85.41

B.3 Multimodal Ensemble

For EK100’s validation set, we evaluate three S-GEAR versions with varying
backbone combinations. Firstly, S-GEAR uses late fusion3 of ViT-based RGB
S-GEAR (weight: 2.5) and FRCNN object features (weight: 0.5). S-GEAR-2B
adds ViT↓-based RGB S-GEAR (weight: 1.5) to the previous fusion. Finally,
S-GEAR-4B combines all RGB S-GEAR variants (ViT, ViT↓, TSN, irCSN with
weights 2.5:1.5:1:1) and FRCNN object features (weight: 0.5). The same weight
combinations apply for the EK100 test set. On the EK55 validation set, we late
fuse ViT, irCSN, and TSN-based RGB S-GEAR (all weighted 1.5), along with
TSN flow features (weight: 1) and FRCNN object features (weight: 1). Note
that except for the ViT backbones, all other RGB and modality features are
pre-extracted as provided in [3, 4].

B.4 Fine-grained Multimodal Ablation

We present results from combining different backbones and modalities on the
EK100 validation set (see Table 4). We use late fusion with the following back-
bone weights: ViT (weight: 2.5), ViT↓ (weight: 1.5), TSN (weight: 1.0), irCSN
3 Weighted Combination of predictions from different models and modalities.
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Table 4: Ablation of different RGB backbones and modalities on EK100 validation
set. ViT↓ represents ViT with an input size of 224×224. All backbone and modalities
are combined through late fusion.

RGB Backbones Modalities Verb Noun Action

ViT RGB + Obj 29.5 37.8 18.9
ViT RGB + Flow 30.2 35.4 18.4
ViT RGB + Obj + Flow 29.6 37.4 18.9

ViT + ViT↓ RGB + Obj 30.5 38.4 19.6
ViT + ViT↓ RGB + Flow 30.8 36.2 19.5
ViT + ViT↓ RGB + Obj + Flow 30.2 36.9 19.6

ViT + TSN RGB + Obj 30.4 38.1 19.5
ViT + TSN RGB + Flow 30.8 36.6 19.2
ViT + TSN RGB + Obj + Flow 29.7 37.8 19.4

ViT + irCSN RGB + Obj 30.5 38.2 19.6
ViT + irCSN RGB + Flow 29.5 37.0 19.1
ViT + irCSN RGB + Obj + Flow 29.4 37.6 19.6

ViT + ViT↓ + irCSN + TSN RGB + Obj 30.2 37.0 19.9
ViT + ViT↓ + irCSN + TSN RGB + Flow 30.4 36.6 19.5
ViT + ViT↓ + irCSN + TSN RGB + Obj + Flow 29.9 37.3 19.6

(weight: 1.0), and equal weights (weight: 0.5) for Object and Flow features. We
report results for various combinations, ranging from models using a single back-
bone to those combining up to four. We can notice that combining RGB and
object modalities provides the best overall results regarding Top-5 Recall, which
motivates our choice to exclude flow from the final ensemble model.

B.5 Closer Look at Semanticity

In Sec. 4.7 of MP, we graphically show that the latent space topology defined
from S-GEAR’s learned prototypes is similar to the one defined from language
prototypes but not perfectly aligned due to the influence of visual cues. Such
resemblance in latent space geometry suggests that S-GEAR can semantically
reason regarding action associations and consider scene information simultane-
ously. To dive deeper into this aspect, here we consider a group of randomly
selected reference actions – i.e., Pour Oil, Put Pan, Take Sponge, Compress
Sandwich, Cut Tomato, and Move Around Bacon – and analyze the prototypes
found in their proximity. Graphically, we show these comparisons in Fig. 4. The
grey boxes report the top-5 most similar actions for each reference action (top
bold string). Green actions (text on the left in each grey box) represent the most
similar actions in the language space. Black actions (right side of the grey boxes)
highlight alignment between vision and language, whereas red actions state that
there is a mismatch between the two. Each action contains the cosine similarity
between it and the reference one (see values inside the brackets). Notice that
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Cls
Visual Prototypes with Semantic Alignment (S-GEAR) Language Prototypes

Absolute Position Absolute PositionRelative Position Relative Position

Pour Oil Put Pan

Put Oil Container (0.61)
Open Oil Container (0.59)
Pour Seasoning (0.54)
Close Oil Container (0.53)
Take Oil Container (0.5)

Put Oil Container (0.61)
Open Oil Container (0.59)
Pour Seasoning (0.56)
Close Oil Container (0.53)
Pour Condiment (0.52)

Take Pan (0.71)
Put Cooking Utensil (0.67)
Wash Pan (0.66)
Put Pot (0.64)
Move Around Pan (0.6)

Move Around Pan (0.72)
Take Pan (0.69)
Put Cooking Utensil (0.67)
Take Cooking Utensil (0.65)
Put Pot (0.6)

Take Sponge

Put Sponge(0.8)
Wash Hand (0.42)
Wash Pan (0.39)
Take Bowl (0.38)
Wash Bowl (0.38)

Put Sponge (0.68)
Squeeze Washing Liquid (0.74)

Wash Bowl (0.42)
Wash Pan (0.41)
Was Hand (0.41)

Compress Sadwich Cut Tomato

Spread Condiment (0.43)
Mix Eggs (0.38)
Put Condiment (0.37)
Put Bread (0.36)
Open Bread (0.35)

Spread Condiment (0.45)
Take Bread (0.4)
Put Chees (0.39)
Put Bread (0.37)
Open Bread (0.37)

Put Tomato (0.85)
Take Tomato (0.83)
Put Tom. in Cont. (0.68)
Take Tom. from Cont. (0.65)
Cut Onion (0.54)

Take Tomato (0.86)
Put Tomato (0.83)
Cut Onion (0.69)
Take Tom. from Cont. (0.66)
Put Tom. in Cont. (0.56)

Move Around Bacon

Move Around Pan (0.5)
Move Around Patty (0.48)
Move Around Pot (0.46)
Move Arount Eat. Ut. (0.46)
Spread Condiment (0.4)

Spread Condiment (0.61)
Move Around Patty (0.49)
Pull Apart Onion (0.47)
Move Around Pan (0.47)
Move Around Eat. Ut. (0.43)

Fig. 4: (best viewed in color) Fine-grained semanticity comparison.

actions are associated with the same activities in both spaces regarding action
classes and the magnitude of their cosine similarity. Nevertheless, in 5/6 reported
cases, we have at least one divergence between the actions and the reference one.
This phenomenon re-emphasizes the divergence of visual prototypes influenced
by visual cues and the co-occurrences of actions in videos. Interestingly, even
divergent actions mostly have reasonable connections (i.e., they are likely to co-
occur) with the reference action. This underscores S-GEAR’s prototypes’ ability
to keep their semantic composure and account for the co-occurrence of actions
influenced by the observed action segments4. Notice that in the case of Take
Sponge as a reference action, the divergence between S-GEAR and language
prototypes is the action Squeeze Washing Liquid, which is probably the most
likely action to co-occur with Take Sponge in a kitchen scenario. Additionally, it
shows that with the proposed method, a perfect alignment between two spaces
cannot be obtained as long as the task is bounded to a given dataset. However,
in such cases, as we showed in Sec. 4.6 of MP (5th setup from Table 3), rely-
ing completely on global semantics (i.e., language prototypes) is less beneficial
for action anticipation than merging it with the visual cues (S-GEAR) due to
the importance of motion and scene composition in suggesting possible future
actions.
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