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Abstract. Action anticipation is the task of forecasting future activity
from a partially observed sequence of events. However, this task is ex-
posed to intrinsic future uncertainty and the difficulty of reasoning upon
interconnected actions. Unlike previous works that focus on extrapolat-
ing better visual and temporal information, we learn action representa-
tions that are aware of their semantic interconnectivity based on pro-
totypical action patterns and contextual co-occurrences, proposing the
novel Semantically Guided Representation Learning (S-GEAR) frame-
work. S-GEAR learns visual action prototypes and leverages language
models to structure their relationship, inducing semanticity. To gather
insights on S-GEAR’s effectiveness, we test it on four action anticipation
benchmarks, obtaining improved results compared to previous works:
+3.5, +2.7, and +3.5 absolute points on Top-1 Accuracy on Epic-Kitchen
55, EGTEA Gaze+ and 50 Salads, respectively, and +1.4 on Top-5 Re-
call on Epic-Kitchens 100. We further observe that S-GEAR effectively
transfers the geometric associations between actions from language to
visual prototypes. Finally, S-GEAR opens new research frontiers in an-
ticipation tasks by demonstrating the intricate impact of action semantic
interconnectivity. Code: https://github.com/ADiko1997/S-GEAR.

Keywords: Action Anticipation · Semantic Interconnection · Prototype
Learning · Geometric Associations

1 Introduction

Anticipating future actions is a key attribute of human intelligence when nav-
igating the world. This remarkable skill translates directly to advanced com-
puter vision applications such as self-driving cars [13, 27] or wearable assis-
tants [53, 56], enabling safer navigation and better user experience [32]. Re-
cent developments in deep learning techniques have boosted the research on
video understanding, reaching remarkable milestones on tasks like action recog-
nition [4, 16, 21, 24, 30, 51]. Models related to action recognition can extrapolate
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Fig. 1: We propose learning action prototypes that encode typical action representa-
tions and meaningful semantic interconnections. The model leverages these prototypes
to enhance the network encodings of observed actions and to forecast upcoming ones.

essential spatiotemporal information from videos of isolated actions and cor-
rectly classify them. However, real-world applications operate in dynamic envi-
ronments where actions are interconnected. For instance, imagine a self-driving
car observing pedestrians. Predicting their intent to cross the street requires
analyzing how observed dynamics relate to likely future events. This temporal
misalignment between observation and future target introduces a challenge for
recognition models proving them insufficient and shifting the attention towards
action anticipation [13,15,32,47,53,56]. This emerging research area focuses on
enabling vision systems to predict future activity by observing ongoing events.

In trying to deal with the implications of action anticipation, previous meth-
ods extended recognition models with sequence units like LSTMs [1, 13, 32, 53]
and causal transformers [15, 53, 56]. The success of these approaches relies on
the ability of the network to extract and maintain key visual information from
videos over time. However, these methods have limitations. They cannot ex-
plicitly model the semantic connectivity between actions beyond the immediate
video context, which is critical when dealing with co-occurring action sequences.
According to cognitive sciences, semantic interconnectivity is fundamental for
anticipating the future [11]. It helps structure our knowledge by associating ac-
tions with objects, intentions, and likely outcomes. This enables us to draw on
past experiences to form reliable predictions even in unseen situations. Inspired
by such observations, we raise the question: Is it possible to encode meaningful
semanticity between action representations in a vision model?

In pursuit of answering our question, we propose the Semantically Guided
REpresentation LeARning (S-GEAR) framework (see Fig. 1). S-GEAR tack-
les action anticipation with a novel representation learning approach oriented
by two fundamentals of actions semantic connectivity: (1) understanding the
typical patterns of individual actions, and (2) modeling relationships between
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actions based on contextual co-occurrences [6,34,50]. For (1), S-GEAR learns a
set of visual action prototypes. Each prototype encodes specific action patterns,
capturing typical movements or gestures that define and distinguish action cat-
egories, reducing reliance on the specific appearance details of individual videos.
Conversely, for (2), building semantic relationships between actions solely from
videos is challenging. First, it requires processing long action sequences to in-
clude enough context and defining co-occurrence relationships. Second, actions
are usually not represented equally in videos [7, 9], hardening the modeling of
under-represented action relationships. S-GEAR circumnavigates these issues
by exploiting language models known to extract inter-concept semantic relation-
ships [35,42] – i.e., effectively tackle (2). Specifically, S-GEAR creates language
prototypes based on action labels and transfers their inherent semantic con-
nectivity to visual prototypes without aligning them directly. To achieve this,
S-GEAR uses a new loss function that enables visual prototypes to maintain
visual cues, such as object and movement patterns, while encoding semanticity
by mimicking the geometric associations between actions from language.

S-GEAR uses an encoder-decoder transformer architecture to learn proto-
types and encode semantic relationships between actions. The encoder consists
of a standard Vision Transformer (ViT) [10, 46] for visual context, while the
decoder is a Causal Transformer (CT) [46,49] which models temporal causality.
These structures are interconnected through two novel computational blocks,
namely Temporal Context Aggregator (TCA) and Prototype Attention (PA) for,
respectively, causality enhancement and semanticity promotion. Lastly, S-GEAR
appends a classification head that produces future class probabilities based on
the decoder’s output and geometric association with the visual prototypes.

To assess S-GEAR’s performance, we conduct extensive experiments on two
egocentric video datasets, Epic-Kitchens [7,9] (both Epic-Kitchens 55 & 100 ver-
sions) and EGTEA Gaze+ [55]. Moreover, we evaluate S-GEAR on an exocentric
dataset, namely 50 Salads [44], to demonstrate its versatility in long-term dense
anticipation. We show that S-GEAR improves over the current state-of-the-art
in most scenarios. We also conduct ablation studies highlighting the usefulness
of the semantic connectivity between actions that S-GEAR incorporates.

This paper’s contributions are fourfold. (1) We present S-GEAR, a novel
prototype learning framework for action anticipation leveraging action intercon-
nectivity. (2) We introduce a novel approach to map semanticity from language
to vision without direct alignment between modalities. (3) We conduct exten-
sive experiments on two egocentric datasets and an exocentric one to highlight
S-GEAR’s versatility in different action anticipation scenarios (i.e., egocentric
vs. exocentric and short-term vs. long-term). (4) We showcase the benefits of
S-GEAR w.r.t. its counterparts that do not rely on semantic relationships.

2 Related Work

Action anticipation predicts future actions before they occur in video clips
and is well explored both in third-person (exocentric) videos [5, 20, 40, 43, 47],
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and first-person (egocentric) videos [8, 12–15, 23, 32, 37, 38, 53, 55], due to its
applicability on autonomous agents and wearable assistants [15, 27, 48]. Funari
et al. [13] introduce RU-LSTM, a model with two LSTMs and a modality at-
tention component. Osman et al. [31] integrate RU-LSTM into SlowFast. Qi
et al. [32] enhance LSTMs with Self-Regulated Learning (SRL). Dessalene et
al. [8] use hand-object contact representations for action anticipation. Xu et
al. [53] employ curriculum learning. Roy et al. [37] predict final goals for near-
future anticipation. Liu et al. [23] store long-term action prototypes for richer
short-term representations. Girdhar et al. [15] propose AVT, combining ViT and
causal transformer, paving the way for [14,51,56]. Manousaki et al. [26] proposed
VLMAH, the first vision-language approach for action anticipation, combining
textual features of long-term past textual information and visual short-term past
information by concatenating them. It relies on multi-branch LSTMs as their an-
ticipation architecture. Unlike previous works, S-GEAR considers the semantic
relationship between action representations [11] by using vision and language
prototypes to guide the model’s training process semantically.
Vision-Language alignment relies on effectively aligning concepts between vi-
sion and language in a unified representation space. Typically achieved through
contrastive training of modality encoders [18, 33, 54], these methods use vision-
language pairs for encouraging proximity between corresponding visual and text
embeddings. Zhai et al. [54] utilize contrastive learning to align text encoder rep-
resentations with a frozen pre-trained vision model. Radford et al. [33] introduce
CLIP, training separate encoders for text and images and aligning representa-
tions through contrastive loss. Ma et al. [25] extend CLIP to videos, employing
multi-grained contrastive learning. Advancements include cross-modal fusion ar-
chitectures using a cross-modality encoder for text and visual inputs [3,17]. Un-
like previous works, S-GEAR only translates the geometric association between
action prototypes from language to vision without shifting spaces.
Prototype Learning involves creating characteristic “prototypes” of labeled
data samples. Initially dominant in few-shot learning for novel class prediction
[41,45], this strategy now successfully encodes spatial and temporal patterns in
domains such as video semantic segmentation [22] and action recognition [28].

3 Method

We propose S-GEAR for action anticipation. S-GEAR discerns essential spa-
tiotemporal signals and understands the semantic relationships between actions.
It contains a neural network architecture tailored for understanding spatiotem-
poral video sequences and a learning policy that guides the network semantically
to map out the interconnections between actions.
Task Formulation. Action anticipation involves predicting an action category
for an event starting at time τs, observing a video segment Vo within the interval
[τs−(τo+τa); τs−τa] [9]. Here, τo and τa denote the observation and anticipation
periods set specifically to the dataset.



Semantically Guided Representation Learning 5

Li
ne
ar

Vi
si

on
 T

ra
ns

fo
rm

er

PA

TCA

Ca
us

al
 T

ra
ns

fo
rm

er
 (

CT
)

Visual Prototypes

Common Space

Language Prototypes

Co
si
ne
 

At
te
nt
io
n

Li
ne
ar

Re
la
ti
ve
 

Si
mi
la
ri
ti
es Relative 

Similarities

Architecture Overview Training

Class Token Feature Token Weighted Sum Detached Gradient Non-Learnable

*

*

Fig. 2: S-GEAR processes frame sequence patches and creates input token sequences
St. ViT ϕ encodes St into intermediate features It. PA γ and TCA φ process It, merging
outputs into semantically enhanced causal features Ît. Class tokens pass through the CT
decoder Ω, predicting future features zt. The features zt and the proposed prototypes
are trained for action anticipation (LCls) and semantic relation encodings (LSem). The
network is also regularized for accurate future representations (LFeat) and correct past
action classification (LPast). Finally, a distance loss (Lreg) is applied to zt.

3.1 Proposed Architecture

S-GEAR processes a sequence of video frames and produces a set of features
that can accurately describe the subsequent action. To achieve this, as shown
in Fig. 2, S-GEAR employs an architecture composed of (1) a visual encoder
for extracting feature vectors from the input frames; (2) the Temporal Context
Aggregator (TCA) module designed to incorporate detailed temporal context
from past to current observations; (3) the Prototype Attention (PA) block, which
combines visual features with learned prototypes and (4) the Causal Transformer
(CT) decoder responsible for predicting future representations.
Visual Encoder. Upon receiving a video segment Vo = {f0, ..., fT−1} of length
T , S-GEAR relies on ViT [10] as the visual encoder ϕ to obtain spatial features
from each frame. ViT splits each frame into P non-overlapping patches of equal
size, which are then flattened and transformed into a series of feature tokens
St ∈ RP×d corresponding to frame ft ∈ Vo. Here, d represents the token dimen-
sionality. Then, to preserve the spatial context, learnable positional encodings
are added to St. Additionally, the so-called “class token” CLSt, which captures
the global context of frame ft, is prepended to St. The transformer blocks then
act on St, generating visual features It = ϕ(St) with the same dimension as St.
Temporal Context Aggregator (TCA) and Prototype Attention (PA).
In this stage, It passes through two specialized units to enhance temporal causal-
ity and semantic interconnections between actions. Inspired by the left-to-right
causal transformer [46], we craft TCA φ, the first unit, to effectively transfer
comprehensive context from the past to the current frame representation. In
TCA, unlike standard causal blocks that mainly rely on the global representa-
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tions I0t (class token), we consider all feature patches. Thus, given global and
local representations I of the frames, we obtain causal intermediate features
I ∈ RT×(P+1)×d where each It ∈ I is enhanced with detailed contextual infor-
mation from past frames. Contrarily, the second unit PA, denoted as γ, operates
parallel to the TCA on I0t and the visual prototypes. Specifically, PA aggregates
information from selected visual prototypes upon feature similarity to I0t , pro-
moting semantic relation encoding between actions as inferred from the different
prototypes. We rely on the attention mechanism using I0t as queries and the vi-
sual prototypes as keys and values to produce semantically enhanced feature sets
Ĩ ∈ RT×d. We then combine Ĩ and I

0
as a weighted sum Î = λI

0
+(1−λ)Ĩ (λ is

learnable). We point the reader to Appendix A.1-2 for details on TCA and PA.
Temporal Decoder. We rely on an autoregressive Causal Transformer (CT)
decoder Ω, as presented in [15, 53, 56] to analyze Î from t = 0 to t = T − 1 and
generate a set of features that describes the likely future. Similar to the visual
encoder, we add learnable positional encodings to Î to preserve the temporal
context. Afterward, we feed the embedded features with positional encodings to
the decoder blocks, built upon the masked multi-head self-attention [15]. Thus,
Ω generates a new sequence ζ = Ω(Î) s.t. ∀t, zt ∈ ζ represents the future features
of Ît after observing all the past ones including itself. For t = T −1, zt represents
the future action happening τa seconds after the observed sequences.

3.2 Semantic Guiding Policy

We exploit vision/language prototypes and a common communication space be-
tween them to facilitate a semantic-based guiding policy for action anticipation.
Prototypes. We aim to translate semantic relationships from language-based
action concepts to the visual domain. Thus, we define two sets of prototypes. The
first, defined as the language prototypes ρℓ ∈ RK×d (where K is the number of
action classes), is extracted by encoding action labels composed of verb and noun
combination using the “Sentence Transformer” proposed in [35] as language en-
coder. These prototypes serve as the reference space for learning actions “seman-
tic connectivity” [42]. The second, defined as the visual prototypes ρυ ∈ RK×d,
ensures that S-GEAR remains in the visual domain and effectively preserves
characteristic visual patterns. Such prototypes are learnable and initialized from
typical action samples encoded from the proposed architecture trained for action
recognition. We exploit ρυ to encode visual action representations and inherit
the semanticity from ρℓ. Refer to Appendix A.3 for initialization details.
Common Communications Space. To translate action relationships from
language to vision without shifting domains, we define a common space where
vision and language representations co-exist and are compared via their rel-
ative associations w.r.t. the prototypes. In more detail, given an action vi-
sual encoding zt ∈ ζ, we compute its relative representation by comparing it
against all elements in ρυ using a similarity function: i.e., rzt = {rzt1 , . . . , rztK}
s.t. rztk = cos(zt, ρυ[k]) for each action class k ∈ {1, . . . ,K}. Similarly, we com-
pute the relative representation of a language encoding enc(y)t – i.e., the lan-
guage encoding of the action label at time t – against the prototypes in ρℓ as
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renc(y)t = {renc(y)t
1 , . . . , r

enc(y)t
K } s.t. renc(y)t

k = cos(enc(y)t, ρℓ[k]) for all action
classes k ∈ {1, . . . ,K}. Now, we ensure that each k-th entry in rzt and r

enc(y)t
k

represents the geometric association with the k-th class prototype in the lan-
guage/vision domain. Hence, we can directly compare these two representations
based on their relative position in their original vector spaces.

3.3 Training

To train the model, for each labeled action segment, we sample a clip preceding
it and ending exactly τa seconds before the start of the action. We pass the clip
through S-GEAR to obtain zt and then optimize it to learn semantically and
visually meaningful prototypes for action anticipation.
Prototype Learning. Learning prototypes aim to establish a visual latent
space where predefined semantic connections describe actions by “aligning” the
latent space topology defined by ρυ with ρℓ. To do so, we calculate the relative
positions rzt and renc(y)t , which we use to define the semantic loss in Eq. 1.

LSem =
∣∣rzt − renc(y)t

∣∣. (1)

During optimization, the prototypes in ρυ will be refined to represent relative
relationships between actions akin to those inferred from the language space.
Additionally, to guide S-GEAR push the action zt towards the prototype of the
same class k (i.e., ρυ[k]) and avoid divergences, we add a lasso regularization to
LSem as in Eq. 2.

Lreg =
∣∣∣∣zt − ρυ[k]

∣∣∣∣2
2

LSem = LSem + Lreg.
(2)

Thus, while shaping the visual latent space geometry defined by ρυ (Eq. 1), we
enforce action representations to fall close to their visual prototype (Eq. 2).
Anticipation Training. Besides prototype learning, we train S-GEAR for ac-
tion anticipation by optimizing the cross-entropy loss between the predicted class
label ŷT and the ground truth yT . ŷT is obtained from the encoded action repre-
sentation and its relative position w.r.t. the visual prototypes. More specifically,
for the action representation zT−1, we calculate rzT−1 . Since rzT−1 contains val-
ues in [−1,+1], we transform them into probabilistic weights using softmax. Now,
we aggregate all the prototype vectors into a single representation, zT−1 ∈ Rd,
according to the obtained weights (see Eq. 3).

zT−1 = softmax(rzT−1) · ρυ. (3)

To jointly learn the action representation and its exact collocation in the visual
space w.r.t. the prototypes, we perform a weighted sum as in Eq. 4:

ẑT−1 = σ(α)zT−1 + (1− σ(α))zT−1, (4)

where σ is a sigmoid function, and α is a learnable scalar. Such operations are
represented as Cosine Attention in Fig. 2. Lastly, we feed ẑT−1 through a linear
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layer and softmax its output to obtain ŷT . We calculate the cross-entropy loss
(Eq. 5) between the ground truth and the predicted action class.

LCls = −
K∑
i

yiT log(ŷiT ). (5)

Additionally, inspired by [15, 47], we leverage the causality of the decoder Ω.
Here, we use any true class label for the past frames and minimize the cross-
entropy on past label predictions (Eq. 6). Notice that the predicted label ŷt is
produced following the same reasoning described above for ŷT (see Eq. 3, 4).

LPast = −
T−2∑
t=0

K∑
i

yit+1 log(ŷ
i
t+1). (6)

To produce faithful future features, we minimize the distance between the pre-
dicted future frame features and the actual ones:

LFeat =

T−2∑
t=0

∣∣∣∣Ît+1 − zt
∣∣∣∣. (7)

The overall loss function used to train S-GEAR is a weighted sum of all the
individual losses: Ltot = λ1LSem + λ2LCls + λ3LPast + λ4LFeat.

4 Experiments

4.1 Datasets and Metrics

The EPIC-Kitchens 55 (EK55) dataset [7] is a medium-scale first-person
cooking dataset comprising 432 videos from 32 different individuals and ap-
proximately 40,000 segments. It encompasses 92 verbs and 272 object classes,
resulting in 2,747 action classes. Additionally, we use the train and validation
splits provided in [13]. Our model’s performance on EK55 is evaluated using
Top-1/5 Accuracy at τa = 1s, following prior works [13,15,32,53].
The EPIC-Kitchens 100 (EK100) dataset [9] is a substantial extension of
EK55, encompassing 700 videos from 37 individuals in 45 diverse kitchens. It
comprises ∼90,000 activity segments spanning 495 training, 138 validation, and
67 test videos. EK100 offers a richer representation of cooking activities through
its broader range of verbs (97), objects/nouns (300), and action classes (4,053).
To assess model performance on EK100, we employ the class aware mean Top-5
Recall [9, 15,53] metric at τa = 1s.
The EGTEA Gaze+ dataset (EG) [55] includes 28 hours of first-person cook-
ing videos from 32 subjects across 86 sessions, covering 7 tasks. The dataset
contains 10,325 activity instances, categorized into 19 verbs, 51 objects, and 106
activity classes. To evaluate our model, we employed Top-1 Accuracy on split 1
for τa = 0.5s [2, 15, 56] and Top-5 Accuracy averaged across all three splits to
evaluate overall performance for τa = 1s [13,23,32].
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The 50 Salads dataset (50S) [44] comprises 50 exocentric videos featuring salad
preparation activities performed by 25 different actors and categorized into 17
activity classes. We assess our model using mean Top-1 Accuracy across the
5 official splits following previous works [13, 32]. Unlike other benchmarks, the
50S offers a dense action anticipation challenge with variable observation and
anticipation times. Specifically, for a given video segment in input, τa goes from
10% to 50% of the video’s duration while τo is set to 20% or 30%.

4.2 Implementation Settings

Visual Encoder. S-GEAR employs the ViT Base (ViT-B) architecture as its
visual encoder with a patch size of 16×16. It comprises 12 transformer blocks,
feature dimension 768, and operates with 12 attention heads. We set each frame
size for input dimensions to 384×384 for the EK55/100 datasets and 224×224
for the EG and 50S datasets. Besides the default encoder, following prior works
[15, 32, 53], we show that S-GEAR can also be used with other backbones like
TSN and irCSN using pre-extracted features as in [13] and [15], respectively.
Intermediate Stage. Our intermediate processing stage, crucial for linking the
visual encoder’s output to the causal transformer decoder, consists of 2 TCA
blocks and 1 PA block. Note that when replacing ViT with other backbones,
we omit TCA blocks. This is because, without ViT’s detailed local patches, the
architecture essentially becomes a standard causal transformer.
Causal Transformer Decoder. For EK55/100 datasets, we employ a 6-layer
causal transformer decoder with 4 heads and a dimensionality of 2048 to process
the observed context and predict future events. For the EG dataset, we reduce
the number of layers to 2. Meanwhile, for the 50S dataset, an 8-layer decoder
with eight heads and the same dimensionality is used.
Observation. For EK100, we set the observation time, τo, to 15s, processing
video segments at 1fps. For EK55 and EG, we maintain the same processing rate
but reduce τo to 10s. In contrast, for the 50S, we align with [1,19,32] and adopt
observation rates of 20% and 30% for each input sequence, with 0.25fps.
Training Settings. We employ different training strategies for each dataset.
For EK100, EK55, and EG, we use an SGD optimizer with a momentum of 0.9
and weight decay of 1e-5, processing mini-batches of 3. The learning rates are
1e-4 for EK55/100 and 4.75e-4 for EG, all with cosine scheduling and warmup
of 10, 20, and 5 epochs, respectively. The total training durations are 50 epochs
for EK100, 35 for EK55, and 10 for EG. In contrast, for 50S, we opt for AdamW
optimizer with parameters β1, β2 set to 0.9, 0.999, a weight decay of 1e-4, and
a learning rate 5e-6. This setup also includes cosine scheduling and 20 warmup
epochs, with the model training for 100 epochs on mini-batches of 2. Finally, we
run our experiments on an RTX4090 and 2×V100 GPUs.

4.3 Baselines

We compare against RU-LSTM [13], SRL [32], AVT [15], DCR [53], MeMViT
[51], RAFTformer [14], HRO [23], AFFT [56], TempAgg. [39], Imagination [52]
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Table 1: Experiments on Epic-Kitchens 55/100 for τa=1s.

R
G

B
Model Encoder Initialization Top-1 Acc. Top-5 Acc.

RU-LSTM [13] TSN IN1K 13.1 30.8
SRL [32] TSN IN1K / 31.7
AVT [15] TSN IN1K 13.1 28.1
DCR [53] TSN IN1K 13.6 30.8
S-GEAR (ours) TSN IN1K 15.6 32.8

AVT [15] irCSN IG65M 14.4 31.7
DCR [53] irCSN IG65M 14.4 34.0
S-GEAR (ours) irCSN IG65M 16.2 33.1

AVT [15] ViT-B IN21K 12.5 30.1
S-GEAR (ours) ViT-B IN21K 15.8 34.5

O
bj

RU-LSTM [13] FRCNN IN1K 10.0 29.8
DCR FRCNN IN1K 11.5 30.5
S-GEAR (ours) FRCNN IN1K 12.45 30.4

F
lo

w RULSTM TSN IN1K 8.7 21.4
DCR TSN IN1K 8.9 22.7
S-GEAR (ours) TSN IN1K 10.8 25.8

(a) Unimodal results on EK55 validation set.
Models are grouped based on backbone initial-
ization and modality.

R
G

B

Model Encoder Initialization Verb Noun Action

DCR [53] TSM K400 32.6 32.7 16.1
MeMViT [51] MViTv2-16 K400 32.8 33.2 15.1
RAFTformer [14] MViTv2-16 K400 33.3 35.5 17.6

AVT [15] TSN IN1K 27.2 30.7 13.6
DCR [53] TSN IN1K 31.0 31.1 14.6
S-GEAR (ours) TSN IN1K 25.8 29.8 14.9

AVT [15] ViT-B IN21K 30.2 31.7 14.9
S-GEAR (ours) ViT-B IN21K 31.1 37.3 18.3

RAFTformer-2B [14] MViTv2-16&24 K400&700 33.8 37.9 19.1
S-GEAR-2B (ours) ViT-B×2 IN21K 32.7 37.9 19.6

O
bj

AVT [15] FRCNN IN1K 18.0 24.3 8.7
DCR FRCNN IN1K 22.2 24.2 9.7
S-GEAR (ours) FRCNN IN1K 20.8 28.6 11.4

F
lo

w AVT [15] TSN IN1K 20.9 16.9 6.6
DCR TSN IN1K 25.9 17.6 8.4
S-GEAR (ours) TSN IN1K 21.5 18.2 7.9

(b) Unimodal results on EK100 validation set.
Models are grouped based on modality and back-
bone initialization except RaftFromer-2B and S-
GEAR-2B, which use multiple backbones.

Model Modalities Top-1 Acc. Top-5 Acc.

RU-LSTM RGB+Obj+Flow 15.3 35.3
TempAgg. RGB+Obj+Flow 15.1 35.6
Imagination RGB+Obj+Flow 15.2 35.4
SRL RGB+Obj+Flow / 35.5
AVT+ [15] RGB+Obj 16.6 37.6
HRO RGB+Obj+Flow / 37.4
DCR RGB+Obj+Flow 19.2 41.2
S-GEAR (ours) RGB+Obj+Flow 22.7 43.2

(c) Multimodal results on EK55 valida-
tion set.

Model Modalities Validation Test

Verb Noun Action Verb Noun Action

RU-LSTM RGB+Obj+Flow 27.8 30.8 14.0 25.3 26.7 11.2
TempAgg. RGB+Obj+Flow+HOI+Audio 23.2 31.4 14.7 21.8 30.8 12.6
AVT+ RGB+Obj 28.2 32.0 15.9 25.6 28.8 12.6
AVT++ RGB+Obj+Flow / / / 26.7 32.2 16.7
DCR RGB+Obj+Flow / / 18.3 / / 17.3
AFFT RGB+Obj+Flow+HOI+Audio 22.8 34.6 18.5 20.7 31.8 14.9
S-GEAR (ours) RGB+Obj 29.5 37.8 18.9 25.9 32.0 14.7
S-GEAR-2B (ours) RGB+Obj 30.5 38.4 19.6 25.5 31.7 15.3
S-GEAR-4B (ours) RGB+Obj 30.2 37.0 19.9 26.6 32.6 15.5

(d) Multimodal results on EK100 validation and
test sets. HOI refers to Hand-Object-Interaction.
Deemphasized works are ensembles of multiple
models.

and more to ensure a fair comparison. Bold and underlined values in the tables
illustrate the best and second-best results, respectively.

4.4 Unimodal Comparison

Table 1 (a), (b) provides unimodal results on EK55 and EK100 datasets, ensuring
a fair comparison of S-GEAR against baselines. In EK55 (Table 1 (a)), in RGB,
S-GEAR demonstrates a point improvement of 1.1 on Top-5 Acc. (vs. the second-
best SRL) and 2.0 on Top-1 Acc. (vs. the second-best DCR) for the TSN features.
Regarding the irCSN features, S-GEAR surpasses DCR by 1.8 points in Top-
1 Acc. while trailing it on Top-5 Acc. by 0.9. Using the ViT-B backbone, S-
GEAR surpasses AVT by 3.3 (Top-1) and 6.4 (Top-5). For the object modality,
we use Faster R-CNN features for a fair comparison, obtaining 0.9 Top-1 Acc.
improvement, yet falling behind on Top-5 by 0.1. Finally, S-GEAR yields 1.9
(Top-1) and 3.1 (Top-5) point gains for the flow modality over prior works.

Table 1 (b) details the results of the EK100 benchmark. S-GEAR com-
petes with MeMViT [51] and RAFTformer [14] with MViTv2-16 backbone for
RGB. S-GEAR demonstrates improvements in Top-5 Recall for actions (3.2 over
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Table 2: Experiments on the EGTEA Gaze+ and the third-person dataset 50-Salads.

Model Modalities Top-1 Acc.
(τo = 0.5s)

Top-5 Acc.
(τa = 1s)

RU-LSTM [13] RGB+Flow / 66.40
DCR [53] RGB+Flow / 67.9
SRL [32] RGB+Flow / 70.7
HRO [23] RGB+Flow+Obj / 71.5
AVT [15] RGB 43.0 /
AFFT [56] RGB+Flow 42.5 /
S-GEAR (ours) RGB 45.7 71.9

(a) EG results regarding Top-1 Acc. for τo =
0.5s and Top-5 Acc. for τa = 1.0s.

τo → 20% 30%

τa → 10% 20% 30% 50% 10% 20% 30% 50%

RU-LSTM [13] 22.2 17.8 12.7 08.3 22.3 15.5 10.8 05.2
CNN model [2] 21.2 19.0 16.0 09.9 29.1 20.1 17.5 10.9

Grammar-based [36] 24.7 22.3 19.8 12.7 29.7 19.2 15.2 13.1
Uncertainty [1] 28.9 22.4 19.9 12.8 29.1 20.5 15.3 12.3

RNN [2] 30.1 25.4 18.7 13.5 30.8 17.2 14.8 09.8
Time-Cond. [19] 32.5 27.6 21.3 16.0 35.1 27.1 22.1 15.5

SRL [32] 37.9 28.8 21.3 11.1 37.5 24.1 17.1 09.1
S-GEAR (ours) [32] 41.0 28.5 21.5 15.3 41.0 27.8 21.4 16.7

(b) 50S results on dense action anticipation.
(Percentages are w.r.t. the video duration).

MeMViT, 0.7 over RAFTformer) and nouns (4.1 over MeMViT, 1.8 over RAFT-
former). While trailing slightly on verbs, unlike its competitors (Kinetics-400),
S-GEAR performs well without spatiotemporal initialization. Additionally, we
formed S-GEAR-2B by late-fusing two S-GEAR versions with ViT-B backbones
(input 224 × 224 and 384 × 384). Despite being a late fusion (compared to
RAFTformer-2B’s joint architecture), S-GEAR-2B achieves a 0.5 improvement
in action — all without spatiotemporal initialization. Furthermore, S-GEAR
demonstrates strong performance compared to AVT and DCR across modali-
ties, achieving overall gains of 3.4 and 2.2 for action Top-5 Recall in RGB. Con-
trarily, S-GEAR shows gains of 1.7 and 4.4 (actions, nouns) on object modality
and slightly trails DCR on verbs. Finally, S-GEAR remains competitive even in
the flow modality. This comparison verifies S-GEAR’s contribution to training
effective anticipation models aware of action semantic interconnections.

4.5 Comparison with the SOTA

Epic-Kitchens. Previous approaches often utilize cross-modality ensembling
[9, 56] or joint training [13, 56] for multimodal evaluation on these benchmarks.
Ensembling S-GEAR across modalities, we observe significant gains. On EK55
(Table 1 (c)), late-fusing our models (RGB+Obj+Flow) yields a boost of 3.5
(Top-1 Acc.) and 2.0 (Top-5 Acc.) over prior work. Similarly, on EK100 (Table 1
(d)), late-fusing RGB modalities with object features leads to 1.4 improvement
in action Top-5 Recall. Finally, though we report EK100 test set results (Table 1
(d)) and obtain competitive performances, it is crucial to note that leaderboard
rankings often rely on large-scale external data or fusion across diverse models
(i.e., the de-emphasized models on Table 1 (d)). This makes the test set less
effective for comparing the core strengths of models [53]. We point the reader to
Appendix B.2 for details on our specific ensembling weights.
EGTEA Gaze+. We evaluate S-GEAR on two task on EG (Table 2 (a)). The
first includes Top-1 Acc. on split-1 for τa = 0.5 where we achieve 2.5 point
improvement compared to previous work. The second includes the average Top-
5 Acc. across the three splits at τa = 1s where we surprisingly improve on HRO
with 0.4 points despite using only the RGB modality with our ViT-B backbone.
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Table 3: Ablation study (Top-5 Recall) on
EK100 validation set.

Settings TCA Sem PA Verb Noun Action

(1) Baseline - - - 30.5 32.6 15.2
(2) Sem - ✓ - 30.7 35.7 17.8
(3) TCA ✓ - - 31.0 33.9 16.7
(4) PA + Sem - ✓ ✓ 32.0 36.2 18.0

(5) TCA + PA (ρℓ) ✓ - ✓ 30.6 33.3 17.4

S-GEAR ✓ ✓ ✓ 31.1 37.3 18.3

Abblation on Lang. Encoders

T
o
p
-
5
 
R
e
c
a
l
l

Verb Noun Action

Fig. 3: Ablation on
language encoders.

Top-5 Recall vs Prototype Ratio

To
p-
5 
Re
ca
ll

Prototype Ratio (%)

Fig. 4: Performance
according to used
prototype ratio.

50 Salads. Our dense anticipation experiments on the 50S (Table 2 (b)) show S-
GEAR’s potential for long-term and exocentric tasks. It outperforms competitors
in 5/8 scenarios, with Top-1 Accuracy gains of up to 3.5, despite not being
tailored for long-term anticipation like Time-Cond. [19].

4.6 Ablation Study

We analyze the importance of S-GEAR’s components to justify our design choices.
Specifically, we investigate (a) the impact of architectural and training elements,
(b) the significance of encoding semantic action relationships, (c) the number of
prototypes for defining relative action positions, and (d) S-GEAR’s performance
for different anticipation time τa.
(a) We use EK100 (RGB) to evaluate the impact of architectural components

and our prototype learning strategy (see Table 3). We use a baseline (1) compris-
ing a ViT-B encoder, a casual decoder, and a linear classification head similar to
AVT [15]. On top of this baseline, we switch on/off each component that com-
prises S-GEAR: i.e., (2) the prototype learning with semantic guidance, including
the cosine attention block on the classification head, (3) the TCA block, and (4)
the PA block. Note that the PA block needs prototypes; thus, in the table, we
toggle the semantic column as well. While all strategies improve over (1), (2)
has the most impact, adding up to 2.6 points on Top-5 Recall for action classes.
Such improvements are caused by the ability of the prototype learning strategy
to cluster actions that co-occur frequently. The network then uses this proximity
to encode action representations aware of their exact collocation through the co-
sine attention block, taking hints that the next probable action can be found in
its proximity in the latent space. Note that the effectiveness of LSem is strictly
related to the regularization term Lreg since without it the network representa-
tions will converge on a different space compared to visual prototypes. Finally,
to motivate our choice of learning visual prototypes ρυ rather than directly using
language prototypes ρℓ, we rely on (5), which includes all the architecture com-
ponents except the prototype learning strategy. Instead, action representations
are directly aligned with fixed ρℓ. This resulted in decreased performance com-
pared to S-GEAR. While ρℓ captures semantic structure, we believe it lacks the
scene information crucial for accurate anticipation, such as motion and visual



Semantically Guided Representation Learning 13

EG Top-5 Acc. for variable 

To
p-
5 
Ac
c.

(s)

EK55 Top-5 Acc. for variable 

To
p-
5 
Ac
c.

(s)

Fig. 5: EK55 (top)
and EG (bottom)
Top-5 Acc. for
variable τa.

Observation S-GEARTarget

Take Tomato Read Receipt Put Tomato Take Knife Cut Tomato

Crack Egg Take Milk Pour Milk Take Utensil(spoon) Mix Egg

Take Pan Pour Oil Move Around (Pan) Put Pan (on Stove) Operate Stove

Open Oil 
(Container)

Take Seasoning Put Seasoning Pour Oil Close Oil

Put Tomato
Cut Tomato
Take Tomato
Put Tomato
Cut Onion

Cut Tomato
Put Tomato
Take Tomato

Put Eating Utensil
Read Receipt

Semantic

Mix Egg
Mix Mixture

Move Around Pan
Take Oil

Operate Stove

Open Dishwasher
Mix Egg

Open Fridge
Take Pasta

Move Around Bacon

Pour Oil
Operate Stove
Close Oil 
Open Oil

Put Cooking Utensil

Operate Stove
Open Dishwasher

Take Cooking Utensil
Put Cooking Utensil

Wash Pan

Pour Condiment
Take Condiment

Close Condiment
Put Condiment

Put Oil

Close Oil
Pour Seasoning

Open Oil
Take Oil
Put Oil

Fig. 6: Qualitative example of observed actions (Observa-
tion), the target activity (Target), S-GEAR’s Top-5 predic-
tions, and the Top-5 semantically similar actions with the
observed sequence based on language encoding (Semantic).

context. S-GEAR overcomes this limitation by learning its visual prototypes,
allowing them to adapt to the specific visual cues relevant to the task.

(b) S-GEAR builds on the principle that semantically similar actions of-
ten co-occur, making semantic relationship encoding crucial. To ablate on the
importance of such relationships, we leverage two Sentence Transformer vari-
ations from HuggingFace: “bert-large-nli-max-token” (BERT) and “stsb-mpnet-
base-v2” (STSB). These models share a similar architecture but differ in training
data size, with STSB being better at semantic relation extraction. Fig. 3 shows
that S-GEAR performs better with STSB-generated prototypes, highlighting
that modeling accurate semantic interconnections gives better results.

(c) While prototypes are valuable, they introduce a computational cost due
to their large matrix size (e.g., in EK100 with 4053 actions). In this regard, we
investigate the possibility of approximating an action’s relative position by com-
paring it to only a subset of prototypes. Experiments on EK100, using varying
portions of visual prototypes (see Fig. 4) show that we can achieve good results
using only a fraction (i.e., 17.8 Top-5 Recall at 10% vs. 18.3 at 100%) of the
prototypes while significantly reducing the number of computations.

(d) Finally, we evaluate the performance of S-GEAR for variable τa. We
expect the performance to drop as τa increases. Hence, we experiment on EK55
and EG training S-GEAR with τa = 0.25 and test its autoregressive capabilities
by increasing τa up to 2s at inference time. We report the results in Fig. 5.
While the performance drop is highlighted as τa → ∞, we notice that S-GEAR
performs better than previous works on EK55. On the other hand, on EG, S-
GEAR remains highly competitive, slightly trailing HRO and SRL with τa > 1s.

4.7 Qualitative Results

Fig. 6 demonstrates S-GEAR’s ability to anticipate future actions on the EG
dataset, using τa = 1s and τo = 32s. Alongside S-GEAR’s Top-5 predictions, we
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Fig. 7: Illustration (via UMAP [29]) of the absolute and relative position of visual
action prototypes w/a semantic alignment (left), after semantic alignment (middle),
and language prototypes (right) for EG.

include the Top-5 semantically similar language prototypes given the observed
action sequence. These examples reveal the connection between anticipation and
semantics, suggesting that the two are aligned. On the other hand, the last row
example also highlights divergences emphasizing S-GEAR’s room for semantic
improvement. To further investigate the semantic alignment between S-GEAR
and language prototypes, in Fig. 7, we illustrate the geometric association learned
by S-GEAR prototypes (middle) on EG, comparing it with its initial values (left)
and the language prototypes (right) both in terms of absolute and relative posi-
tions. The latter is determined using cosine similarity to compare each prototype
against all others. S-GEAR’s prototypes demonstrate a latent space topology
closer to the language prototypes than its counterpart w/o semantic alignment
in terms of absolute and relative position. Such phenomenon indicates that S-
GEAR can reason upon the semantic connectivity between actions, projecting
contextually similar ones closer in latent space. However, S-GEAR’s topology is
slightly different since visual cues influence inter-prototype distances. We point
the reader to Appendix B for more experimental details.

5 Conclusion

We presented S-GEAR, a novel framework for action anticipation that leverages
semantic interconnectivity between actions. S-GEAR learns visual and language
prototypes that encode typical action patterns and their relationships based on
contextual co-occurrences. S-GEAR transfers the geometric associations between
actions from language to vision without direct alignment, creating a common
communication space. S-GEAR employs a transformer-based architecture incor-
porating temporal context aggregation and prototype attention to enhance the
action representations and predict future events. We evaluate S-GEAR on four
action anticipation benchmarks, showing improved results compared to previous
works. We also demonstrate that we can effectively encode semantic relationships
between actions, opening new research frontiers in anticipation tasks. While S-
GEAR shows promising results, its limitations include the lack of an in-built
multimodal mechanism and semantic interconnections that explicitly account
for occurrence order. Accounting for co-occurrence orders can reduce future pre-
diction uncertainty, narrowing the scope of future action to those likely to follow
the observed sequence. We will address these limitations in future work.
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