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Abstract. Test-time adaptation (TTA) has emerged as a promising ap-
proach to dealing with latent distribution shifts between training and
testing data. However, most of existing TTA methods often struggle
with small input batches, as they heavily rely on batch statistics that
become less reliable as batch size decreases. In this paper, we introduce
memory-based batch normalization (MemBN) to enhance the robustness
of TTA across a wide range of batch sizes. MemBN leverages statistics
memory queues within each batch normalization layer, accumulating the
latest test batch statistics. Through dedicated memory management and
aggregation algorithms, it enables to estimate reliable statistics that well
represent the data distribution of the test domain in hand, leading to im-
proved performance and robust test-time adaptation. Extensive exper-
iments under a large variety of TTA scenarios demonstrate MemBN’s
superiority in terms of both accuracy and robustness.

Keywords: Test-time adaptation · Batch normalization

1 Introduction

Although deep neural networks (DNNs) have driven remarkable advances in a
variety of vision tasks, they still suffer from severe performance degradation when
there exists a distribution shift between training and test domains [6,9,19,34,35,
37]. In practice, such a distribution shift frequently occurs due to environment
(e.g ., weather, time, or geolocation) changes in the real world. Moreover, it is
impractical to forecast which domains a model will face in testing or to collect
labeled training data for every possible test domain in advance.

In this context, test-time adaptation (TTA), the task of adapting a pre-
trained model to latent test domains using unlabeled input data during testing
on the fly, has been extensively studied [2,13,26,37,38,47,49]. Regarding that the
motivation behind TTA was the need for domain adaptation in more realistic set-
tings, one may expect that ideally TTA has to work in typical test environments
where we need to process a stream of test data given a limited computational
resource. Despite recent remarkable advances in TTA, however, most of the prior
arts have been evaluated in settings that largely differ from real-world scenar-
ios [3,7,15,37,38]. Indeed, a standard benchmark considers TTA processing test
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Fig. 1: The core concept of MemBN. MemBN layer retains in-batch statistics of
test data and aggregates those stored in memory to derive more reliable statistics. As
more statistics are progressively stored, the average memory statistics well approximate
the feature distribution of the test data, similar to those derived from large input
batches in batch normalization (as illustrated on the right).

data batch-by-batch given a large batch size (e.g ., 200), which is often infeasible
due to the limited memory of edge devices and real-time constraints.

Unfortunately, most of existing TTA methods exhibit significant performance
drops when handling small input batches [20,25,37,46]. This issue arises mainly
because they rely on normalization statistics estimated from the test batch in
hand, i.e., in-batch statistics, for batch normalization (BN) [12] to alleviate the
distribution shift issue. When the size of input batch is small, such in-batch
statistics fail to represent the distribution of test data and vary significantly for
different batches, leading to performance degradation and unreliable test-time
training. Recent studies have addressed this challenge by virtually increasing
the size of input batches through data augmentation [25,46] or by interpolation
between normalization statistics of the entire training data and the in-batch
statistics [20]. However, the former methods impose additional computation,
and the latter still suffers from in-batch statistics of small test batches.

In this paper, we propose a Memory-based Batch Normalization, dubbed
MemBN, to enhance the robustness of TTA across a wide range of batch sizes.
The key idea is to introduce and manage statistics memory queues in each BN
layer for accumulating statistics of the latest test batches, as illustrated in Fig. 1.
Without any increase in input batch size during the feedforward pass, our method
effectively simulates statistics of large batches by aggregating the statistics pre-
viously stored in the memory. In addition, we introduce a simple yet effective
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memory reset strategy, allowing a model to respond flexibly to new domains in
continually changing environments. In short, the combination of the memory
queues and the memory reset strategy enables our method to calculate reliable
statistics that well represent the data distribution of the current domain.

We further improve the robustness of our method by employing a linear
combination of the source statistics and the average memory statistics as the
normalization statistics. At the core of this technique lies a layer-wise adaptive
weighting policy, which assigns a larger weight to the source statistics if the
current in-batch statistics are closer to them in certain layers. This improves
robustness by actively exploiting the source statistics, which are reliable as ac-
cumulated from large-scale training data, when the current test domain is little
deviated from the source domain.

Our method with MemBN was evaluated under a large variety of TTA sce-
narios, specifically, on three datasets for classification [9] and four datasets for
semantic segmentation [24,29,30,42], in single domain [9], continual domain [38],
and temporally correlated [7] TTA settings, and with a wide range of test batch
sizes. Extensive experiments on these benchmarks demonstrate the superiority
of MemBN. The contribution of this paper is three-fold:

• We propose a novel memory-based normalization method to TTA, which
derives reliable statistics by leveraging the statistics memory that retains
the latest batches from test domain.

• We present an adaptive weighting scheme interpolating source statistics and
average memory statistics to adapt to test domain according to domain shift.

• Our approach surpasses existing TTA methods across diverse benchmarks
and batch sizes, significantly outperforming them at small batch sizes.

2 Related work

Test-Time Adaptation (TTA). Early TTA methods focused on utilizing self-
supervised learning using pretext tasks for unlabeled test data [21,35]. However,
these methods require modifying the training process or model architecture to
incorporate auxiliary self-supervised learning tasks. On the other hand, spurred
by Tent [37], fully test-time adaptation has been explored for adapting pretrained
networks to the test domain in real-time without altering the training phase [2,
3, 13–16, 38, 50]. AdaContrat [3] and CoTTA [38] adopt momentum encoders,
while Jang et al . [14] utilized nearest neighbor information for refining pseudo
labels of test data. Recently, other studies have suggested to utilize additional
lightweight information to prevent trained models from degenerating during the
adaptation process. Niu et al . [26] calculated Fisher information [17] to constrain
important model parameters and Kang et al . [15] leveraged class similarity and
condensed data of training data. Also, TTAC [33] focused on clustering source
domain data and aligning the feature distribution of test data with that of the
source domain. Unlike these methods that require preprocessing steps to obtain
additional information, our method allows fully test-time adaptation since it
solely relies on statistics storage of the test domain without any preprocessing.



4 J. Kang et al.

More practical scenarios for TTA. Although TTA has been proposed to
tackle domain shifts in more realistic scenarios, experimental settings of early
approaches in TTA are often insufficient to reflect real-world scenarios. One such
issue is that conventional TTA methods [3, 26, 32, 37, 38] have been evaluated
with large input batches and exhibit significant performance drops with small
batch sizes, which are more prevalent in practical scenarios. This issue has been
addressed recently by encouraging transformation invariance with augmented
inputs [25, 46] and by a robust normalization method [20, 45] However, these
methods either impose a computational burden with augmented inputs or still
depend on unreliable in-batch statistics of small test batches. Our method is free
from this limitation in that it allows the model to efficiently derive more reliable
statistics through the use of multiple statistics stored in memory. Meanwhile,
as real-world data often exhibit high temporal correlations, recent studies [7,
43] have proposed robust TTA methods tailored for such temporally correlated
test streams. Our method is also evaluated in this context, demonstrating the
robustness across various scenarios and a wide range of batch sizes.

Normalization in TTA. Many TTA methods [3,15,26,37,38] rely on normal-
ization using test batch statistics in the BN layer during test time, as introduced
by Nado et al . [23]. However, this normalization scheme degrades performance
in realistic scenarios, such as small batch inputs or temporally correlated test
streams. One popular way of alleviating this issue involves interpolating source
and test batch statistics with methods such as manual balancing coefficient tun-
ing [7,16,31,41], adjustments based on domain shift sensitivity [20], or dynamic
adaption according to the distances of statistics during test time [45]. On the
other hand, Zhao et al . [48] introduced a method to store and re-normalize test
batch statistics using Exponential Moving Average (EMA) for class-imbalanced
data streams. Our method ensures that multiple statistics calculated from the
current domain are stored in memory to compute more reliable statistics for
that specific domain. Additionally, it effectively interpolates between source and
average memory statistics, harnessing the advantages from both of them.

3 Preliminary: Batch Norm in TTA

We first review the process of batch normalization (BN). Let X ∈ RB×C×H×W

be the input feature map of size (batch size B)×(channel C)×(height H)×(width
W ). For simplicity, we omit the index of the BN layer. The in-batch statistics,
channel-wise mean and variance µin,σ

2
in ∈ RC , of X are computed as:

µin,c =
1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

Xb,c,h,w, (1)

σ2
in,c =

1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

(Xb,c,h,w − µin,c)
2
, (2)



MemBN 5

Conv. Block

MemBN

MemBN

Conv. Block
⋯

Classifier

⋯

Prediction

time

memory

⋯
⋯

memory

⋯
⋯

memory

⋯
⋯

memory

⋯
⋯

memory
⋯

⋯

Avg. 
memory 

stats.

In-batch stats.

Source 
stats. Ƹ𝑠

α1 − α

Computed by Eq. (8), (9)
Computed by Eq. (7)α

𝑑∗
′ Euclidean distance

After normalization
Before normalization
Test sampleStatistics memory

memory

⋯
⋯

Reset Statistics memory

(d) Detecting new domain(b) Adaptive weighting (c) Normalization(a) Average memory statistics

Fig. 2: Overview of MemBN. (a) Updating the memory queues with in-batch statis-
tics of current inputs (triangles) and calculating average memory statistics (red star).
This update occurs sequentially as each new input batch is processed. (b) Calculating
layer-wise adaptive weight α and deriving normalization statistics (yellow star) by mix-
ing average memory statistics and source statistics. (c) Normalizing the input features
using the derived normalization statistics. (d) Resetting the memory queues when de-
tecting a shift to a new domain, to prevent the outdated statistics from affecting the
normalization process within the new domain.

where c is the channel index. In the traditional BN [12], the source statistics,
µsrc and σ2

src, are estimated by exponential moving average of µin and σ2
in over

training (or source) data, respectively. These statistics are then used to normalize
the input feature X in BN during testing:

X̃ = a ◦ X− µsrc√
σ2

src + ϵ
+ b, (3)

where a and b denote the affine parameters of BN, and the basic operations of
vectors are element-wise throughout this paper.

In the context of test-time adaptation, the in-batch statistics, µin of Eq. (1)
and σ2

in of Eq. (2), that are directly computed from current test batch are in
general utilized instead of the source statistics, µsrc and σ2

src, to mitigate the
distribution gap between the source and target domain in the feature map [3,15,
23,26,37,38]. However, as observed in prior research [7,25,31,45,46,48], the use
of in-batch statistics that are entirely influenced by the current samples often
leads to performance degradation, particularly when input batches are too small
to estimate reliable statistics. This issue significantly undermines the robustness
of TTA [20,31,37].

4 Method

To improve the robustness of TTA to small input batches, we propose aggre-
gating normalization statistics in multiple test batches. This method aims to
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derive reliable statistics, similar to those obtained from large input batches, by
accumulating statistics of recently observed test samples. In realizing this idea,
our method, MemBN, introduces dedicated memory for storing feature statistics
computed from individual batches in each BN layer, along with a memory reset
scheme. These statistics stored in the memory are then aggregated in order to
effectively alleviate the issues of small batches by simulating large batches. Fur-
thermore, we introduce an online adaptive weighting method to adjust weights
between the aggregated statistics and source statistics according to the degree
of domain shift.

An overview of MemBN is illustrated in Fig. 2. The remainder of this section
describes how to maintain the statistics in memory and calculate average memory
statistics (Sec. 4.1), our domain-shift aware weighting scheme (Sec. 4.2), and the
overall process of MemBN (Sec. 4.3).

4.1 Statistics Memory Management

To obtain reliable normalization statistics by aggregating in-batch statistics (µin
of Eq. (1) and σ2

in of Eq. (2)) of multiple test batches, we deploy memory queues
of identical length that retain a few latest in-batch statistics for each BN. To be
specific, during the testing phase, the in-batch statistics, µin and σin, are stored
in separate memory queues, Mµ and Mσ, respectively, in the first-in first-out
manner. Average memory statistics, µmem and σmem, are then computed by

µmem,c =
1

|Mµ|
∑

µ∈Mµ

µc, (4)

σ2
mem,c =

1

|Mσ|
∑

σ∈Mσ

σ2
c +

1

|Mµ|
∑

µ∈Mµ

µ2
c −

1

|Mµ|2

 ∑
µ∈Mµ

µc

2

. (5)

These equations are derived in the supplement. By leveraging multiple statistics
in the memory queues, µmem and σmem better approximate the feature distri-
bution of test data than the in-batch statistics. In other words, this aggregation
method mitigates the risk of computing inadequate statistics, thereby particu-
larly useful for dealing with small batches and enhancing the robustness of TTA
across a wide range of batch sizes. These average memory statistics are sub-
sequently used for feature map normalization, in conjunction with an adaptive
weighting scheme detailed in Sec. 4.2.

This aggregation method works properly per se when the test domain remains
static. However, it may encounter challenges when the domain changes during
testing, e.g ., in continually changing environments [38]. This issue arises because
statistics stored in a part of the memory may have been computed from previous
domains and thus may be irrelevant to the current domain.

To address this issue, we propose to detect such situations by comparing cur-
rent in-batch statistics with those previously stored in memory, i.e., in-memory
statistics. For s ∈ {µ,σ}, let dsi be the Euclidean distance from average memory
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statistics smem to the i-th in-memory statistics si, and dsin the distance from
smem to the current in-batch statistics sin, where ds∗ = ∥s∗ − smem∥2. Utilizing
these distances, if the following inequality holds, we consider that a shift to a
new domain has occurred:

(
dsin − d̄s

)( 1

|Ms|

|Ms|∑
i=1

(
dsi − d̄s

)2)− 1
2

> k (6)

where d̄s = 1
|Ms|

∑|Ms|
i=1 dsi and k is a hyperparameter. The first term quantifies

the difference between the distance of the in-batch statistics and the average
distance of in-memory elements from the average memory statistics, while the
second term measures the standard deviation of the in-memory elements’ dis-
tances. This use of the standard score allows to use a single hyper-parameter
k to detect domain shifts across all layers. When dsin significantly exceeds the
variation among the previously observed distances dsi , the current data are likely
drawn from a new domain and thus a shift towards a new domain may happen
at that time. Once such a discrepancy is identified, all memories of all BN lay-
ers are reset so that outdated statistics from previous domains do not adversely
affect the current one. This method is empirically validated in Sec. 5.5.

4.2 Adaptive Weighting

Beyond merely utilizing the average memory statistics, we introduce an adaptive
weighting scheme to combine them with the source statistics. Prior TTA methods
underscore the effectiveness of merging in-batch statistics with source statistics,
enabling not only adaptation to test domains but also leveraging well-established
source knowledge [20,31,41,45]. Also, as suggested in previous work [18], it has
been observed that different layers of a model exhibit different sensitivities to the
type of domain shifts. Motivated by these observations, we propose to dynam-
ically adjust the mixing ratio between source and average memory statistics to
derive normalization statistics. Considering that the average memory statistics
are aggregated to approximate the overall feature distribution of the test data,
we regard them as representative information depicting the characteristics of the
current test domain. We then assess the degree of domain shift by the distances
from the in-batch statistics to source statistics and average memory statistics.

In detail, our method measures the degree of domain shift by the Euclidean
distances from in-batch statistics to the average memory and source statistics,
d′mem and d′src, respectively, by d′∗ = ∥µin − µ∗∥2 + ∥σ2

in − σ2
∗∥2. The adaptive

weighting factor α is then derived from these distances per BN as follows:

α =

(
1− d′src

d′mem + d′src

)γ

, (7)
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where γ is a hyperparameter for the gamma correction [28]. Then, the source
and average memory statistics are combined by the following equations:

µ̂ = αµsrc + (1−α)µmem, (8)

σ̂2 = ασ2
src + (1−α)σ2

mem + α(1−α)(µsrc − µmem)2. (9)

A smaller distance to source statistics (d′src) increases α, giving more weight to
source statistics, while a smaller distance to average memory statistics (d′mem) de-
creases α, thereby reducing the reliance on source statistics. It is noteworthy that
our method assigns weights layer-by-layer, based on the degree of domain shift,
without requiring additional training before testing unlike previous work [20].

4.3 Normalization in MemBN

By computing the average memory statistics and applying the adaptive weight-
ing, we calculate the normalization statistics µ̂ and σ̂ as in Eq. (8) and (9),
and substitute them for µsrc and σsrc in Eq. (3). However, as suggested in prior
studies [11,48], when a feature map is normalized using constant statistics rather
than those derived from the feature map itself, the gradient no longer propagates
through the normalization factors. This leads to gradient descent optimization
no longer taking normalization into account, which can potentially result in un-
bounded growth in model parameters.

To address this problem, we incorporate the batch renormalization tech-
nique [48] and proceed with the overall normalization process as follows:

ReNorm(X; µ̂, σ̂) =
X− µin

σin
◦ sg(σin)

σ̂
+

sg(µin)− µ̂

σ̂
, (10)

MemBN(X; µ̂, σ̂,a,b) = a ◦ ReNorm(X; µ̂, σ̂) + b, (11)

where sg(·) denotes the stop gradient operation. This technique contributes to
more stable optimization and diminishes the sensitivity to the learning rate. The
overall process of MemBN is described in the supplement.

5 Experiments

5.1 Experimental setting

Evaluation benchmarks. MemBN was first evaluated on three common image
corruption benchmarks [9]: CIFAR10-C, CIFAR100-C, and ImageNet-C. These
datasets consist of 15 corruption types, and each type has five severity levels with
level 5 as the most severe condition. Our method was also validated on semantic
segmentation benchmarks for domain generalization, including Cityscapes [5],
BDD-100K [42], Mapillary [24], GTA5 [29] and SYNTHIA [30].
Baselines. We compared our method with normalization-based and optimization-
based methods. MemBN was first evaluated alongside the following normalization-
based methods: (1) TBN [23] using in-batch statistics of test data for normaliza-
tion. (2) AdaptiveBN [31], (3) α-BN [41], and (4) MixNorm [10] that all blend
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source and test (in-batch) statistics using predefined coefficients. (5) group nor-
malization (GN) [40] that divides the channels into groups and normalizing each
group independently. (6) TTN [20] that interpolates source statistics and test
batch statistics according to the domain-shift sensitivity of each BN layer. As for
optimization-based methods, MemBN was incorporated and compared with the
following techniques: (7) TENT [37] that updates BN affine parameters via en-
tropy minimization. (8) CoTTA [38] estimating accurate pseudo labels by lever-
aging momentum encoders and multiple augmented inputs. (9) TeSLA [36] that
utilized a flipped cross entropy loss and knowledge distillation with adversarial
augmentations. (10) EATA [26] incorporating a data selection strategy for reli-
able samples and a Fisher regularizer to prevent forgetting issue. (11) NOTE [7]
that combines source and test instance statistics with prediction-balanced mem-
ory bank to simulate an i.i.d. data stream from a non-i.i.d. stream; we set the
size of memory bank to the test batch size for fairness in memory constraint. In
detail, TENT and CoTTA are built on TBN.
Evaluation scenarios. For the classification task, MemBN was evaluated not
only for adaptation to a single domain but also in the continual TTA setting,
where the test domain changes continually over time, and with temporally cor-
related test streams, i.e., the non-i.i.d. setting of NOTE [7]. Our evaluation was
conducted across a diverse range of test batch sizes, from 200 to 1. For the
segmentation task, following the previous work [20], a segmentation model pre-
trained on Cityscapes is adapted to the validation splits of real-world datasets,
including Cityscapes, BDD-100K, and Mapillary, as well as to synthetic datasets
such as GTA5 and SYNTHIA with test batch sizes of 2 and 1.
Implementation details. MemBN was evaluated under the conventional TTA
setting where test data is streamed online and the pretrained model is adapted
on the fly. For the hyperparameter of MemBN, we keep each statistics memory
length N at 128 and the parameter for adaptive weighting γ at 0.3 across all
settings. The memory reset parameter k is set to 6.5 for batch sizes of 200 and
64, and to 10 for all the other batch sizes. More details are in the supplement.

5.2 Experiment on image classification

Single domain TTA. In Table 1, our method is compared with previous TTA
baselines on CIFAR-C. Conventional BN (CBN) maintained consistent perfor-
mance across various test batch sizes as it does not perform adaptation during
test time, but its performance does not excel. TBN outperformed CBN at larger
batch sizes but experienced a significant performance drop as the batch size
decreased, even performing worse than CBN. This demonstrates that the uncer-
tainty of the test batch statistics obtained from smaller batch sizes significantly
impacts the performance of TTA. Methods such as AdaptiveBN, α-BN, and
MixNorm, which mix TBN and CBN using fixed coefficient, demonstrated bet-
ter performance than CBN and TBN across most batch sizes. However, these
methods also suffered performance degradation at batch sizes 4, 2, and 1. TTN,
blending TBN and CBN based on domain sensitivity, surpassed BN-based meth-
ods at larger batch sizes but couldn’t avoid degradation at small batch sizes
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Table 1: Single domain adaptation on CIFAR10-C and CIFAR100-C. Error
rate (↓) averaged over 15 corruptions with severity level 5 using WideResNet-40-2 [44]
for each test batch size. We mark the best and second-best performance in bold and
underline, respectively.

CIFAR10-C CIFAR100-C
Method 200 64 16 4 2 1 Avg. 200 64 16 4 2 1 Avg.

Source (CBN) 18.27 18.27 18.27 18.27 18.27 18.27 18.27 46.75 46.75 46.75 46.75 46.75 46.75 46.75

N
or

m
.

TBN [23] 14.49 15.02 17.10 26.28 35.65 90.00 33.09 39.25 40.21 44.03 59.10 80.65 99.04 60.38
AdaptiveBN [31] 12.21 12.31 12.89 14.51 15.79 16.14 13.98 36.56 36.85 38.19 41.18 43.26 44.01 40.01

α-BN [41] 13.78 13.77 13.89 14.54 15.16 15.47 14.44 39.72 39.85 39.99 41.34 42.66 45.64 41.53
MixNorm [10] 13.85 14.41 14.23 14.60(B=5) - 15.09 14.44 - - - - - - -

TTN [20] 11.67 11.80 12.13 13.93 15.83 17.99 13.89 35.58 35.84 36.73 41.08 46.67 57.71 42.27
MemBN (Ours) 12.68 12.41 12.16 12.30 12.46 12.88 12.48 36.97 36.70 36.58 36.98 37.56 38.75 37.26

O
pt

im
. TENT [37] 12.08 14.78 16.90 25.61 35.69 90.00 32.51 35.52 39.90 43.78 59.02 80.68 99.02 59.65

TENT + TTN [20] 11.28 11.52 12.04 13.95 15.84 17.94 13.77 35.16 35.57 36.55 41.18 46.63 58.33 42.24
TENT + MemBN (Ours) 11.08 11.63 11.22 11.33 11.86 12.15 11.55 35.14 35.61 34.94 36.02 37.31 37.37 36.07

Table 2: Single domain adaptation on ImageNet-C. Error rate (↓) averaged over
15 corruption types with severity level 5 using ResNet-50 [8] for each test batch size.
We mark the best performance in bold. The results of using pre-trained models with
GN instead of BN are indicated by †.

Method Test batch size Avg.
Error64 16 4 2 1

Source (CBN) 93.34 93.34 93.34 93.34 93.34 93.34

N
or

m
.

TBN [23] 74.24 76.81 85.74 95.35 99.86 86.40
AdaptiveBN [31] 77.86 81.47 86.71 90.15 91.11 85.46

α-BN [41] 86.06 86.32 87.16 88.33 90.45 87.66
GN† [40] 69.38 69.38 69.38 69.38 69.38 69.38
TTN [20] 72.21 73.18 76.98 81.52 88.49 78.48

MemBN (Ours) 67.07 67.08 67.38 67.78 68.54 67.57

O
pt

im
.

TENT [37] 66.56 72.61 93.37 99.46 99.90 86.41
TENT+GN† [40] 67.31 67.41 68.34 68.96 69.44 68.29

TENT + TTN [20] 71.42 72.45 76.66 81.89 91.00 78.68
TENT + MemBN (Ours) 65.56 63.60 66.55 67.62 67.88 66.24

TeSLA [36] 56.34 62.77 78.23 92.47 99.80 77.92
TeSLA + MemBN (Ours) 55.90 58.89 65.19 66.02 67.31 62.66

EATA [26] 52.38 58.54 81.72 93.27 99.86 77.15
EATA + MemBN (Ours) 51.18 51.78 55.93 59.51 73.72 58.42

2 and 1. In contrast, MemBN consistently achieved superior performance in
terms of average accuracy across all batch sizes, both in normalization-based
and optimization-based methods, indicating the effectiveness of simulating large
batch sizes through the memory of test statistics. Particularly, it is worth noting
that while TTN requires an additional training phase (referred to as the post-
training phase) to optimize interpolation weights between CBN and TBN before
testing, our method consistently outperforms it without requiring any training
phase for a pretrained model.

Table 2 presents the results on ImageNet-C. TBN, AdaptiveBN, α-BN, and
TTN experienced performance degradation at small batch sizes (4, 2, and 1)
consistent with Table 1. MemBN achieved state-of-the-art by a considerable
margin across all batch sizes, demonstrating its scalability and effectiveness on
large-scale dataset. While GN has been known for its robustness with small
batch sizes and domain shifts [27], MemBN was consistently superior to GN.
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Table 3: Continual domain adaptation on CIFAR10-C and CIFAR100-C.
Error rate (↓) averaged over 15 corruptions with severity level 5 using WideResNet-
40-2 [44] for each batch size. We mark the best and second-best performance in bold
and underline, respectively.

CIFAR10-C CIFAR100-C
Method 200 64 16 4 2 1 Avg. 200 64 16 4 2 1 Avg.

Source (CBN) 18.27 18.27 18.27 18.27 18.27 18.27 18.27 46.75 46.75 46.75 46.75 46.75 46.75 46.75

N
or

m
. TBN [23] 14.48 15.04 17.38 26.23 35.43 90.00 33.09 39.31 40.20 44.13 59.29 80.42 99.04 60.40

TTN [20] 11.67 11.80 12.13 13.93 15.83 17.99 13.89 35.58 35.84 36.73 41.08 46.67 57.71 42.27
MemBN (Ours) 12.33 12.13 12.02 12.10 12.19 12.29 12.18 36.91 36.66 36.59 36.85 36.79 36.99 36.80

O
pt

im
. CoTTA [38] 12.46 14.60 21.26 45.69 58.87 90.00 40.48 39.75 42.20 52.94 73.69 87.66 98.99 65.87

TENT [37] 12.54 13.52 15.69 26.23 35.77 90.00 32.29 36.11 37.90 43.78 58.71 81.76 99.04 59.55
TENT + TTN [20] 11.44 11.60 12.08 16.14 18.36 22.40 15.33 43.50 37.60 38.28 44.60 54.29 80.63 49.82

TENT + MemBN (Ours) 11.38 11.30 11.47 11.55 12.14 12.11 11.66 35.13 35.75 35.46 36.32 37.03 37.56 36.36

Table 4: Temporally correlated (non-i.i.d.) domain adaptation on ImageNet-
C. Error rate (↓) averaged over 15 corruption types with severity level 5 is reported
using ResNet-18 [8] for each test batch size. We mark the best performance in bold.

Method Test batch size Avg.
Error64 16 4 2 1

Source (CBN) 86.10 86.10 86.10 86.10 86.10 86.10

N
or

m
. TBN [23] 96.50 98.40 99.00 99.30 99.90 98.62

NOTE [7] 79.77 81.72 85.37 88.40 83.41 83.74
MemBN (Ours) 74.52 76.48 78.62 80.64 83.23 78.70

O
pt

im
. TENT [37] 96.90 98.38 99.08 99.51 99.85 98.66

TENT + NOTE [7] 76.09 75.57 81.24 89.55 98.37 84.16
TENT + MemBN (Ours) 74.22 75.46 78.22 81.02 85.27 79.02

Interestingly, even with a large batch size of 64, MemBN improves performance
over previous work. This indicates that while reliable statistics computation
typically requires batch sizes larger than 64 for large-scale datasets, our method
effectively mitigates this issue and enhances overall performance across a wide
range of batch sizes. In addition, to confirm the applicability of MemBN with
optimization-based TTA methods other than TENT [37], we incorporated it to
TeSLA [36] and EATA [26]. MemBN is seamlessly integrated to these methods
and improved the performance across most batch sizes, indicating its versatility
across various optimization-based TTA methods.
Continual TTA. Results in the continual TTA setting are reported in Ta-
ble 3. CoTTA, utilizing multiple augmented inputs and an additional momentum
teacher model, suffers significant performance degradation under this setting
with small batch sizes. Also, TTN exhibited performance degradation at ex-
tremely smaller batch sizes despite being designed to perform well with smaller
batch sizes. On the contrary, MemBN consistently presents superior performance
without the need for additional inputs or models. This demonstrates the efficacy
and efficiency of its memory-based strategy.
Temporally correlated TTA. As shown in Table 4, our method is also effective
even under the temporally correlated (i.e., non-i.i.d.) test data on ImageNet-C.
The proposed method achieved state-of-the-art performance in both normalization-
based and optimization-based methods across most batch sizes. In such scenarios,
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Table 5: Adaptation on DG benchmarks in semantic segmentation. mIoU(↑)
on four unseen domains using ResNet-50 based DeepLabV3+ [4]. We mark the best
performance in bold.

Batch size Method (Cityscapes→) BDD-100K Mapillary GTA5 SYNTHIA Cityscapes

Source [4] 43.50 54.37 43.71 22.78 77.51

2
TENT [37] 43.30 47.80 43.57 25.92 72.93

TENT + TTN [20] 47.89 57.84 46.18 27.29 75.04
TENT + MemBN (Ours) 50.34 57.87 46.39 27.90 77.23

1
TENT [37] 40.78 44.00 39.52 25.33 69.92

TENT + TTN [20] - - - - -
TENT + MemBN (Ours) 50.94 57.74 46.20 27.03 77.42

as noted by [7], most methods [23,37,38] suffer from a severe performance drop,
due to the inaccurate and biased estimation of normalization statistics from
class-imbalanced data. Our approach, however, alleviates this issue by aggregat-
ing multiple statistics from previous data, enabling it to benefit from a similar
effect of more class-balanced data. The results on CIFAR10-C and CIFAR100-C
are reported in the supplement.

5.3 Experiment on semantic segmentation

Table 5 presents the quantitative results of semantic segmentation by evaluating
DeepLabV3+ [4] pretrained with the Cityscapes training set on the validation
splits of real-world datasets (BDD-100k, Mapillary, and Cityscapes) and syn-
thetic datasets (GTA5 and SYNTHIA). Our method achieved the best in mIoU
across the five datasets for both batch sizes 2 and 1. Notably, while TENT ex-
perienced a significant performance drop at batch size 1, MemBN demonstrated
superior performance for both batch sizes, showcasing its robustness.

Moreover, these results show the outstanding versatility of MemBN, in terms
of both tasks (i.e., segmentation as well as classification) and types of domain
shifts (i.e., real versus synthetic and diverse weather conditions as well as com-
mon corruption). Interestingly, while the previous best method, TTN, exhibited
a decrease in performance on Cityscapes compared to the source model, MemBN
demonstrated comparable performance. These overall results demonstrate the
adaptability of our method in diverse application scenarios.

5.4 Ablation study

Table 6 illustrates the impact of each proposed method in the continual TTA
setting on CIFAR10-C and CIFAR100-C. We first compared TBN’s performance
(row 1) with statistics memory of size 1, updated by the Exponential Moving Av-
erage (EMA) of test batch statistics (row 2). Interestingly, there are substantial
performance improvements in average performance, even by referring to previous
statistics in a simple way. After introducing a statistics memory with a capacity
of 128 and utilizing average memory statistics (row 3), we observed a perfor-
mance decline at large batch sizes but an improvement at smaller ones. This
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Table 6: Ablation study on each component of our method in continual
domain adaptation on CIFAR10-C and CIFAR100-C. Error rate (↓) averaged
over 15 corruptions with severity level 5 using WideResNet-40-2 [44] for each batch size.
We mark the best and second-best performance in bold and underline, respectively.

Method CIFAR10-C CIFAR100-C

Memory Memory Adaptive 200 64 16 4 2 1 Avg. 200 64 16 4 2 1 Avg.size reset weight

N
or

m
.

0 - - 14.48 15.04 17.38 26.23 35.43 90.00 33.09 39.31 40.20 44.13 59.29 80.42 99.04 60.40
1 (EMA update) - - 14.63 14.45 14.73 16.18 18.19 23.59 16.96 39.34 39.19 39.75 42.13 45.35 53.19 43.16

128 - - 21.05 18.14 15.31 15.71 15.11 19.08 17.40 49.54 45.90 40.79 40.49 41.57 46.79 44.18
128 O - 14.36 14.31 14.43 14.88 15.43 17.03 15.07 38.92 38.89 39.09 39.88 41.02 43.20 40.17
128 O O 12.33 12.13 12.02 12.10 12.19 12.29 12.18 36.91 36.66 36.59 36.85 36.79 36.99 36.80

O
pt

im
.

0 - - 12.54 13.52 15.69 26.23 35.77 90.00 32.29 36.11 37.90 43.78 58.71 81.76 99.04 59.55
1 (EMA update) - - 12.62 12.03 12.06 14.12 16.10 24.60 15.25 36.40 35.46 36.80 39.42 44.60 55.25 41.32

128 - - 17.43 14.35 12.47 12.92 13.29 16.79 14.54 46.21 41.11 38.44 37.41 39.60 44.33 41.18
128 O - 12.37 11.88 11.74 12.85 13.46 17.73 13.34 36.28 35.14 36.08 37.17 39.79 44.30 38.13
128 O O 11.38 11.30 11.47 11.55 12.14 12.11 11.66 35.13 35.75 35.46 36.32 37.03 37.56 36.36

(a) ! of 2nd BN (b) "! of 2nd BN (c) ! of 3rd BN (d) "! of 3rd BN

||"# − #!"#$%&'(||)
||#*+"!!&'( − #!"#$%&'(||)

||"%, − %!"#$%&'(, ||)
||%*+"!!&'(, − %!"#$%&'(, ||)

||"# − #!"#$%&'(||)
||#*+"!!&'( − #!"#$%&'(||)

||"%, − %!"#$%&'(, ||)
||%*+"!!&'(, − %!"#$%&'(, ||)

Fig. 3: Histogram of distances between in-batch statistics of a small batch size and
those of a large batch size, and between normalization statistics of MemBN and in-
batch statistics of the large batch size. These are computed using WideResNet-40-2 [44].

phenomenon is attributed to EMA prioritizing recent batch statistics, thereby
enhancing the model’s adaptability to the current domain. However, this em-
phasis on recent statistics led to unreliable statistics estimation for small inputs.
Conversely, employing specific-length memory statistics without reset introduced
some interference at large inputs but was beneficial for achieving stability at
small inputs. Then, adding the memory reset scheme (row 4) consistently im-
proved performance across most batch sizes, highlighting the effectiveness of the
proposed memory management scheme in adapting to domain changes while
obtaining stable statistics. Specifically, we achieved performance comparable to
TBN with batch sizes of 200 or 64, even with as few as 16 in this case. Finally,
our final method (row 5), which includes adaptive weighting, outperformed all
other variants, demonstrating the effectiveness of interpolating between average
memory statistics and source statistics.

5.5 In-depth analysis

Analysis on normalization statistics of MemBN. To demonstrate MemBN’s
ability to capture more reliable statistics, we measure L1 distances between in-
batch statistics of a small batch size (4) and those of a large batch size (200), as
well as between the normalization statistics of MemBN and in-batch statistics of
the large batch size. Figure 3 illustrates these distances for 4k test data streams.
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Fig. 4: (a) Domain shift indicator of Eq. (6). (b) Adaptive weight α. These values are
computed using WideResNet-40-2 on CIFAR10-C in the continual TTA setting.

It reveals that the normalization statistics of MemBN align more closely with
in-batch statistics of large batches than with those of small batches.
Detection of domain shift by Eq. (6). Recalling that the left term in Eq. (6)
quantifies how different the current batch statistics are from those in memory, it
can be interpreted as an indicator of domain shift. Figure 4 (a) shows the value
of it under the continual TTA setting. The value soars right after encountering
any domain shift. This enables prompt memory reset and adaptation.
Analysis on adaptive weight α. Figure 4 (b) illustrates how the trend of α
changes with domain shifts and how the scale of α varies across layers in the
continual TTA setting. While the weight in each layer exhibited distinct values,
there is a tendency to maintain a certain level of consistency within each domain.

6 Conclusion

We have proposed a novel memory-based normalization method, MemBN, that
significantly enhances the robustness of TTA across a wide range of batch sizes.
By storing the latest statistics from the test domain in memory and implement-
ing an effective memory reset scheme, our method is capable of deriving more
reliable statistics and simulating those of large batches without any increase in
the input size. In addition, our method performs layer-wise adaptive weighting
between average memory statistics and source statistics, further enhancing TTA
performance based on the degree of domain shift. The proposed method is a fully
test-time adaptation method that does not require any preprocessing prior to
testing, but merely stores in-batch statistics during testing, imposing a minimal
overhead, and thus can operate effectively even under real-world scenarios.
Limitation: Our method exhibits a limitation in its applicability to layer nor-
malization [1], commonly used in Vision Transformer (ViT). Despite the widespread
use of transformer backbones, there are also studies showing that CNNs with
BN are as competitive as ViTs [22,39]. Therefore, we believe that recent studies
targeting BNs [7, 20] as well as our work, remain valuable.
Acknowledgement: This work was supported by Samsung Research Funding & In-
cubation Center of Samsung Electronics (SRFC-IT1801-52), Samsung Electronics Co.,
Ltd (IO201210-07948-01), the NRF grant (NRF-2021R1A2C3012728) and the IITP
grants funded by Ministry of Science and ICT, Korea (No.RS-2021-II210739).
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