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This supplementary material presents additional experimental details and
results that are omitted from the main paper due to the space limit. Firstly, we
include more implementation details in Sec. A. Then, Sec. B shows the algo-
rithm of FREST and Sec. C presents a thorough analysis of FREST, covering
aspects such as the analysis on FREST via t-SNE and the impact of the adverse
condition discriminating loss. Finally, we offer an additional ablation study in
Sec. D, containing combinations of losses, patch confidence threshold, and ex-
tended quantitative and qualitative results in Sec. E and Sec. J.

A Implementation Details

In this section, we present the implementation settings that are omitted from
the main paper. All experiments were conducted using a single A6000 GPU. We
train both the segmentation network and the condition strainer for 8 epochs
while training only the condition strainer for 2 epochs to train a stable condi-
tion strainer. Each mini-batch consists of one image for each adverse and normal
image. During training, images are cropped to 1080×1080 and flipped horizon-
tally at random. Additionally, we utilize the exponential moving average (EMA)
model for implementing a model with a stopping gradient in our framework,
the weight parameter is set as 0.9999 to preserve the source knowledge. For
the condition strainer, we initialize up-projecting parameters with He uniform
initialization and down-projecting parameters with zero initialization. This ini-
tialization strategy aims to optimize the learning efficiency and model stability
in handling condition-specific features.

B Algorithm of FREST

We present the training procedure of FREST in Algorithm 1.

C Empirical Analysis

C.1 Analysis on FREST

To investigate the impact of FREST, we show that it reduces the condition gaps
between adverse and normal conditions. To this end, visualize t-SNE [7] using
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Algorithm 1 : Training Algorithm of FREST
Input: Condition strainer: ψstrainer, Projection head: ψproj, lth layer of encoder:
ϕlenc, Decoder: ϕdec, Number of layers: L, Prediction: P , Pseudo Label: Ŷ , Input
images: {xadv, xnorm}
Output: Optimized encoder ϕenc and decoder ϕdec.
1: for {1, . . . , # of training iterations} do
2: Sample mini-batch {xadv, xnorm}
3: for {l←− 1 to L} do
4: cladv = ϕlenc(c

l−1
adv) + ψl

strainer(c
l−1
adv)

5: clnorm = ϕlenc(cl−1
norm) + ψl

strainer(c
l−1
norm)

6: end for
7: Lspec = Lspec(ψproj(cadv), ψproj(cnorm)) ▷ Eq. (1)&(2)
8: Update projection head ψproj

9: Lself = Lself(Padv, Ŷadv)
10: Lstrainer = λspecLspec + Lself
11: Update condition strainer ψstrainer with Lstrainer ▷ Step 1
12: for {l←− 1 to L} do
13: fladv = ϕlenc(f

l−1
adv)

14: cladv = ϕlenc(f
l−1
adv) + ψl

strainer(f
l−1
adv)

15: Ll
dis = −Ll

dis(f
l
adv, cladv) ▷ Eq. (4)

16: end for
17: Lself = Lself(Padv, Ŷadv)
18: Lresto = Lresto(ψproj(fadv), ψproj(cnorm)) ▷ Eq. (3)
19: Ltotal = Lself + λentLent + Lresto + λdis

∑
l=1 Ll

dis
20: Update ϕenc and ϕdec of the model with Ltotal ▷ Step 2
21: end for

our segmentation features under adverse conditions (i.e. fog, night, rain, and
snow) and condition-specific features under the normal condition (i.e. normal)
in the condition embedding space learned by FREST. In detail, we utilize the
validation images from the ACDC dataset [9] input images, and we compute their
condition embeddings using both the condition strainer and the projection head.
Fig. a1 shows that FREST effectively reduces the condition gaps between adverse
and normal conditions well, which suggests that FREST achieves condition-
invariance through feature restoration.

C.2 Additional Analysis on Fig. 6

We present a detailed analysis on FREST. Please note that the goal of FREST
is not image restoration but feature restoration, which means FREST aims to
train a model to robustly recognize adverse condition images as if they were in
normal conditions, not to convert them into normal images. As shown in Fig. 6
and Fig. a2, we reconstructed images only to qualitatively investigate the impact
of feature restoration. They show the favorable impact of FREST on recognition,
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Fig. a1: t-SNE visualization of the distribution of condition embeddings in the condi-
tion embedding space.

particularly in enhancing the boundaries of buildings, compared to the baseline
results.
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Fig. a2: Qualitative analysis on FREST.

C.3 Analysis on Adverse Condition Discriminating Loss

We devised the adverse condition discriminating loss to further mitigate the
adverse effects of our segmentation feature, which is computed from the segmen-
tation encoder. To implement this strategy, we introduced a condition discrim-
inator which classifies each condition (i.e., adverse and normal conditions). For
in-depth analysis, we introduce other possible solutions to remove the adverse
effects.
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Our initial approach is employing residual learning [4] to eliminate condition-
specific information from the encoder features fadv as illustrated in Fig. a3(a).
Additionally, we implement a strategy of minimizing mutual information [3] be-
tween the encoder feature fadv and condition-specific feature cadv as shown in
Fig. a3(b). Furthermore, we maximize the feature distance between the encoder
feature fadv and condition-specific feature cadv by utilizing L1 loss as Fig. a3(c).
Finally, to utilize the domain information more effectively, we maximize the fea-
ture statistics distance. For this, we calculate the mean and standard deviation
of features as feature statistics and maximize feature statistics between fadv and
cadv as Fig. a3(d). Subsequently, through empirical analysis, we demonstrate
empirically that our adverse condition discriminating loss, implemented through
feature classification, is the most effective method when compared to the afore-
mentioned possible solutions.
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Fig. a3: Illustrations for the possible solutions of removing adverse effects from the
segmentation feature computed by the segmentation encoder. (a) Residual learning
(b) Minimizing mutual information (c) Maximizing feature distance (d) Maximizing
feature statistics distance (e) Feature classification (Ours)

Table a1: Analysis of possible solutions for adverse condition distancing loss. The
results are reported in mIoU on the ACDC validation set.

Possible Solution mIoU

(a) Residual learning 62.8
(b) Minimizing mutual information 65.6
(c) Maximizing feature distance 66.5
(d) Maximizing feature statistics distance 67.4
(e) Feature classification (Ours) 68.6
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D Additional Ablation Study

D.1 Effect of Each Loss

We investigate contributions of entropy loss Lent, self-training loss Lself, and
our proposed losses (i.e. feature restoration loss Lresto and adverse condition
discriminating loss Ldis) on ACDC [9] validation performance. To this end, we
evaluate our model without each loss. As presented in Table a2, all the losses
contribute to the performance. Especially, each impact of Lself and our proposed
losses (i.e. feature restoration loss Lresto and adverse condition discriminating
loss Ldis) is larger than another component.

Table a2: Effect of additional losses as self-training and entropy minimization loss.
The results are reported in mIoU on the ACDC validation set.

w/o Lself w/o Lent w/o Lresto&Ldis mIoU

✓ 59.1
✓ 67.8

✓ 62.7
68.6

D.2 Effect of Patch Confidence Threshold

Table a3 presents the sensitivity of FREST performance to the confidence thresh-
old value in Eq. (3) and Eq. (4). These results show that our method is insensitive
to the hyperparameter of confidence.

Table a3: Effect of the confidence threshold on FREST. The results are reported in
mIoU on the ACDC validation set.

Confidence Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6

mIoU 67.5 68.2 68.6 68.0 67.7 67.3 67.4

E Condition-Wise Performance

In this section, we present the condition-wise test results on ACDC Fog, ACDC
Night, ACDC Rain, and ACDC Snow [9]. In Table a6, a7, a8, a9, FREST out-
performs all the competitors in the four condition splits.
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F Application to a Different Backbone.

We employed DeepLab-v2 [2] as the segmentation backbone, and modified our
condition strainer structure by substituting its linear layers with 1×1 convolution
layers for this ConvNet architecture. As shown in Table a4, FREST significantly
outperformed both the source model and CMA in this setting as well, suggesting
that it is generic enough.

Table a4: Results of application to a different backbone. The results are reported in
mIoU on the ACDC validation set.

Source model CMA FREST

37.6 46.6 48.4

G Impact of the Length of the Positive Queue.

We conducted an ablation study to investigate the impact of the length of the
positive queue. As shown in Table a5, FREST is insensitive to the length.

Table a5: Effect of the length of the positive queue. The results are reported in mIoU
on the ACDC validation set.

Length 50K 55K 60K 65K (Ours) 70K 75K 80K

68.3 68.0 68.4 68.6 68.1 68.2 67.9

H Additional Explanation for Fig. 7.

This section presents an additional explanation for the meaning of Fig. 7 in
the main paper. It is natural for the intra-domain distance to increase since, as
a model updates, the feature distribution changes from the initial distribution
during training. Notably, as seen in Fig. 7 and Fig. a4, we included for clarity,
dadv increases significantly more than dnormal, while dinter between normal and
adverse conditions decreases. This suggests the desired feature restoration: ad-
verse condition features shift towards normal condition features during training
with FREST.
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Fig. a4: Meaning of each distance in Fig. 7 of the main paper.

I Computational resource and training time.

FREST was trained using a single NVIDIA RTX 3090 GPU, taking 9 hours and
45 minutes, significantly faster than UDA methods [11, 12] which typically take
about 4 days. Our method is particularly efficient during inference as it uses
only the segmentation backbone without any auxiliary modules.

J Additional Qualitative Results

We present more qualitative results on ACDC [9] and Robotcar [6, 8] in this
section. Fig. a5 shows the results of SegFormer, CMA, and FREST (Ours). This
demonstrates that SegFormer and CMA often fail to predict detailed objects,
while our method surpasses them.
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Table a6: Comparison with source-free DA methods on Cityscapes→ACDC. The re-
sults are reported in mIoU (%) on the ACDC Fog test set.

Method
ACDC Fog IoU
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Source model [13] 87.8 60.7 73.1 44.5 30.1 42.1 52.3 64.4 81.4 68.8 93.4 51.1 53.2 78.4 66.0 39.7 75.1 43.2 47.4 60.7
HCL [5] 88.5 63.2 79.8 45.3 30.6 44.7 53.7 65.9 81.8 69.6 95.5 52.5 55.0 79.4 68.0 40.7 74.0 40.7 46.9 61.9
URMA [10] 89.3 61.8 87.9 51.4 36.3 52.3 58.1 67.9 85.7 71.8 97.2 54.5 62.5 82.3 70.6 62.0 82.0 52.9 36.2 66.5
CMA [1] 93.5 75.3 88.6 53.4 33.0 52.2 58.2 67.0 86.9 71.5 97.8 55.6 42.0 80.4 70.0 54.8 83.3 43.0 37.4 65.5
FREST 93.5 74.4 87.4 51.5 36.7 54.1 59.1 69.6 87.2 72.1 97.6 59.8 60.1 85.1 73.8 77.2 84.7 63.6 45.6 70.2

Table a7: Comparison with source-free DA methods on Cityscapes→ACDC. The re-
sults are reported in mIoU (%) on the ACDC Night test set.

Method
ACDC Night IoU
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Source model [13] 87.9 52.7 64.1 34.0 20.2 37.2 34.5 40.2 51.8 32.4 6.6 54.5 31.4 72.8 49.6 65.2 54.1 34.0 41.4 45.5
HCL [5] 88.2 54.3 64.4 35.3 20.7 39.1 36.8 40.4 52.0 32.1 2.8 55.2 33.7 73.5 49.2 66.5 58.1 35.4 41.7 46.3
URMA [10] 90.6 60.1 71.9 42.6 26.7 47.5 47.5 47.4 46.7 42.9 0.4 54.4 34.6 76.8 42.1 65.6 71.0 38.0 37.2 49.7
CMA [1] 95.2 77.5 84.3 43.9 30.9 49.4 52.0 49.6 74.2 51.2 78.4 61.4 41.2 79.2 63.6 75.1 75.8 34.6 47.3 61.3
FREST 94.6 75.1 82.5 44.2 32.8 53.2 48.5 49.2 71.1 48.5 78.5 63.0 41.5 82.7 67.1 75.5 74.6 48.3 50.7 62.2

Table a8: Comparison with source-free DA methods on Cityscapes→ACDC. The re-
sults are reported in mIoU (%) on the ACDC Rain test set.

Method
ACDC Rain IoU
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Source model [13] 83.1 46.7 89.5 40.5 47.2 54.0 67.0 66.9 92.6 40.2 97.6 63.5 24.6 87.8 65.1 72.7 81.0 42.8 58.0 64.3
HCL [5] 84.2 50.5 90.1 42.7 48.9 57.0 68.5 69.0 93.0 40.9 97.8 65.4 26.1 88.7 68.1 74.4 80.4 43.8 58.0 65.6
URMA [10] 87.2 61.0 92.4 52.0 51.9 57.2 72.0 73.1 93.8 46.1 98.1 68.8 31.8 90.6 73.2 85.9 86.9 51.7 51.9 69.8
CMA [1] 93.3 76.3 92.8 58.1 58.2 61.2 70.4 71.8 93.8 45.0 97.9 67.4 36.8 89.7 72.2 88.5 86.4 50.5 66.7 72.5
FREST 92.1 73.5 93.9 62.3 57.8 65.4 72.7 75.8 93.9 42.2 98.4 72.4 39.0 92.6 79.4 84.5 84.9 55.6 65.4 73.8

Table a9: Comparison with source-free DA methods on Cityscapes→ACDC. The re-
sults are reported in mIoU (%) on the ACDC Snow test set.

Method
ACDC Snow IoU
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Source model [13] 82.0 44.9 80.5 30.4 45.4 46.8 65.6 63.1 86.8 5.2 93.6 67.8 40.8 87.1 56.4 76.7 83.1 32.8 60.3 60.5
HCL [5] 82.9 47.4 83.2 35.4 46.8 50.1 67.8 64.9 87.7 5.3 95.6 69.8 43.9 87.6 60.1 76.9 83.2 35.3 63.4 62.5
URMA [10] 88.0 58.9 87.2 52.0 51.7 57.8 75.6 70.3 88.8 5.8 97.1 75.0 63.6 89.0 69.6 79.0 89.8 50.1 65.4 69.2
CMA [1] 92.4 70.5 88.3 50.4 55.6 56.3 74.8 71.1 90.8 29.4 96.9 77.4 63.5 90.1 63.5 79.6 89.0 45.6 73.9 71.5
FREST 91.3 65.0 88.4 54.5 55.3 60.8 76.6 73.9 89.6 10.6 97.4 79.6 66.3 91.8 72.4 80.4 88.3 53.6 72.8 72.0
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Fig. a5: Qualitative segmentation results for ACDC and RobotCar.
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