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Abstract. Robust semantic segmentation under adverse conditions is
crucial in real-world applications. To address this challenging task in
practical scenarios where labeled normal condition images are not acces-
sible in training, we propose FREST, a novel feature restoration frame-
work for source-free domain adaptation (SFDA) of semantic segmenta-
tion to adverse conditions. FREST alternates two steps: (1) learning the
condition embedding space that only separates the condition informa-
tion from the features and (2) restoring features of adverse condition
images on the learned condition embedding space. By alternating these
two steps, FREST gradually restores features where the effect of adverse
conditions is reduced. FREST achieved a state of the art on two public
benchmarks (i.e., ACDC and RobotCar) for SFDA to adverse conditions.
Moreover, it shows superior generalization ability on unseen datasets.

Keywords: semantic segmentation, feature restoration, robustness, source-
free domain adaptation

1 Introduction

The advent of deep neural networks has brought significant advancement of se-
mantic segmentation [4,36,38,44,47]. Although most existing models for seman-
tic segmentation demonstrate outstanding performance under normal conditions,
they often fail under real-world adverse conditions like fog, rain, snow, and night-
time that significantly degrade the quality of input images [5,7,20,21,31–33,35,
46]. This lack of robustness limits the applicability of semantic segmentation,
especially to high-stakes tasks like autonomous driving.

An obstacle in enhancing the robustness of semantic segmentation models
is the difficulty of collecting labeled data for every possible adverse condition.
This issue has steered the computer vision community towards unsupervised
domain adaptation (UDA) [2,10,12–14,18,27,39,40,42,48,51]. UDA is the task
of training a model using labeled data from a source domain (i.e. clear weather)
and unlabeled data from a target domain (i.e. adverse weather conditions) while
bridging the gap between these domains. This approach mitigates the need for
labeling target domain data while improving performance in that domain.
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Fig. 1: (a) The setting of SFDA to adverse conditions. A segmentation model, initially
pre-trained on a labeled source dataset, is adapted to adverse conditions using pairs of
unlabeled adverse and normal images. (b) Following the SFDA setting, FREST restores
features of adverse condition images to simulate the normal condition.

More recent research has explored source-free domain adaptation (SFDA),
a more practical form of UDA where access to the source domain data is not
allowed due to privacy leaks or the prohibitively large scale of the data. [1, 9,
24, 37, 43, 49]. In SFDA, a model is first pre-trained with labeled data from the
source domain and then fine-tuned using only unlabeled data from the target
domain afterwards. In particular, SFDA to adverse conditions has been studied
on a specialized setup [1], in which target domain images are taken under various
adverse conditions and each target image is paired with a reference image taken
in a similar geolocation but under the normal condition, i.e., clear weather.
This setting differs from the conventional SFDA as the reference images from
the normal condition are available, but following the previous work [1], we refer
to this setting as SFDA to adverse conditions. In this setting, a pair of target
and reference images are matched by global navigation satellite system (GNSS),
and thus are only roughly aligned due to the variations between them in terms
of camera pose and shooting time. Also, both target and reference images are
unlabeled, and the adverse condition type of each target image is unknown. This
setup is illustrated in Fig. 1(a).

The prior work for SFDA to adverse conditions enhances the robustness of
semantic segmentation models by learning condition-invariant features [1]. To
this end, it encourages features extracted from each pair of adverse (target) and
normal (reference) images to be close. However, regarding that normal images
could resemble the source domain, updating features of normal images to be close
to those of adverse images causes the model pre-trained on the source domain
to forget the rich knowledge of the domain, resulting in poor representations for
both normal and adverse images in the end. Also, the feature matching relies
heavily on the assumption that the alignment between a pair of adverse and nor-
mal images is sufficiently accurate, which typically does not hold, unfortunately.

In this work, we introduce a novel framework for Feature RESToration for
multiple adverse conditions, called FREST, which is illustrated in Fig. 1(b).
FREST overcomes the aforementioned limitations by restoring features of ad-
verse condition images so that they simulate the normal condition of reference
images in feature spaces. This notion of feature restoration is embodied by ex-
tracting and leveraging condition-specific information, which ideally depends
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only on the condition of image and is not affected by its semantic content.
The use of condition-specific information enables our method to restore fea-
tures while considering only the condition of input. Hence, FREST mitigates
the catastrophic forgetting of the source domain knowledge through the fea-
ture restoration, and is less affected by the content mismatch between a pair of
adverse and normal images by utilizing condition-specific information.

FREST operates in two steps as follows. First, it learns a new embedding
space that represents only condition-specific attributes of images. To be spe-
cific, in this embedding space, images taken under similar conditions are closely
aligned while those under different conditions are separate. We consider the em-
bedding vector of an image in this space as its condition-specific information.
In the second stage, FREST learns restored features for adverse images, tai-
lored for semantic segmentation, by optimizing the model for both segmentation
and feature restoration. In detail, the segmentation objective leverages pseudo
segmentation labels as supervision, while the objective for feature restoration
enforces condition-specific information of adverse images approximates that of
their corresponding normal images so that the model learns to represent images
of any conditions as if they are taken under the normal condition. FREST alter-
nates between these two stages so that condition-specific information is adapted
to reflect the update of the segmentation network in the first stage, which im-
proves the restored features of the model in the second stage consequently. It
is empirically demonstrated in Sec. 4.3 that FREST effectively learns restored
features of adverse images.

FREST was evaluated on the standard benchmarks for SFDA to adverse con-
ditions based on the Cityscapes [6], ACDC [34], and RobotCar [19,26] datasets,
i.e., Cityscapes → ACDC and Cityscapes → RobotCar settings. FREST achieved
a new state of the art in both two settings. Moreover, its superiority in terms of
robustness and generalization capability was demonstrated on unseen datasets
by applying our model for Cityscapes→ACDC to the ACG [1] and Cityscapes-
lindau40 [6] datasets.

2 Related Work

Robustness. Robust recognition has been actively studied due to its relation
with crucial safety-critical applications [5, 7, 20, 21, 31–33, 35, 46]. In this con-
text, various UDA methods [2,12–14] have been proposed to improve robustness
across multiple adverse conditions. In particular, Brüggemann et al. [2] suggest
a method of spatial alignment between target and reference images and adaptive
label correction guided by the warping results. Brüggemann et al. [1] introduce a
method for SFDA under multiple adverse conditions through contrastive learn-
ing for condition-invariant learning. In contrast to the previous work, FREST
restores features from multiple adverse conditions to those of the normal condi-
tion, effectively learning robust features for adverse conditions.
Unsupervised Domain Adaptation. UDA has been widely studied for se-
mantic segmentation with the introduction of synthetic datasets [29, 30], which
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provide automatically generated pixel-level labels. UDA allows the use of both
labeled synthetic and unlabeled real data for training. Existing UDA methods
are mainly categorized into distribution alignment [10, 39, 40, 42, 48] and self-
training [18, 22, 27, 50, 51]. Revealing the potential of transformers [8, 41, 45]
for semantic segmentation, recent studies have conducted transformer-based ap-
proaches [2,12–14]. Despite significant improvements, UDA for semantic segmen-
tation faces the practical limitation of requiring access to labeled source data for
adaptation. To address this, source-free domain adaptation is introduced, using
only unlabeled target data to adapt a source-trained model.
Source-free Domain Adaptation. SFDA is introduced to adapt a source-
trained model to the target domain without accessing source data. The early
approaches suggest test-time objectives at the output space of an unlabeled
target domain dataset by entropy minimization [37, 43], data-free knowledge
distillation [24], and contrastive learning [15]. Recently, Guo et al. [9] introduce
a plug-and-play method via a noise transition matrix for loss correction on noisy
pseudo-labeled target data. Zhao et al. [49] suggest enhancing the stability and
adaptability of self-training through a dynamic teacher update mechanism and
a resampling strategy based on training consistency. Motivated by this line of
research, Bruggemann et al. [1] propose a practical setup, where target images
are taken under multiple adverse conditions and associated with reference images
of the normal condition. Following this setup, FREST learns to restore adverse
features using normal features for robust semantic segmentation.

3 Configuration of Target Domain Data

Following the problem setting of the previous work [1], we assume that target
domain data comprise images taken under various adverse conditions, and that
each target image is paired with a reference image captured under the normal
condition. Both target and reference images are unlabeled, and it is unknown
under what condition each target image was taken. Moreover, a target adverse
condition image Iadv and its associated reference normal condition image Inorm
are matched by GNSS so that they are taken in similar geolocations. Note how-
ever that a pair of GNSS-matched images will only be roughly aligned due to the
variations between them in terms of camera pose and shooting time. To mitigate
this issue, following prior work [1,2], we warp Inorm onto Iadv using the UAWarpC
dense matching network [2] pre-trained on the MegaDepth dataset [23]. More
details for the warping process can be found in [2]. While the warping alleviates
the misalignment issue to some extent, it still leaves nontrivial discrepancy in
content due to imperfect warping and dynamic objects.

4 Proposed Method

The overall architecture and training strategy of our model are outlined in Fig. 2;
we suppose that the segmentation network is pre-trained with a labeled source
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Fig. 2: The overall architecture and training strategy. The segmentation network is
pre-trained using a labeled source dataset. For each iteration, the condition strainer
and segmentation network are trained alternatingly. The frozen modules are shown in
gray, the trainable modules are highlighted in red, and “sg” denotes the stop gradient.
(Step 1 ) The condition strainer and projection head are trained to learn the condition
embedding space. (Step 2 ) The segmentation network is trained to restore features
from adverse to normal conditions on the condition embedding space. For evaluation,
only the encoder ϕenc and decoder ϕdec of the segmentation network are utilized.

domain dataset following the standard protocol [1]. FREST considers adverse
conditions as detrimental, and aims to remove their effects in features of a target
adverse image Iadv by feature restoration, which is the process of learning features
of Iadv that resemble those of the corresponding normal image Inorm, not in the
content, but only in the effect of the condition.

However, using features of Inorm and Iadv directly for feature restoration
is less than ideal, as it may lead to a distortion of the semantic content, due
to the misalignment between Inorm and Iadv discussed in Sec. 3. To address
this issue, FREST extracts condition-specific information from each feature and
utilizes it to guide the feature restoration process. To realize this idea, FREST
alternates the following two steps: (1) learning a condition embedding space, and
(2) restoring features of Iadv so that the features approximate those of Inorm on
the condition embedding space.

In the first step, FREST learns a condition embedding space to capture
the condition-specific information of input. In this space, images are separated
and clustered based on whether they were taken under adverse conditions or the
normal condition. We consider the embedding vector of an image in this space as
its condition-specific information, which is less affected by its semantic content.
For learning such an embedding space, we propose to attach a module named
condition strainer, denoted by ψstrainer, to the frozen segmentation encoder ϕenc
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Fig. 3: Detail of the en-
coder with the condition
strainer. Condition strainers
are connected to the original
feed-forward layer (FFN) and
multi-head self-attention layer
(MHSA) through the residual
connections.

The design of the condition strainer is in-
spired by parameter-efficient fine-tuning [3, 11,
28], which adds a small number of parameters for
capturing task-specific information. This struc-
ture enables the condition strainer to capture
condition-specific information effectively and ef-
ficiently. The detailed architecture of the en-
coder with the condition strainer is presented
in Fig. 3. The condition strainer is trained to
extract condition-specific information from each
layer of the encoder while being separated from
the encoder; it is separate from the encoder so
that the encoder is not affected by its condition-
specific information. We call features extracted
by ϕenc incorporating ψstrainer condition-infused
features. Specifically, the condition-infused fea-
tures cl computed at the lth layer of the en-
coder is given by cl = ϕlenc(cl−1)+ψl

strainer(c
l−1).

We indicate c as the condition-infused feature
produced by the last layer of the encoder. Fi-
nally, c is projected on the condition embedding
space through a projection head ψproj. Also, for
the sake of brevity, we denote encoder features
computed only by ϕenc, disregarding the strainer
ψstrainer, by fl = ϕlenc(f

l−1) where f is the encoder feature obtained from the last
layer. The encoder features fl are targeted features for the feature restoration in
the second step.

In the second step, we train the segmentation network while conducting
the feature restoration with the frozen condition strainer and projection head.
FREST restores features of Iadv from ϕenc, denoted by fadv, to resemble condition-
infused features of Inorm, denoted by cnorm, where fadv and cnorm are computed
from the last layer of the encoder. Specifically, fadv is encouraged to approximate
cnorm by a regression objective on the condition embedding space for considering
only the condition information during feature restoration.

By alternating the two steps aforementioned, the segmentation network pro-
gressively learns restored features for multiple adverse conditions, and the con-
dition strainer is adapted to reflect the update of the segmentation network
and facilitates the next feature restoration consequently. The remainder of this
section elaborates on the two steps of FREST.

4.1 Learning Condition Embedding Space

In the first step, FREST learns the condition embedding space that only repre-
sents condition-specific information of input. To this end, we train the condition
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strainer and projection head with the frozen segmentation network. Loss func-
tions used in this step are described below.

Condition-specific Learning Loss. The goal of condition-specific learning is
to learn the condition embedding space by extracting only condition-specific in-
formation from the condition-infused features that contain both content and con-
ditions. We implement this objective by contrastive learning, grouping features
from the same condition closely together and distancing those from different
conditions. For contrastive learning, the anchor and positive are sampled with
different semantics under the same condition, while the anchor and negative are
chosen to be semantically similar but under different conditions.

To sample a pair of anchor and negative, we warp normal features to cor-
responding adverse features as described in Sec. 3. Specifically, based on the
confidence scores computed by the warping module [2], we select patch em-
beddings surpassing a warping confidence threshold of 0.2 for computing the
anchor and negative. Given a pair of Inorm and Iadv, we first sample cinorm
and ciadv as condition-infused features for ith patch embedding, for i ∈ W
where W = {i | conf(i) ≥ 0.2} with conf(i) indicating the warping confi-
dence score. Then, the anchor and negative samples are computed by pro-
jecting ciadv and cinorm on the condition embedding space; ziadv = ψproj(ciadv)
and zinorm = ψproj(cinorm), respectively. To obtain sufficient positive candidates,
we stack condition embeddings of adverse images in a batch into a positive queue
of length Q for each iteration. As shown in Fig. 4, we choose the representative
positive z∗adv that is the most similar to the anchor ziadv in the queue, assuming
it has the same condition with the anchor; we empirically verify that z∗adv is
an effective reference point for pushing a negative sample zinorm in Sec. 5.4. For
each patch embedding, the condition-specific loss aims to attract the anchor ziadv
towards the representative positive z∗adv and repel it from the negative zinorm.

For {ziadv, z
∗
adv, z

i
norm}, the condition-specific loss for patch i is given by:

Lspec,i = − log
exp(ziadv

⊤z∗adv/τ)

exp(ziadv
⊤z∗adv/τ)) + exp(ziadv

⊤zinorm/τ)
, (1)
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where τ serves as a temperature that scales the sensitivity. The condition-specific
loss is the average of the losses in (1) applied to individual patches with warping
confidence scores larger than the threshold, and formulated as

Lspec =
1

|W|
∑
i∈W

Lspec,i. (2)

Total Loss for Step 1. Following the previous work [1], we employ a self-
training loss Lself, i.e., the pixel-wise cross-entropy loss with pseudo labels gen-
erated by class-balanced self-training (CBST) [50]. It is necessary for learning
semantic information due to the absence of segmentation labels during training.
To preserve the semantic information of condition-infused features, we apply the
self-training loss to the predictions computed from condition-infused features.
Then, the total training loss of Step 1 is represented as Lstep1 = λspecLspec+Lself.

4.2 Learning Semantic Segmentation with Feature Restoration

In the second step, FREST learns to restore features so that fadv from adverse
conditions approximates cnorm from the normal condition in the condition em-
bedding space. To this end, we train the segmentation network with the frozen
condition strainer ψstrainer. In addition, for further alleviating adverse effects
from fladv, FREST ensures that fladv is discriminated from the adverse condition-
infused feature cladv for the lth layer of the encoder. The loss functions in this
process are described below.

Feature Restoration Loss. Given paired Iadv and Inorm, we compute fadv
using ϕenc only and a condition-infused feature cnorm. Note that we prevent
gradient updates from cnorm to ensure that the adverse condition one-sidedly
follows the normal condition as cnorm is the target for restoration of fadv. As
detailed in Sec. 4.1, we select the pair of adverse and normal patch embeddings,
which surpass a warping confidence threshold, denoted as fiadv and cinorm for the
ith patch embedding. To guide the condition of our segmentation feature fiadv to
resemble the normal condition while only considering condition information, we
project our feature fiadv and normal condition-infused feature cinorm on the con-
dition embedding space, i.e., ψproj(fiadv) and zinorm = ψproj(cinorm), respectively.
Then, we approximate ψproj(fiadv) to zinorm using an ℓ1 regression loss as follows:

Lresto =
1

|W|
∑
i∈W

|ψproj(fiadv)− zinorm|, (3)

where W = {i | conf(i) ≥ 0.2} with conf(i) denoting the warping confidence.

Adverse Condition Discriminating Loss. To further facilitate feature restora-
tion, we present another loss that pushes the encoder feature and condition-
infused feature of an adverse condition image apart. To this end, we introduce
an MLP-based adverse condition discriminator denoted as D. It discriminates
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Fig. 7: Empirical analysis on the impact of feature restoration during training FREST.
(a) Inter-domain shift between adverse and normal conditions. (b) Intra-domain shift
within each condition. (c) Convergence in total losses for both Step 1 and Step 2.

the encoder feature fl,jadv and condition-infused feature cl,jadv for each lth layer and
jth patch embedding for j ∈ A where A is a set of indices of all patch embeddings.
Then, fl,jadv and cl,jadv are vectorized and forwarded to the discriminator, which is
trained with the cross-entropy loss, denoted as Ldis, to classify them into two
classes: encoder feature and condition-infused feature. The detailed architecture
of D is shown in Fig. 5 and the loss is given by

Ldis = − 1

|A|
∑
j∈A

L∑
l=1

{
λ log(D(fl,jadv)) + (1− λ) log(1−D(cl,jadv))

}
, (4)

where L denotes the number of layers of the encoder, and λ = 0 if the input is
the adverse condition-infused feature cladv and λ = 1 otherwise.

Total Loss for Step 2. Besides the proposed losses, we utilize two conven-
tionally used loss functions: one for self-training Lself and the other for entropy
minimization Lent, following the previous work [1]. The segmentation network
is trained by minimizing Lstep2 = Lresto + λdisLdis + Lself + λentLent.

4.3 Empirical Justification

To investigate the effect of FREST, we first conduct a qualitative analysis by
reconstructing images from the restored features learned by FREST. Please note
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that FREST learns feature restoration for robustly recognizing adverse condition
images as if they were in normal condition, does not image reconstruction during
both training and testing. For image reconstruction, we adopt SegFormer [45] as
a reconstruction model with upsampling layers. The decoder of the reconstruc-
tion model is trained for reconstruction on normal images while the encoder is
pretrained on Cityscapes [6] and then frozen. The encoder is then replaced with
that of FREST (ϕenc). We also conduct the reconstruction using a baseline [45]
in the same manner. Fig. 6 shows the favorable impact of FREST: a night sky
turns blue, and a snowy tree appears green.

The impact of feature restoration is also demonstrated by the quantitative
analysis in Fig. 7. We measure the inter-domain shift in Fig. 7(a), the distance
between feature distributions of adverse and normal domains (dinter), and the
intra-domain shift in Fig. 7(b), the distance between feature distributions at
before training and after n epochs of training with FREST, for each domain
(dadv and dnormal). We adopt the Hausdorff distance [16] using cosine distance
to measure all such shifts. Our analysis reveals that FREST restores adverse
features as desired: the adverse feature distribution gradually approaches to the
normal feature distribution during training, while the normal feature distribution
changes little.

As shown Fig. 7(c), we investigate the convergence in total losses for both
Step 1 and Step 2 during training FREST. The results demonstrate that FREST
successfully converges during training while the two steps are performed in each
iteration alternatingly. Since Lspec and Lresto have opposite objectives conducted
in condition embedding space, it might seem optimizing two losses would hinder
the convergence of FREST. However, this issue does not occur since we separate
the trainable parameters for each step: in Step 1, we train the condition strainer
and projection head, while in Step 2, we train the segmentation network. This
training strategy ensures that each step is optimized independently, without
conflict, enabling FREST to converge as intended.

5 Experiments

5.1 Experimental Setting

Datasets. For our experiments, we utilize Cityscapes [6] as the source domain,
and we use ACDC [34] and RobotCar Correspondence [19, 26] as the target
domains, respectively. We also use the ACG Benchmark [1] for evaluating the
generalization capability of our model on diverse adverse conditions. Lastly, we
evaluate our method in the normal condition on Cityscapes-lindau40, a dataset
commonly used in robust visual recognition research [7, 21].
Implementation Details. We adopt SegFormer [45] architecture as our seg-
mentation network, which is pre-trained on the Cityscapes dataset [6]. The seg-
mentation network is trained by an AdamW [25] optimizer with weight decay
1e−2. The initial learning rate is set to 1e−5 for the encoder and decoder of
the segmentation network and 5e−4 for the condition strainer. In addition, we
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Table 1: Comparison with existing methods on Cityscapes → ACDC. The results are
reported in mIoU (%) on the ACDC test set.
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Source model [45] 85.7 51.0 76.6 36.4 37.1 45.2 55.7 57.5 77.7 52.0 84.1 60.3 34.8 82.9 61.6 65.4 73.4 37.9 52.5 59.4
HCL [15] 86.4 53.5 78.5 38.8 38.1 48.0 57.8 58.9 78.1 52.4 85.1 61.7 37.1 83.7 64.1 66.6 74.5 39.1 53.3 60.8
URMA [37] 89.2 60.4 84.3 48.7 42.5 53.8 65.4 63.8 76.3 57.3 85.9 63.4 43.9 85.8 68.8 73.2 82.8 46.3 48.4 65.3
URMA + SimT [9] 90.0 65.7 80.6 46.0 41.7 56.3 65.2 62.7 75.9 55.6 84.4 66.4 46.6 85.4 68.4 72.3 80.0 46.8 58.0 65.7
CMA [1] 94.0 75.2 88.6 50.5 45.5 54.9 65.7 64.2 87.1 61.3 95.2 67.0 45.2 86.2 68.6 76.6 83.9 43.3 60.5 69.1
FREST (Ours) 93.3 72.2 88.3 52.4 46.6 58.6 66.2 66.1 86.1 58.6 95.3 69.9 49.2 89.1 75.1 79.4 83.0 52.9 61.4 70.7

Table 2: Compar-
ison with previous
methods on City →
RobotCar.

Method mIoU

Source model [45] 50.0
HCL [15] 50.1
URMA [37] 51.6
URMA + SimT [9] 52.4
CMA [1] 54.3
FREST (Ours) 58.8

Table 3: Comparison
with UDA methods on
City → ACDC. (SF :
source-free method).

Method SF mIoU

Source model [45] 59.4
Refign [2] 65.5
HRDA [13] 68.0
HRDA + MIC [14] 70.4
CMA [1] ✓ 69.1
FREST (Ours) ✓ 70.7

Table 4: Generalization performance
of models adapted from Cityscapes
to ACDC on ACG and Cityscapes-
lindau40 (C-Lindau).

Method ACG C-Lindau

fog night rain snow all normal

SegFormer [45] 54.0 27.9 47.5 41.2 40.1 72.7
HCL [15] 54.2 28.3 48.2 42.4 40.8 -
URMA [37] 54.1 31.0 51.9 45.5 44.4 -
CMA [1] 59.7 40.0 59.6 52.2 51.3 71.8
FREST (Ours) 61.4 39.9 61.0 51.9 52.6 72.5

employ a linear learning rate decay with a linear warm-up for the first 1,500 iter-
ations. Finally, the hyper-parameters are set to λspec, λent, λdis, and τ as 1e−2,
1e−2, 5e−5, and 7e−1, respectively. More details are given in the supplement.

5.2 Quantitative Results

We first compare FREST with existing methods for SFDA under multiple ad-
verse conditions on Cityscapes → ACDC and Cityscapes → RobotCar bench-
marks. We extend our comparison to the previous UDA methods on Cityscapes
→ ACDC benchmark. Lastly, we evaluate the generalization capability of FREST
on ACG and Cityscapes-lindau40 compared with existing SFDA methods.
Comparison with SFDA Methods. As summarized in Table 1, FREST
achieves state-of-the-art performance with a notable improvement of 1.6% in
mIoU over the most recent work [1] on Cityscapes → ACDC benchmark, es-
pecially improving on fine-grained objects (e.g., car, truck, bus) by large mar-
gins. As shown in Table 2, FREST substantially outperforms all previous SFDA
models on Cityscapes → RobotCar benchmark. Considering that the RobotCar
dataset includes a wider range of conditions (i.e., dawn, dusk, night, night-rain,
overcast, rain, snow, and sun) compared to the ACDC dataset, which has only
four conditions (i.e., fog, rain, snow, and night), these results demonstrate that
our model becomes increasingly effective in improving robustness as the diversity
of adverse conditions increases.
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Table 5: Loss analysis on (a) Step 1
and (b) Step 2.

Lself Lspec mIoU

64.3
✓ 64.8
✓ ✓ 68.6

(a)

Lresto Ldis mIoU

62.7
✓ 67.2
✓ ✓ 68.6

(b)

Table 6: Analysis of the structure and train-
ing strategy in FREST.

Trainable Module Training Strategy mIoU
Strainer Seg. Self-training FREST

✓ ✓ 62.7
✓ ✓ 63.1
✓ ✓ ✓ 63.2
✓ ✓ ✓ 68.6

Comparison with UDA Methods. As summarized in Table 3, FREST out-
performs the existing UDA methods on Cityscapes → ACDC. Note that UDA
methods utilize both a labeled source dataset and an unlabeled target dataset
during adaptation, while SFDA methods including FREST use only the unla-
beled target dataset. The results show that our framework surpasses the UDA
methods, even without access to a labeled source domain during the adaptation.
Generalization Capability. Following [1], we evaluate the generalization ca-
pabilities of FREST and the competitors, adapted from Cityscapes to ACDC, on
the ACG benchmark containing multiple adverse conditions (i.e., fog, night, rain,
and snow). As shown in Table 4, FREST outperforms the previous methods for
all ACG samples, which shows the robust generalizability of FREST in adverse
conditions. Furthermore, we extend our evaluation to the Cityscapes-lindau40
dataset to investigate the generalizability under normal conditions. FREST sur-
passes CMA [1] and performs on par with SegFormer [45] which is trained on
Cityspaces as a labeled source dataset. The results indicate that FREST ef-
fectively generalizes on normal conditions as well as adverse conditions by its
feature restoration, converting features from adverse to normal conditions.

5.3 Ablation Study

We first investigate the effect of each loss by the ablation study in Table 5.
The results show that all the losses contribute to the performance in each step.
In particular, the condition-specific loss in Step 1 and the feature restoration
loss in Step 2 significantly fulfill the primary objectives of FREST, contributing
significantly to improving the robustness of semantic segmentation.

In Table 6, we analyze the effect of the condition strainer, which draws
its structural inspiration from the adapter structure [11] for parameter-efficient
learning. To this end, we conduct a comparative study of FREST against the
naive fine-tuning strategy using the condition strainer (i.e., adapter). As shown
in the second row of the table, the conventional fine-tuning scheme using the
adapter improves the performance marginally, demonstrating the ineffectiveness
of a naive application of the adapter (+0.4%p). In addition, the third row shows
that the full fine-tuning of all parameters of both the segmentation network
and the adapter results in a slight improvement (+0.5%p). It suggests that our
performance improvement does not solely stem from an increase in the num-
ber of parameters in the condition strainer. Consequently, the proposed training
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Table 7: The number of parameters for
additional modules.

Param.

SegFormer [45] 81.4M (100%)
Condition Strainer 2.1M (2.6%)
Projection Layer 1.2M (1.5%)

Table 8: Impact of restored features fadv.

Features for Inference mIoU

Condition-infused feature cadv 59.0
Restored feature fadv 68.6

Table 9: Performance according to pos-
itive embedding selection strategies and
loss functions. Cls. and Contra. denote
classification and contrastive loss.

Pos. Emb. Selection Cls. Contra. mIoU

All
✓ 62.9

✓ 63.4

(1) RANDOM ✓ 62.4

(2) LOWEST ✓ 56.6

(3) HIGHEST (Ours) ✓ 68.6

scheme, coupled with the condition strainer, contributes to the performance sig-
nificantly (+5.9%p).

5.4 Analysis on FREST

Parameter Efficiency. As shown in Table 7, the total parameters of the base-
line, SegFormer [45], are 81.4M (100%), while the strainers occupy only 2.1M
(2.6%), and the projection head has 1.2M (1.5%), which require only a small
number of parameters. Also, it’s important to note that no additional parame-
ters are required during inference, as only the encoder and decoder are utilized.
Impact of Restored Feature fadv. We evaluate the efficacy of the restored
adverse features fadv learned by FREST. To this end, we compare the inference
result using the restored features fadv, as employed in our framework, with that
using the condition-infused features cadv. Table 8 demonstrates that utilizing
restored features fadv robustly performs as intended, while employing condition-
infused features cadv leads to inferior performance due to their inclusion of detri-
mental characteristics of adverse conditions.
Analysis on Condition-specific Learning. To verify our design choice for
the objective function learning condition information, we investigate variants
of its positive embedding selection strategies and loss functions as summarized
in Table 9. In detail, we first evaluate variants using all condition embeddings
{ziadv}Ni=0 where N is the number of condition embeddings in a positive queue
varying classification and contrastive loss as loss functions. We adopt supervised
contrastive learning [17] for multiple positive samples. The results show that the
contrastive loss learns better condition embedding space than the classification
loss. To address the diverse distribution of positive embeddings from adverse con-
ditions in contrastive learning, we choose the representative positive embedding
following variants: (1) RANDOM that select an arbitrary embedding in the positive
queue, (2) LOWEST that pick the lowest similar embedding with the anchor em-
bedding, and (3) HIGHEST that pick the highest similar embedding. The results
demonstrate that using the highest similar embedding as a positive sample for
contrastive learning is the most effective strategy for learning condition embed-
ding space. We suspect the reason is that the most similar positive embedding
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Fig. 8: Qualitative results of FREST (Ours), its baseline (SegFormer [45]), and
CMA [1] on ACDC and RobotCar.

is likely to share common adverse conditions with the anchor embedding. This
similarity helps to learn condition information, allowing the model to consider
the distinct attributes of each adverse condition. Consequently, it helps FREST
to learn the condition embedding space effectively.

5.5 Qualitative Results

As illustrated in Fig. 8, we present the qualitative results FREST, its base-
line [45], and a previous work [1] on ACDC [34] and RobotCar [19, 26]. The
results show that FREST excels in segmenting fine-grained objects such as a
pole (1st and 4th column) and classifying ambiguous semantics such as road and
sidewalk (2nd and 3rd column) across multiple adverse conditions compared with
its baseline and the previous work.

6 Conclusion

We have presented the novel framework of feature restoration for multiple ad-
verse conditions. FREST operates in two stages as follows: (1) learning the con-
dition embedding space that represents only condition-specific information of
images and (2) restoring features for adverse conditions on the learned condi-
tion embedding space. As a result, FREST achieved a new state of the art on
two benchmarks for SFDA under multiple adverse conditions, while it showed
superior generalization ability on unseen datasets. In terms of limitations, our
framework currently does not cover various adverse conditions, including image
degradation and camera artifacts, which will be expanded in our future work.
Acknowledgement. This work was supported by Samsung Research Funding & In-
cubation Center of Samsung Electronics under Project Number SRFC-IT1801-52.
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