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Abstract. Instruction generation is a vital and multidisciplinary re-
search area with broad applications. Existing instruction generation mod-
els are limited to generating instructions in a single style from a particular
dataset, and the style and content of generated instructions cannot be
controlled. Moreover, most existing instruction generation methods also
disregard the spatial modeling of the navigation environment. Leverag-
ing the capabilities of Large Language Models (LLMs), we propose C-
Instructor, which utilizes the chain-of-thought-style prompt for style-
controllable and content-controllable instruction generation. Firstly, we
propose a Chain of Thought with Landmarks (CoTL) mechanism, which
guides the LLM to identify key landmarks and then generate complete
instructions. CoTL renders generated instructions more accessible to fol-
low and offers greater controllability over the manipulation of landmark
objects. Furthermore, we present a Spatial Topology Modeling Task to
facilitate the understanding of the spatial structure of the environment.
Finally, we introduce a Style-Mixed Training policy, harnessing the prior
knowledge of LLMs to enable style control for instruction generation
based on different prompts within a single model instance. Extensive
experiments demonstrate that instructions generated by C-Instructor
outperform those generated by previous methods in text metrics, navi-
gation guidance evaluation, and user studies.

Keywords: Instruction generation · Vision-and-language navigation

1 Introduction

Developing an agent capable of communicating with humans in natural lan-
guage and accomplishing specific tasks in its environment is a crucial goal for
researchers in the field of embodied AI. Such an agent needs two key abilities:
the first one is to execute specific tasks based on human instructions, and the
second one is to provide interactive feedback and guidance to humans based on
environmental information. Regarding the first ability, one of the most typical
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Go to the living room and find me at the chair.

Please tell me more details.

Go straight in the hallway until you get to a vase. Go 
into that room and wait near the chair.

Style Controllable

Landmark Controllable

At my current location, I can only see a painting.

chair vase

painting

HallwayLiving Room

BathroomBedroom

Go to the direction opposite to the painting until you get 
to a door. Go straight in the hallway until you get to a 
vase. Go into that room and wait near the chair.

Fig. 1: C-Instructor possesses the ability to control the linguistic style of generated
instructions, and the ability to manipulate landmarks within the instructions (§1).

tasks is vision-and-language navigation (VLN) [5], which has garnered exten-
sive research interest [26, 31, 44, 45, 48, 51, 54, 73] and developed fast in recent
years [2, 3, 9, 17–19,23,34,39,40,49,59–61,64,67,71].

Regarding the implementation of the second capability, i.e., machine feed-
back, one of its prominent facets, instruction generation, has been a long-standing
area of multidisciplinary research dating back to the 1960s [43]. The instruction
generation model can be used for describing a path explored by a robot to a
human in human-robot collaboration tasks. In practical scenarios, it can be ap-
plied to intelligent guidance for the visually impaired [26], foster human-machine
trust [63], and provide guidance in hazardous scenarios, etc. An instruction gen-
eration model fulfilling the prerequisites of human-machine collaboration must
possess the following two capabilities [31,48], i.e., executability and controllabil-
ity. For executability, instructions are supposed to exhibit high linguistic quality
and provide clear guidance at navigational junctions. For controllability, control
over instruction generation in style and content is also of essential importance to
improve communication efficiency. For example, when the instruction recipient
is acquainted with the environment, it is more efficient to generate instructions
with higher levels of abstraction. Additionally, the guidance provided in the in-
structions may need adjustments based on the landmarks that the instruction
recipient focuses on in the environment.

To enhance the executability and controllability of instruction generation
models, we propose a Controllable Navigation Instructor (C-Instructor), which
possesses the ability to generate easily executable instructions with high linguis-
tic quality, as well as the capability to controllably generate instructions in vari-
ous linguistic styles with different landmarks (Fig. 1). C-Instructor primarily
encompasses the following four technological contributions: First, to enhance the
linguistic quality of instruction generation and handle different styles of instruc-
tions neatly, we propose an adapter structure that effectively incorporates path
information into the GPT-based Large Language Model (LLM) [20]. Second, to
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improve the executability of generated instructions, we present a training strat-
egy involving a Chain-of-Thought with Landmarks (CoTL) mechanism and a
Spatial Topology Modeling Task (STMT). CoTL employs a step-by-step think-
ing [66] approach to guide the model to identify crucial landmarks before gener-
ating complete instructions; STMT incorporates spatial connectivity prediction
as an auxiliary task in training to facilitate the understanding of the topolog-
ical structure of the environment. Third, in order to generate instructions in
various styles with a single model instance, we introduce a Style-Mixed Train-
ing (SMT) policy, in which different styles of instructions are jointly learned.
Distinct instruction styles are trained using prompts as differentiation, enabling
control over the style of generated instructions. Fourth, the collaboration be-
tween CoTL and SMT enhances the capabilities of crucial navigation waypoints
localization and spatial direction guiding, thus improving the executability of
the generated instructions. Benefiting from SMT and CoTL, C-Instructor al-
lows control over the generation style of instructions and attention to specific
objectives while maintaining high linguistic quality of generated instructions.

In our experiments, C-Instructor significantly outperforms previous in-
struction generation methods [16,52,58,63] across different linguistic metrics on
four indoor/outdoor benchmarks [5,26,31,48]. In addition, it proves to be an ef-
fective means of data augmentation for VLN training over previous speaker mod-
els [16, 52, 58, 63]. Moreover, instructions generated by C-Instructor demon-
strate enhanced navigation guidance capabilities in both instruction following
model experiments and human evaluations.

2 Related Work

Navigation Instruction Generation. The study of generating linguistic in-
struction for navigation can date back to Lynch’s work [43] in the 1960s. Early
efforts [1,65] investigated the human cognitive mechanism for describing routes.
They found that navigation direction is associated with the cognitive map [32]
and influenced by various factors including cultural background [56] and gen-
ders [27]. This area has long been overlooked by the computer vision academia
and is simply viewed as a data augmentation tool for VLN. However, it holds
significant practical relevance, e.g ., establishing human-machine trust [63] and
facilitating blind navigation [26]. Fried et al [16] first proposed a LSTM-based in-
struction generation model to augment training samples and re-weight the route
choice of the navigator. There are three primary aspects for the advancement of
instruction generation: elevated linguistic quality, finer-grained directives, and
longer, more intricate instructions. In order to enhance the quality of instruc-
tions, some methods introduce supplementary information like external knowl-
edge [68] and landmark information [62,70], build instruction template [70] and
utilize larger language models [62]. [22,24,29,70,74] generate fine-grained align-
ment between language and navigation paths. To build more intricate instruc-
tions, [28, 38, 74] cross-connect paths to generate longer instruction-trajectory
pairs. Methods like [15, 58, 63] also consider instruction generation and follow-
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ing as dual tasks, and employ joint-optimization or cycle-consistent learning to
promote navigation performance and instruction generation quality.

Previous deep-learning-based methods [16, 52, 58, 63] can only generate nav-
igation instructions in a single style with limited linguistic quality and no con-
trollability. By leveraging LLMs, C-Instructor notably enhances the linguis-
tic quality of instructions. Moreover, C-Instructor provides style and content
controllability in a single model instance via SMT and CoTL respectively.
Parameter-Efficient Fine-Tuning. The pre-training and fine-tuning paradigm
has demonstrated remarkable efficacy in VLN and various other tasks. How-
ever, as model parameters grow exponentially and downstream task data remain
limited, full-scale fine-tuning fails to yield robust performance on downstream
tasks due to overfitting and catastrophic forgetting. The approach known as
Parameter-efficient Fine-tuning (PEFT), involving the selective freezing of a sig-
nificant portion of the model’s parameters while training only a small subset, has
met success in numerous domains. PEFT has proven highly effective in adapting
pre-trained models like CLIP [50], BERT [12], and GPT [8, 55] to downstream
tasks. There are three main types of PEFT methods, namely prefix finetuning,
reparameterization, and adapter. Prefix finetuning methods like [33, 36, 41, 72]
feed learnable prompts into the model to learn task-specific knowledge. The
methods [25, 30] use reparameterization to reduce the amount of trainable pa-
rameters. Approaches employing adapters [20, 69] adeptly accommodate inputs
from diverse modalities and various downstream tasks by incorporating addi-
tional layers into the pre-trained network.

Understanding the spatial topology of the navigation environment is essential
for the instruction generator to guide the instruction follower. Based on adapter
PEFT methods [20, 69], C-Instructor introduces a trajectory encoder to in-
corporate spatial information into the LLM. Moreover, C-Instructor includes
STMT to facilitate the understanding of spatial connectivity of the environment.

3 Methodology

3.1 Task Formulation

The instruction generation model is required to generate the instruction X =
{x1,x2, ...,xS} with S words that provides guidance for following the given
path R={r1, r2, ..., rT } with T steps. At a given time step t, rt is composed of
the panoramic observation ot and action at. The objective of model parameters
θ is to maximize the likelihood of the target instruction X∗:

θ∗ = argmax
θ

log p(X∗|R,θ). (1)

3.2 Overall Framework

To leverage the linguistic capabilities of LLMs, we employ an adapter-based [20]
approach in C-Instructor to embed actions and visual observations. The
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(a) The overall framework of C-Instructor (§3.2)
including Trajectory Encoder and LLM Adapter.
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(b) Details of STMT (§3.3). In STMT, C-
Instructor selects backtracking action that
leads back to previous viewpoint.

Fig. 2: Overall framework of C-Instructor (§3.2) and details of STMT (§3.3).

adapter consists of two components: the Trajectory Encoder and the LLM Adapter.
The overall structure is shown in Fig. 2a.
Trajectory Encoder. The trajectory encoder encodes the viewpoint and ac-
tion information for each step along the path into visual features. In the Matter-
port3D Simulator [46], a panoramic observation ot at time step t is partitioned
into K=36 subview images {vt,k}Kk=1, where the action at is represented using
the index of the subview image corresponding to the motion direction. First, we
extract visual features for each subview image using the CLIP [50] visual encoder
followed by a linear projection layer with Layer Normalization [6]:

It,k = layer_norm(linear(fCLIP (vt,k))), (2)

where It,k ∈R1×DI , vt,k ∈R224×224×3. To distinguish the spatial and temporal
relation of each view, we add a spatial positional encoding posvk and a history
encoding posht to It,k. To represent action information, we introduced a special
token posa for the action view at and another token poso for non-action views:

Ît,k =

{
It,k + posvk + posht + posa, if k = at

It,k + posvk + posht + poso, otherwise.
(3)

Subsequently, we concatenate M aggregator tokens pv
1:M with Ît,1:K along the

length dimension and then feed them into several ViT [13] blocks to aggregate
global features for step t:

[pv
t,1:M ; It,1:K ] = fV iT ([p

v
1:M ; Ît,1:K ]), (4)

where pv
1:M ∈RM×Dp ; pv

t,1:M is the trajectory feature representation at step t.
LLM Adapter. We introduce the trajectory features into LLM via layer-wise
adapting. We utilize adapterl(·, ·) to integrate the trajectory features pv

t,1:M into
xl,1:S , which is the output of l-th LLM transformer block:

x̃l,1:S = adapterl(p
v
t,1:M ,xl,1:S). (5)
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Here x̃l,1:S replaces the xl,1:S in the subsequent LLM blocks. Next, we will detail
the structure of adapterl(·, ·). We add the trajectory features pv

t,1:M with the
lth-layer’s adapter query ql,1:M and map them to the textual space through a
linear layer linearl(·):

p̃l,t,1:M = linearl(pv
t,1:M + ql,1:M ). (6)

Next, we concatenate the {p̃l,t,1:M}Tt=1 in the order of t:

ρl,1:V = concat({p̃l,t,1:M}Tt=1), V =T×M. (7)

To preserve the natural language capabilities of the LLM, we use zero-initialized
attention [69] to get x̃l,1:S :

x̃l,1:S = zero_attn([ρl,1:V ;xl,1:S ]). (8)

Based on this model structure, we design STMT (§3.3) to improve the model’s
spatial awareness, and CoTL (§3.4) to enhance the model’s perception of land-
marks. Finally, through SMT (§3.5), we achieve style-controlled instruction gen-
eration. In subsequent sections, we utilize [R;W ] to denote the model’s input,
where R represents the path input, and W stands for the language input.

3.3 Spatial Topology Modeling Task (STMT)

Understanding the spatial relationships between different viewpoints is funda-
mental for generating navigation instructions. LLMs and visual encoders are
typically trained on data from the Internet with few embodied-type data. Con-
sequently, they possess limited spatial cognition abilities. Therefore, we introduce
STMT as an auxiliary task to enhance the model’s spatial perception capability.

In STMT, the model predicts actions between adjacent viewpoints along a
trajectory. As the actions along the navigation path are already represented
through location encoding, we make the model predict how to return to the pre-
vious location from the current viewpoint, as shown in Fig.2b. Given a trajectory
{r1, r2, ..., rt}, the model needs to predict apt in order to transit from rt back to
rt−1. We use prompta to distinguish this task and introduce a new special token
xa
0 for predicting apt . The model input is:

[r1, r2, ..., rt; prompta,x
a
0 ]. (9)

We denote the output corresponding to xa
0 at the l-th LLM block as xa

l ∈ R1×Dp .
We then aggregate the visual features at step t through an attention layer:

x̃a
l = cross_attn(xa

l , It,1:36). (10)

x̃a
l replaces xa

l as the input for the following layers. To mitigate the impact
on the primary model and enhance training stability, the aggregation operation
only starts from the output of Ls-th LLM block. We replace the original word
prediction layer with an attention mechanism to predict apt :

At = softmax(xa
LWI⊤

t,1:36), (11)
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where W ∈ RDp×DI is a learnable projection matrix, xa
L is the output of the

LLM and At is the predicted distribution. We apply cross entropy loss over At:

La = cross_entropy(apt ,At). (12)
During the training process, La is jointly optimized with the auto-regressive loss
for instruction generation.

3.4 Chain of Thought with Landmarks (CoTL)

Distinguished from image or video captioning, navigation instructions encompass
more than just visual descriptions. An easily executable navigation instruction
usually includes several landmarks for directional guidance at crucial turning
points. Besides, according to research in human cognitive psychology [43], it has
been observed that humans, when providing path guidance, tend to first identify
key navigation points within their cognitive maps before structuring their lan-
guage. Therefore, the ability to determine landmarks is crucial for instruction
generation. CoT [66] has been validated as an effective means of guiding the rea-
soning process of LLMs. Consequently, we introduce CoTL to direct the model
to utilize critical landmarks in the navigation trajectory to generate instructions.
Landmark Selection. For the provided annotation pairs of instructions and
paths in the training set, we initially extract nouns from the instructions as
linguistic landmarks Λx = {λx

n}
Nx
n=1. Since valuable landmarks may not be fully

specified in the annotated instructions, we supplement the landmark set by con-
sidering the visual characteristics of the path, as shown in Fig. 3. We select visual
landmarks from two perspectives, i.e., the temporal perspective and the spatial
perspective. From the temporal perspective, we identify crucial viewpoints along
the trajectory, where landmarks are more essential for guidance. Specifically,
when the trajectory leads into a new scene, e.g ., transitioning from a corridor to
a room, the navigator often requires a landmark for guidance. We compute the
feature difference of panoramic views along a trajectory to locate these view-
points. For a given path, we construct a sequence comprising the mean-pooled
features of panoramic views {I∗

t }Tt=1. We then compute the temporal importance
score δτt via cosine distance between I∗

t and I∗
t+1:

δτt = 1−
I∗
t · I∗

t+1

||I∗
t || · ||I∗

t+1||
, I∗

t =
1

K

K∑
k=1

It,k, (13)

where δτt indicates the temporal importance of landmarks appearing at time step
t. From the spatial perspective, we need to identify the most distinctive object
to serve as a landmark. Distinctive objects are primarily the ones that appear
in the action view and not in any other candidate views. At time step t, we first
extract all objects appearing in vt,at

as the candidate landmark set {λ∗
t,n}

Nt
n=1.

Then, we assign distinctive scores according to the occurrence of landmarks in
other candidate views. For example, the landmark λ∗

t,n that also appears in
candidate views {c1, c2, c3} is assigned the spatial importance score δat,n:

δat,n = 1− dat,c1 − dat,c2 − dat,c3 , (14)
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chair
paint

chair

Spatial Selection: Objects distinct in action view

Temporal Selection: Action leads to new scene

CoT Inference
promptλ: You are given a sequence of views of a path.
Please extract critical landmarks in the path.
Landmarks : < stair, living room, coffee table >

promptw: You are given a sequence of views of a path in 
an indoor environment. Please describe the path according 
to the given landmarks in details for an intelligent agent to 
follow. <Landmarks>
Instruction: Go down the stairs and take a right. Go into 
the living room. Stop next to the coffee table.

𝑎𝑎𝑡𝑡

𝑎𝑎𝑡𝑡−1 𝑎𝑎𝑡𝑡 𝑎𝑎𝑡𝑡+1

Fig. 3: Details of Landmark Selection (left) and CoT Inference (right) in CoTL (§3.4).
In Spatial Selection, candidate views are partitioned in blue boxes, and only objects
that are distinct in action view are selected as landmarks (marked with a green tick
!). In Temporal Selection, the action that leads to a new scene is treated as a significant
viewpoint (marked in red box).

where dat,ci is the cosine distance between view at and view ci. The final score
for landmark λ∗

t,n is:
δt,n = δat,n · δτt . (15)

We select landmarks with δt,n ≥ β from all λ∗
t,n in the trajectory to build the

visual landmark set Λv = {λv
n}

Nv
n=1. Finally, the full landmark set of trajectory

R can be constructed as:
Λ = Λx ∪ Λv. (16)

CoT Training and Inference. To enable the model to comprehensively iden-
tify landmarks, we utilize extracted landmarks Λ to construct training data. For
a trajectory R, its corresponding data item consists of:

[R; promptλ, Λ], (17)

where promptλ is the prompt for landmark generation. During training, only the
Λ part is supervised.

To equip the model with the ability to generate instructions according to
given landmarks, the training data for instruction generation corresponding to
a path R can be constructed as:

[R; promptw, Λx,X], (18)

where only the X part is supervised during training. We establish a strong cor-
respondence between landmarks and instructions in this phase by using only Λx

as the landmark input. This helps ensure the generation of diverse instructions
by modifying landmarks.

Accordingly, the instruction generation process of the model (Fig. 3) is di-
vided into two stages. Firstly, given a trajectory R, the model is guided by
promptλ to predict landmarks M . Then, using the generated M and guided by
promptw, the complete instruction is generated.
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There are two key advantages of this CoT paradigm. Firstly, it can high-
light the landmarks within the path during training, enhancing the feasibility
of instructions and reducing the risk of semantic errors in instruction genera-
tion. Secondly, by modifying the landmarks predicted in the first step, it allows
for controlled alterations in the model’s focus on landmarks in the trajectory.
Further details of the prompts are discussed in the supplementary.

3.5 Style-Mixed Training (SMT)

In application, a model that can only generate step-by-step instructions is less
practical. When the instruction follower is familiar with the environment, fine-
grained instructions lead to reduced communication efficiency. Additionally, due
to the extensive amount of labor required for annotating navigation instructions,
the data available is limited, especially for instructions with specified styles. This
results in LLMs being susceptible to overfitting, makes it challenging to achieve
accurate cross-modal mapping, and leads to suboptimal instruction generation
performance when the model is trained with single-style instructions.

To mitigate the issues above, we mix datasets with instructions in differ-
ent linguistic styles for training. We devise descriptions that encapsulate diverse
styles into prompts to enable the LLM to generate in different styles. By em-
ploying SMT, not only is the quality of instruction generation enhanced, but
we also enable a single LLM instance to adaptively generate different styles of
instructions for the same path R by switching between different prompts.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We evaluate the instruction generation performance on three indoor
navigation datasets [5, 31,48] and one outdoor navigation dataset [26]:

– R2R [5]: It has four splits with step-by-step instructions, i.e., train (61
scenes, 14, 039 instructions), val seen (61 scenes, 1, 021 instructions), val
unseen (11 scenes, 2, 349 instructions), and test unseen (18 scenes, 4, 173
instructions). As test unseen is reserved for benchmarking instruction fol-
lowers, we report the performance of instruction generation on val splits.

– REVERIE [48]: It contains high-level descriptions of target destinations and
objects. It has three open-access splits, i.e., train (61 scenes, 10, 466 in-
structions), val seen (61 scenes, 1, 371 instructions), and val unseen (10
scenes, 3, 753 instructions). We report the performance on two val splits.

– RxR [31]: It is a multilingual indoor navigation dataset with longer tra-
jectories and more fine-grained aligned instructions. we specifically utilize
the English instructions for comparison with previous methods. It has three
publicly available splits, and we report the performance on two val splits.

– UrbanWalk [26]: It is an outdoor navigation dataset with 26, 808 image-
instruction pairs simulated by CARLA [14]. We follow the setting in [68].
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Table 1: Comparison to state-of-the-art methods (§4.3) on R2R [5].

R2R val seen R2R val unseen
Methods

SPICE ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ SPICE ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑

BT-speaker [16] [NeurIPS2018] 0.173 0.670 0.236 0.373 0.209 0.443 0.113 0.600 0.149 0.113 0.167 0.376
EDrop-speaker [52] [NAACL2019] 0.168 0.660 0.228 0.362 0.208 0.447 0.117 0.590 0.157 0.160 0.174 0.389

CCC-speaker [58] [CVPR2022] 0.194 0.698 0.265 0.449 0.218 0.467 0.108 0.591 0.139 0.120 0.164 0.375
Lana [63] [CVPR2023] 0.170 0.657 0.215 0.265 0.205 0.433 0.174 0.667 0.236 0.295 0.213 0.448

C-Instructor w/o SMT 0.230 0.732 0.270 0.511 0.237 0.475 0.217 0.715 0.263 0.453 0.234 0.470
C-Instructor (Ours) 0.233 0.726 0.276 0.529 0.247 0.480 0.212 0.713 0.266 0.447 0.239 0.473

The val unseen splits in R2R [5], REVERIE [48], and RxR [31] contain
trajectories whose corresponding scenes are not included in train splits, and
thus are good testbeds for generalizability [11,15,68,70]. Consequently, we focus
on those splits to better validate the generalizability of C-Instructor.
Evaluation Metrics. We evaluate the linguistic quality of generated instruc-
tions with widely-used automatic text similarity metrics, including BLEU [47],
SPICE [4], CIDEr [57], Meteor [7], and Rouge [37]. For each navigation path, all
corresponding ground-truth instructions are used as references.

4.2 Implementation Details

Detailed Architecture. We use the multimodal LLaMA-Adapter [20] with 32
layers and 7B parameters as the LLM. We adopt CLIP-ViT-L-14 [50] and 8
ViT [13] blocks in the Trajectory Encoder. The score threshold β for landmark
selection in §3.4 is set to 0.25, and Ls in §3.3 is set to 30.
Training. We only finetune the last 2 layers of LLM while fixing the other 30 lay-
ers. The CLIP [50] visual encoder is also fixed. We first pre-train C-Instructor
on PREVALENT [21] for 240K iterations with a batch size of 16, and then fine-
tune C-Instructor on multiple datasets jointly for 120K iterations with batch
size 4. We use the AdamW [42] optimizer with base learning rate 1.0 × 10−4.
Four NVIDIA A100 80GB GPUs are used for training.
Inference. We set the generation temperature to 1.0 for RxR [31], and 0.1 for
all other datasets. All other hyperparameters remain the same as [20].

4.3 Comparison to State-of-the-Art Methods

We compare C-Instructor with four existing instruction generation models.
For a fair comparison, we report the performance of C-Instructor without
SMT in addition to the performance of the full model. We employ the Penn
Treebank tokenizer [53] to compute the linguistic metrics.
R2R [5]. The results on R2R are summarized in Tab. 1. C-Instructor outper-
forms previous methods under all metrics on both val splits. In terms of SPICE,
C-Instructor demonstrates a superiority of 3.9% in absolute terms and 20.1%
in relative terms on val seen as well as 3.8% in absolute terms and 21.8% in
relative terms on val unseen compared to the previous best. This verifies that
C-Instructor exhibits good performance in generating fine-grained directives.
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Table 2: Comparison to state-of-the-art methods (§4.3) on REVERIE [48].

REVERIE val seen REVERIE val unseen
Methods

SPICE ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ SPICE ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑

BT-speaker [16] [NeurIPS2018] 0.121 0.693 0.347 0.269 0.223 0.602 0.103 0.664 0.302 0.190 0.200 0.569
EDrop-speaker [52] [NAACL2019] 0.138 0.641 0.360 0.523 0.277 0.597 0.114 0.648 0.319 0.333 0.233 0.546

CCC-speaker [58] [CVPR2022] 0.144 0.727 0.408 0.502 0.272 0.589 0.115 0.681 0.357 0.334 0.232 0.548
Lana [63] [CVPR2023] 0.137 0.707 0.404 0.627 0.282 0.619 0.107 0.696 0.345 0.327 0.239 0.582

C-Instructor w/o SMT 0.184 0.785 0.480 0.844 0.319 0.649 0.139 0.739 0.369 0.464 0.259 0.577
C-Instructor (Ours) 0.182 0.775 0.459 0.805 0.311 0.647 0.141 0.754 0.419 0.545 0.267 0.591

Table 3: Comparison to state-of-the-art methods (§4.3) on RxR [31].

RxR val seen RxR val unseen
Methods

BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑

BT-speaker [16] [NeurIPS2018] 0.514 0.188 0.026 0.204 0.365 0.566 0.211 0.024 0.208 0.372
EDrop-speaker [52] [NAACL2019] 0.595 0.197 0.047 0.213 0.378 0.568 0.184 0.038 0.205 0.370

CCC-speaker [58] [CVPR2022] 0.526 0.194 0.024 0.185 0.355 0.518 0.187 0.026 0.184 0.353
Lana [63] [CVPR2023] 0.342 0.123 0.040 0.128 0.275 0.319 0.115 0.043 0.124 0.273

C-Instructor w/o SMT 0.683 0.233 0.081 0.243 0.381 0.667 0.224 0.080 0.236 0.379
C-Instructor (Ours) 0.685 0.234 0.082 0.238 0.382 0.678 0.233 0.077 0.239 0.382

REVERIE [48]. As depicted in Tab. 2, C-Instructor also attains state-of-
the-art performance in generating high-level trajectory descriptions. It exhibits
a relative improvement of 26.4% on val seen and 22.6% on val unseen in terms
of SPICE, which is more pronounced compared to R2R [5].
RxR [31]. As shown in Tab. 3, C-Instructor significantly outperforms ex-
isting instruction generation algorithms in all metrics. This suggests that C-
Instructor possesses the capability to manage visual contexts of extended
trajectory and generate more intricate instructions.
UrbanWalk [26]. As shown in Tab. 4, C-Instructor also achieves the best
performance under all metrics on outdoor scenes. This indicates that our C-
Instructor possesses strong generalization capability and universality.

4.4 Diagnostic Experiment

To thoroughly study the effectiveness of C-Instructor, we compare the full
model with several ablative designs. We test the ablative models on REVERIE [48]
and R2R [5] val unseen. The results are summarized in Tab. 5.

Table 4: Comparison to state-of-the-art methods (§4.3) on UrbanWalk [26].

Methods
UrbanWalk

SPICE ↑ BLEU-1 ↑ BLEU-4 ↑ Meteor ↑ Rouge ↑

BT-speaker [16] [NeurIPS2018] 0.524 0.649 0.408 0.350 0.620
EDrop-speaker [52] [NAACL2019] 0.531 0.689 0.435 0.358 0.634

ASSISTER [26] [ECCV2022] 0.451 0.576 0.164 0.319 0.557
Kefa-speaker [68] [Arxiv2023] 0.566 0.711 0.450 0.378 0.655
C-Instructor (Ours) 0.645 0.771 0.534 0.461 0.781
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Table 5: Ablation study (§4.4) on REVERIE [48] val unseen and R2R [5] val unseen.

REVERIE val unseen R2R val unseen
Methods

BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑ BLEU-1 ↑ BLEU-4 ↑ CIDEr ↑ Meteor ↑ Rouge ↑

Vanilla LLM 0.399 0.131 0.432 0.156 0.400 0.307 0.059 0.292 0.139 0.303
Baseline 0.648 0.308 0.347 0.248 0.547 0.676 0.232 0.356 0.225 0.449
Baseline + SMT 0.679 0.344 0.397 0.254 0.562 0.685 0.254 0.407 0.233 0.466
Baseline + SMT + STMT 0.737 0.402 0.490 0.258 0.590 0.689 0.262 0.445 0.228 0.479
Baseline + SMT + STMT + CoTL 0.754 0.419 0.545 0.267 0.591 0.713 0.266 0.447 0.239 0.473

Vanilla LLM. We assess the performance of vanilla LLM by captioning views
along the trajectory using BLIP [35] and feeding those captions with devised
prompts into pre-trained LLaMA [20] to generate navigation instructions. The
performance of this vanilla method fine-tuned on REVERIE [48] and R2R [5]
respectively (#1) remains largely inferior to the baseline in §3.2 (#2), which still
significantly lags behind our full method (#5). This underscores the inherent
information loss through captioning as well as the effectiveness of our design.
SMT. To train a model with instructions from diverse domains yields perfor-
mance benefits. In comparison to #2, the model trained using SMT (#3) exhibits
an improvement in SPICE on the REVERIE val unseen from 0.127 to 0.129. It
concurrently achieves a performance improvement on the R2R val unseen. This
suggests that enhancing linguistic diversity will foster the quality of instructions
generated by C-Instructor.
STMT. The model trained with STMT (#4) demonstrates a notable impact
on generating highly abstract instructions. It lifts BLEU-4 from 0.344 to 0.402
and CIDEr from 0.397 to 0.490 on the REVERIE val unseen. This highlights
the significance of understanding the environment layout.
CoTL. Compared to #4, the model with CoTL (#5) significantly improves
the semantic consistency with the ground truth instruction. The improvement
on REVERIE is more significant: SPICE increases from 0.129 to 0.141. This
suggests that incorporating CoTL enhances the alignment between generated
instructions and the visual environment, especially for high-level instructions.

4.5 Instruction Quality Analysis

Evaluating the quality of instructions solely based on text similarity metrics is
insufficient as those metrics do not thoroughly assess the semantic alignment
between instructions and trajectories. Thus, we further analyze the semantic
quality of instructions generated by C-Instructor from three aspects through
the following experiments:
Path Guiding Proficiency. The success rate (SR) of navigators with instruc-
tions from different instruction generators can be used as an index for the quality
of instructions. We regenerate instructions for the paths in REVERIE [48] val
unseen and employ two navigators (HAMT [10] and DUET [11]) to assess SR and
SPL (SR weighted by Path Length) when guided by regenerated instructions.
As depicted in Tab. 6b, SR and SPL of instructions provided by C-Instructor
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Table 6: Instruction quality analysis based on performance of navigation models (§4.5).

Data Source
REVERIE val unseen

SR ↑ SPL ↑ RGS ↑ RGSPL ↑

Original [48] 32.95 30.20 18.92 17.28

+BT-speaker [16] 31.84 28.37 17.35 15.14

+EDrop-speaker [52] 30.45 27.18 18.60 16.24

+CCC-speaker [58] 29.65 26.20 16.33 14.58

+Lana [63] 33.05 29.76 19.14 17.20

+C-Instructor (Ours) 34.25 31.25 19.99 18.08

(a) Performance of HAMT [10] using different instruction
generator for data augmentation on REVERIE [48] val
unseen (§4.5). Training with instructions generated by C-
Instructor yields the most significant improvement.

Instruction Generator
Follower

HAMT [10] DUET [11]
SR ↑ SPL ↑ SR ↑ SPL ↑

Human annotation [48] 32.95 30.20 46.98 33.73
BT-speaker [16] 24.85 21.74 30.47 21.46
EDrop-speaker [52] 26.19 23.55 27.89 17.00
CCC-speaker [58] 23.29 20.69 29.74 19.55
Lana [63] 26.84 24.38 31.39 20.44
C-Instructor (Ours) 31.35 29.27 43.34 30.13

(b) Performance of HAMT [10] and DUET [11] in following
instructions generated on REVERIE [48] val unseen (§4.5).
SR and SPL are provided as metrics to evaluate the path-
guiding proficiency of different instruction generation models.

significantly exceeds that of those generated by prior models and remarkably
aligns with the navigation accuracy of human-annotated instructions.
Data Augmentation. The enhancement of navigation accuracy of instruction
followers via data augmentation can also serve as an indicator for the improved
quality of instruction generation. Hence, we leverage 17, 533 instructions gen-
erated by various instruction generation models on randomly sampled paths
along with the original train split of REVERIE [48] to train HAMT [10]. As
shown in Tab. 6a, the model utilizing data generated by C-Instructor ex-
hibits an increase in the accuracy of navigation including SR, SPL, RGS (Re-
mote Grounding Success rate), and RGSPL (RGS weighted by Path Length).
RGS and RGSPL measure the success rate of the agent’s finding the target ob-
ject indicated in the given instruction and are used as navigator performance
metrics on REVERIE [48]. In contrast, employing other models for data aug-
mentation results in an unintended performance drop for the navigator. This
indicates that C-Instructor, when utilized as a means of data augmentation,
exhibits superior efficacy in generating instructions with high-level abstraction.
User Study. To provide a more comprehensive evaluation of the semantic qual-
ity of generated instructions, we conduct a series of human evaluations. Specifi-
cally, 15 college students are individually tasked with scoring from 0 to 5 accord-
ing to the semantic alignment between the given instructions and the correspond-
ing trajectories. The instructions provided are generated by C-Instructor,
Lana [63], CCC [58], BT-Speaker [16], and EnvDrop-Speaker [52] from a total of
100 paths. The paths are sampled from the val unseen split of REVERIE [48].
C-Instructor garners a higher average score, i.e., 3.50, vs Lana 2.26, CCC
2.14, BT-Speaker 2.10 and EnvDrop-Speaker 2.10.

4.6 Qualitative Results

We visualize an example of indoor navigation trajectory and corresponding in-
struction generation results in Fig. 4. As seen, C-Instructor can identify crit-
ical landmarks in the path and generate high-quality instructions accordingly in
specified styles. Moreover, we can control the focus of C-Instructor by mod-
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Annotation: Walk past the sitting area and wait in the kitchen 
by the island.
Generation: < couch, chairs, kitchen > Walk straight past 
the couch and chairs. Stop in front of the kitchen.
LM. Control: < hallway, sofa, couch, chairs, kitchen, island 
> Walk down the hallway past the sectional sofa and stop by 
the dining room island.

Annotation: Go into the kitchen and clean the table 
nearest the couch.
Generation: < kitchen, chair, stool > Go to the 
kitchen and pull out the chair closest to the stool.
LM. Control: < kitchen, counter, chair, stool > Go 
to the kitchen on level 1 and clean the counter with 
the stools.

R2R Style REVERIE Style

couch couch chair

kitchen

islandstool

hallway

Fig. 4: Visualizations of navigation trajectory and instruction generation results on
R2R [5] and REVERIE [48] (§4.6).

Annotation: Turn to your one and go forward 
2.5 meters, pedestrian and pole in front.
Generation: Turn to your one and then go 
forward 2.5 meters, pole and pedestrian in 
front and then building on your right.

pole pole
pedestrian

building

Fig. 5: Visualizations of path and generated instruction on UrbanWalk [26] (§4.6).

ifying landmarks. Fig. 5 displays a result on UrbanWalk [26]. We can observe
that C-Instructor can also provide practical instructions in outdoor scenes.

5 Conclusion and Discussion

In this work, we propose C-Instructor, which generates style-controllable and
content-controllable instructions with high linguistic quality. It uses an adapter-
based structure to leverage the language capability of LLMs and distinct style
prompts in SMT to achieve style control. To enhance the executability of gener-
ated instructions, we adopt CoTL to help identify crucial landmarks and provide
content controllability. We also devise STMT to enhance the model’s under-
standing of the environment’s spatial topology. The instructions generated by
C-Instructor not only achieve high scores in text metrics but also demon-
strate strong competence in guiding navigators, further validating the strong
correspondence between generated instructions and given trajectories. We ex-
pect that C-Instructor can greatly enhance agent-human communication and
significantly contribute to the development of versatile embodied agents.
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