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In our supplementary, we provide detailed information including model de-
sign specifics in §1, dataset summaries in §2, along with in-depth training, infer-
ence and evaluation procedures in §3 and 4. Additional ablation experiments are
included in §5. §6 details specific modules used in comparative methods. Qual-
itative results across different datasets and tasks are in §7. Lastly, limitations,
negative societal impacts, and a comparison with Fuyu-8B are in §8.

1 Implementation details

Window Attention. Our window attention is adapted from the SAM [28] vari-
ant of ViT [18]. Following SAM, after patch embedding, images are downsampled
by a factor of 16, and windows are defined with a size of 14×14. The primary
distinction from the original lies in how we handle multi-track local observations
and responses in the parallel training stage, such as grid-wise prompts (i.e., local
image token, task identifier) and their outputs. To manage these multi-track ele-
ments, we merge them into a sequence and append them after the shared obser-
vation. Consequently, the input to window attention consists of multiple parts,
requiring a customized attention mask to ensure grid independence while en-
abling autoregressive prediction, as detailed in Figure 1. Within each subprocess
group (i.e., those associated with the same grid), interactions are left-to-right
unidirectional attention. Moreover, tokens belonging to different subprocesses
are isolated, preventing them from accessing each other’s information.
Global Attention. In tasks that require object- and pixel-level analysis, the
large number of local predictions creates significant memory and computational
burdens, especially in global attention layers, where processing attention across
all grid points can be unnecessary and inefficient. Therefore, for such tasks, we
have optimized the global attention layer to focus only on the shared global ob-
servations (i.e., input image and text), eliminating the need to compute targets
for each grid. Table 1 shows that this strategy slightly impacts performance but
greatly decreases computation time. However, in captioning and visual ground-
ing with a 224 image size, which involves only one window and a single global
response, this optimization is unnecessary.
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Table 1: Performance of semantic segmentation by single-task training with our ac-
celerated global attention. It significantly reduces the computational cost with slight
performance drops.

Global Attention mIoU Training Time

Normal 47.9 51h
Accelerated 47.7 35h
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Fig. 1: Attention mask visualization.
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Fig. 2: Out-of-vocabulary representation.

Out-of-vocabulary Representation. We encode multi-piece out-of-vocabulary
concepts to a single token. This is achieved through a streamlined approach that
utilizes only one attention layer combined with absolute positional encoding. As
shown in Figure 2, “traffic cone” is tokenized as <traffic><cone>. The corre-
sponding text embeddings, augmented with positional encoding, are input into
the attention layer, allowing each word to interact with the rest. We select the
first output token as the final representation for multi-word concepts like “traffic
cone”. For single-word concepts, we use the original text embedding directly.
Background Representation. Given that each dataset contains distinct pos-
itive and negative classes, utilizing text labels like <background> to denote
negative classes could lead to ambiguity when training across multiple datasets.
Therefore, we employed a unique encoding approach for the background class,

Fbackground = −
N−1∑
i=0

Fi/N (1)

where Fi is the representation of i-th positive class and N denotes the total
number of categories. This approach makes the cosine similarity between tokens
of a positive class and those assigned to the background class typically negative.
Its superior performance in zero-shot scenarios highlights its effectiveness.
Resolution and Coordinate Discretization. For our experiments, we use dif-
ferent image resolutions tailored to specific tasks: 1120 × 1120 pixels for object
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detection and instance segmentation, 672 × 672 pixels for semantic segmenta-
tion, and 224 × 224 pixels for image captioning and visual grounding. To encode
spatial positions as discrete tokens, we discretize the image coordinates into a
set number of intervals. Specifically, we determine the number of these intervals
to be double the resolution of the input image. For instance, with an input image
of 224 × 224 pixels, we divide the coordinate space into 448 discrete intervals.

2 Extended Datasets

2.1 In-distribution Datasets

During universal training, a total of 27 datasets from 16 publicly accessible data
sources are used, with sizes and weights detailed in Table 2. Note that the ac-
tual quantities in web-sourced caption datasets (CC3M [48], CC12M [6], SBU
Captions [43]) are fewer than the original number reported due to inactive links.
COCO. The MS COCO dataset, or Microsoft Common Objects in Context [36],
is a comprehensive dataset for object detection, segmentation, key-point detec-
tion, and captioning. It includes over 330K images, with annotations for more
than 220K, featuring 1.5 million objects across 80 categories. Each image has
five sentence descriptions and 250K pedestrians are annotated with keypoints.
The initial release in 2014 has 164K images in training (83K), validation (41K),
and test (41K) sets. In 2017, the training/validation split changed to 118K/5K.
Objects365. Objects365 [47] is a vast object detection dataset, comprising 365
object categories and boasting over 2 million training images along with 30 mil-
lion annotated bounding boxes. This dataset presents diverse objects in different
scenarios, providing a robust benchmark for challenging object detection tasks.
OpenImages. Open Images [31] is a dataset with about 9 million images, each
annotated with image-level labels, object bounding boxes, segmentation masks,
visual relationships, localized narratives, and point-level labels. Covering 20,638
image-level labels, 600 object classes with 16 million bounding boxes, and 2.8
million segmentation masks, it stands as a valuable resource in computer vision.
LVIS. LVIS [22] (Large Vocabulary Instance Segmentation) is a dataset tai-
lored for instance segmentation tasks, providing approximately 2 million high-
quality segmentation masks across over 1000 entry-level object categories within
a dataset of 164,000 images. This dataset was created to tackle the Zipf distri-
bution commonly observed in natural images, making it an invaluable resource
for researchers and developers working on instance segmentation tasks dealing
with a large vocabulary of objects.
Pascal VOC 2007. The Pascal VOC 2007 [19] dataset serves as a crucial
resource for real-world object recognition, featuring 20 object classes. With
9,963 photos and 24,640 labeled samples, thoughtfully split for balanced train-
ing/validation and testing, it stands as a versatile dataset supporting various
tasks, including classification, detection, segmentation, and person layout.
Pascal VOC 2012. Pascal VOC 2012 [19] is a valuable dataset for recogniz-
ing objects in real-world settings. It encompasses 20 object classes and includes
11,530 images with 27,450 ROI-tagged objects and 6,929 segmentations, serving
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Table 2: Universal training dataset details. Columns from left to right indicate dataset
size, proportion to total data, assigned group number, and sampling weight. Weights
are evenly distributed across the tasks. Different scenarios within each task (e.g., daily
life, autonomous driving) create individual groups with equal weights. Sampling weights
in groups are set based on dataset sizes.

Dataset Size Percent (%) Group ID Weight (%)

Object Detection 3.8M 22.55 - 20.00
Objects365 [47] 1.7M 9.98 0 3.22
OpenImages [31] 1.7M 9.98 0 3.22
LVIS [22] 164K 0.96 0 0.23
nuImages [3] 93K 0.55 1 6.66
Pascal VOC 2007 [19] 10K 0.06 2 0.37
Pascal VOC 2012 [19] 11K 0.06 2 0.22
COCO 2017 [36] 164K 0.96 2 6.07
Instance Segmentation 1.4M 8.34 - 20.00
LVIS [22] 164K 0.96 3 0.76
OpenImages [31] 1M 5.87 3 5.90
nuImages [3] 93K 0.55 4 6.66
COCO 2017 [36] 164K 0.96 5 6.66
Semantic Segmentation 322K 1.89 - 20.00
COCO-Stuff [4] 164K 0.96 6 6.28
Pascal Context [41] 10K 0.06 6 0.38
nuImages [3] 93K 0.55 7 4.84
BDD100K [60] 10K 0.06 7 0.52
Mapillary Vistas [42] 25K 0.15 7 1.30
ADE20K [61] 20K 0.12 8 6.67
Image Caption 11.3M 66.54 - 20.00
CC3M [48] 1.8M 10.57 9 1.74
CC12M [6] 7.8M 45.79 9 6.96
SBU Captions [43] 800K 4.70 9 0.58
Visual Genome [29] 770K 4.52 9 0.71
COCO Caption [12] 164K 0.96 10 10.00
Visual Grounding 115K 0.68 - 20.00
RefCOCO [27] 20K 0.12 11 4.00
RefCOCO+ [27] 20K 0.12 11 4.00
RefCOCOg [40] 25K 0.15 11 4.00
RefCLEF [27] 20K 0.12 12 4.00
Flickr30K [44] 30K 0.18 13 4.00
All 17M 100 - 100
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as a prominent benchmark in computer vision.
nuImages. The nuImages [3] dataset complements the nuScenes [3] for au-
tonomous driving by providing 93,000 2D annotated images, with 1.2 million
camera images from past and future timestamps. It is part of the nuScenes
ecosystem and focuses on panoptic and multi-annotation aspects. The dataset
covers various driving scenarios, including diverse conditions such as rain, snow,
and night. It also offers temporal dynamics with 2 Hz spaced images. The anno-
tations encompass 800,000 foreground objects with instance masks and 100,000
semantic segmentation masks.
ADE20K. The ADE20K [61] semantic segmentation dataset comprises 20,000
scene-centric images meticulously annotated at the pixel level for both objects
and object parts. Encompassing 150 semantic categories, it includes items like
sky, road, and specific objects such as person, car, and bed. The dataset is di-
vided into 20,210 training, 2,000 validation, and 3,000 testing images.
COCO-Stuff. The COCO-stuff [4] dataset holds significance for diverse scene
understanding tasks, such as semantic segmentation, object detection, and image
captioning. Derived by augmenting the original COCO dataset, which initially
prioritized object annotations, it addresses the oversight of stuff annotations.
Spanning 164,000 images, the COCO-stuff dataset includes 172 categories, in-
corporating 80 things, 91 stuff, and 1 unlabeled class.
Pascal Context. The PASCAL Context [41] dataset extends the PASCAL VOC
2010 [19] detection challenge by providing pixel-wise labels for all training im-
ages. Encompassing over 400 classes, which include the original 20 classes from
PASCAL VOC segmentation, these classes are categorized into objects, stuff,
and hybrids. To address the sparsity of many object categories, a common prac-
tice involves using a subset of 59 frequently occurring classes.
BDD100K. BDD100K [60] is a large dataset with 100K videos, providing over
1,000 hours of driving experience and 100 million frames. It includes annotations
for road objects, lane markings, drivable areas, and detailed instance segmenta-
tion. For road object detection and drivable area segmentation challenges, there
are 70,000 training and 10,000 validation images. For full-frame semantic seg-
mentation, there are 7,000 training and 1,000 validation images.
Mapillary Vistas. Mapillary Vistas [42] is a large-scale street-level image
dataset with 25,000 high-resolution images. Featuring annotations for 66 ob-
ject categories, including instance-specific labels for 37 classes, it adopts a dense
and fine-grained annotation style using polygons. The dataset primarily focuses
on semantic image segmentation and instance-specific image segmentation, aim-
ing to advance visual road-scene understanding.
CC3M. Conceptual Captions, known as CC3M [48], features an extensive col-
lection of around 3.3 million images, each meticulously paired with descriptive
captions. Extracted from Alt-text HTML attributes associated with web images,
these captions undergo an automated pipeline for quality assurance. This makes
the dataset highly versatile, catering to a diverse range of natural language pro-
cessing and image understanding tasks.
CC12M. Conceptual 12M [6] (CC12M) is a dataset specifically created for
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vision-and-language pre-training. It consists of a substantial 12 million image-
text pairs. Unlike some other datasets with restrictive requirements, CC12M
relaxes its data collection pipeline to enhance dataset scale and diversity. It has
been shown to provide state-of-the-art results in vision-and-language tasks, par-
ticularly in long-tail visual recognition, making it a valuable resource for research
and development in this field.
SBU Captions. The SBU Captions dataset [43] is a collection of 1 million
images and their associated captions sourced from Flickr, primarily used for
training image captioning models. It provides diverse real-world images and tex-
tual descriptions, serving as a valuable resource for research in computer vision
and natural language processing.
Visual Genome. Visual Genome [29] is a comprehensive dataset with 108,077
images, richly annotated with 5.4 million region descriptions, 1.7 million visual
question answers, 3.8 million object instances, 2.8 million attributes, and 2.3 mil-
lion relationships. This dataset is designed to provide detailed information about
images, including objects, attributes, and the relationships between them.
COCO Caption. COCO Captions [12] consists of 1.5 million captions for
330,000 images, with five captions for each image in the training and valida-
tion sets. The “Karpathy split”, a widely used subset of this dataset created by
Andrej Karpathy, involves merging the train and val sets from the raw dataset,
creating a new validation set by selecting 5,000 images from the original val set,
and an additional 5,000 images are used to form a test set.
RefCOCO. The RefCOCO [27], RefCOCO+ [27], and RefCOCOg [40] datasets
were generated through the ReferitGame, a two-player game where one partic-
ipant describes a segmented object in an image using natural language, and
the other participant identifies the correct object. In RefCOCO, there are no
language restrictions on referring expressions, whereas in RefCOCO+, location
words are prohibited. These datasets concentrate on appearance-based descrip-
tions, such as “the man in the yellow polka-dotted shirt," rather than perspective-
dependent ones. RefCOCO comprises 142,209 referring expressions for 50,000 ob-
jects in 19,994 images, and RefCOCO+ contains 141,564 expressions for 49,856
objects in 19,992 images.
RefCLEF. RefCLEF [27], also known as ReferIt, consists of 20,000 images
sourced from the IAPR TC-12 dataset, accompanied by segmented image re-
gions from the SAIAPR-12 dataset. The dataset is evenly split into two sections:
one with 10,000 images designated for training and validation, and another with
10,000 images for testing. The training and validation portion includes a total of
59,976 entries, each consisting of an image, a bounding box, and a description.
Test set is slightly larger, featuring 60,105 entries with the same type of data.
Flickr30K. Flickr30K [44] is a widely recognized dataset used for sentence-
based image descriptions. It features 31,783 images depicting everyday activities
and events, each accompanied by a descriptive caption. This dataset serves as a
standard benchmark for studying the relationship between linguistic expressions
and visual media.
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2.2 Out-distribution Datasets

Cityscapes. Cityscapes [16] is a large dataset for understanding urban scenes,
featuring semantic, instance-wise, and pixel-level annotations across 30 classes
grouped into 8 categories. It comprises around 5,000 finely annotated images
and 20,000 coarsely annotated ones, recorded in various cities under different
conditions. This dataset is valuable for tasks related to urban scene analysis.
SUN RGB-D. The SUN RGB-D dataset [50] comprises 10,335 RGB-D images
of room scenes, each with depth and segmentation maps. It’s annotated for 700
object categories and divided into training and testing sets with 5,285 and 5,050
images, respectively. This dataset addresses the need for large-scale 3D anno-
tations and metrics for scene understanding tasks. It includes data from four
sensors, with extensive annotations for 2D and 3D object boundaries, orienta-
tions, room layout, and scene categories, enabling advanced algorithm training
and cross-sensor bias study.
nocaps. The nocaps [1] dataset pushes image captioning models to grasp a wider
array of visual concepts from diverse data origins. Comprising 166,100 human-
generated captions for 15,100 images sourced from OpenImages, the dataset inte-
grates different training data, including COCO image-caption pairs and OpenIm-
ages labels and bounding boxes, with a specific emphasis on describing objects.
DRIVE. The DRIVE [51] dataset used for retinal vessel segmentation consists
of 40 color fundus images, including 7 displaying abnormal pathology. Captured
during diabetic retinopathy screenings in the Netherlands, these images were
taken with a Canon CR5 camera featuring a 45-degree field of view. The dataset
is split into a training set (20 images) and a testing set (20 images), each accom-
panied by a circular field of view (FOV) mask. Expert manual segmentations
are provided for assessment in the training set, while the testing set includes two
observer-based segmentations, with the first observer’s results considered as the
ground truth for evaluation.
LoveDA. The LoveDA [52] dataset comprises 5987 high-resolution remote sens-
ing images (0.3 m) from urban and rural areas in Nanjing, Changzhou, and
Wuhan. It targets semantic segmentation and domain adaptation tasks, offering
challenges such as multi-scale objects, complex backgrounds, and inconsistent
class distributions, aiming to address diverse geographical environments.
ISPRS Potsdam. The ISPRS Potsdam [24] dataset comprises 38 patches with
true orthophotos (TOP) and digital surface models (DSM) having a 5 cm ground
sampling distance. The TOP images are available in various channel composi-
tions (IRRG, RGB, RGBIR), and DSM files contain 32-bit float values repre-
senting heights. Some patches have normalized DSMs, indicating heights above
the terrain. Ground truth labels are provided for a portion of the data, with the
rest reserved for benchmark testing.
WIDER Face. The WIDER Face [57] dataset is a comprehensive face detection
benchmark dataset, consisting of 32,203 images with a diverse range of 393,703
labeled faces. These images exhibit variations in scale, pose, and occlusion. The
dataset is categorized into 61 event classes, with 40% for training, 10% for valida-
tion, and 50% for testing. Evaluation follows the PASCAL VOC dataset metric.
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DeepFashion. The DeepFashion [38] dataset is a comprehensive collection of
around 800,000 fashion images, accompanied by extensive annotations. These
annotations include 46 fashion categories, 1,000 descriptive attributes, bounding
boxes, and landmark information. The dataset covers a broad spectrum of fash-
ion images, from well-posed product photos to real-world consumer snapshots.

3 Training

3.1 Implementation Details

Training schemes. For single-task training, GiT-Bsingle-task is typically trained
using a batch size of 24 for 120,000 iterations on 8 NVIDIA A100 GPUs (40GB),
following a cosine annealing schedule. In multi-task joint training on five datasets,
GiT-Bmulti-task undergoes training with the same batch size and GPU number
for more iterations (i.e., 640,000). The large and huge model variants require
more GPU memory for training and are therefore trained on 12 and 24 GPUs,
respectively. For large-scale universal training, we train all models using a batch
size of 96 across 320,000 iterations. This process is conducted on setups of 32, 48,
and 96 GPUs, resulting in total training times of 3, 5, and 7 days, respectively.
Custom learning rate. For the layers without pretraining, we applied the
standard base learning rate. In contrast, the layers that had been pretrained
used progressively increasing learning rates. This strategy begins with a learn-
ing rate that is 0.1 times the base rate for the first pretrained layer, gradually
escalating to a full 1.0 times the base rate by the final pretrained layer. We argue
this method enhances the integration of pretrained and newly trained weights,
leading to better overall performance of the model.
Grid generation and sampling. We adjust the grid sizes according to the level
of detail required by each task. For object detection and instance segmentation,
we work with 5 × 5 grids in each window, while for semantic segmentation, we
increase the grid size to 14 × 14. To illustrate, in object detection, an input image
of 1120 × 1120 pixels is represented by a 25 × 25 grids, and in semantic segmen-
tation, a 672 × 672 pixels is represented by a 42 × 42 grids. Computing losses
for every point on these grids would demand excessive computational resources,
particularly for semantic segmentation. To manage this, we employ a strategy of
sampling specific grid points during training, selecting a predetermined number
of points with a focus on including positive samples and supplementing with
negative samples as needed. Specifically, for object detection and instance seg-
mentation, we choose 10 points out of 25 in each window, and for semantic
segmentation, we select 32 points out of 196. As shown in Table 3, this method
effectively reduces computational costs without significant performance drops.

3.2 Label Assignment

Object Detection. Our approach employs the well-established Hungarian match-
ing algorithm [30] for label assignment calculation. For each grid point, we com-
pute its normalized L1 distance to the centers of all boxes as the matching cost.
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Table 3: Performance of grid sampling on object detection with 25 × 25 grid resolution.

Sample Number mAP Training Time

625 45.3 47h
250 45.1 20h

Table 4: The evaluation results of the models after universal training on five standard
vision-centric benchmarks.

Object Detection Instance Seg Semantic Seg Captioning GroundingMethods #Params AP AP50 AP75 AP AP50 AP75 mIoU(SS) BLEU-4 CIDEr Acc@0.5

GiT-Buniversal 131M 44.4 61.2 48.1 30.3 53.0 30.0 44.6 33.6 108.3 84.2
GiT-Luniversal 387M 50.2 67.6 54.6 33.1 58.4 32.7 48.1 36.2 117.5 86.0
GiT-Huniversal 756M 53.3 71.2 58.3 35.9 62.6 36.1 53.0 37.7 124.2 88.3

Instance Segmentation. Similar to object detection, instance segmentation
targets are determined by computing the L1 distance between bounding box
centers and grid positions. Polar coordinates with 24 rays, inspired by Polar-
Mask [55], are employed for mask representation. The mass center of an object
is calculated using its annotated polygon boundaries. Grid points classified as
positive must accurately predict object category, bounding box, centroid, and
distances from the mass center to boundary points.
Semantic Segmentation. Expanding upon ViT, we generate patch features
(42 × 42) by downsampling the image (672 × 672) via a factor of 16. Given
the dense prediction nature of semantic segmentation, we align the grid point
size with the patch feature size. To alleviate computational load, we downsample
original mask annotations (672 × 672) by a factor of 4, resulting in annotations
of size 168 × 168, which is four times larger than the grid size. Subsequently,
each grid point autonomously predicts segmentation annotations for 16 positions
within a 4 × 4 square centered around it.
Image Captioning. In our image captioning process, we tokenize each caption
into a fixed-length sequence of 20 tokens. If the caption length is shorter than
20 tokens, we pad it with termination symbols to ensure uniformity.
Visual Grounding. In visual grounding tasks, each query directly targets a
specific bounding box, removing the necessity to align boxes with grid points.

3.3 Data Augmentation

Object Detection and Instance Segmentation. For object-level percep-
tion tasks, images undergo preprocessing steps. Initially, images are horizon-
tally flipped with a 0.5 probability. Subsequently, two methods are employed to
achieve a fixed input size. The first method involves direct resizing of the image
to dimensions of 1120 × 1120, disregarding the original aspect ratio. The sec-
ond method randomly resizes the image to one of three size pairs: (400, 4200),
(500, 4200), or (600, 4200), while preserving the original aspect ratio. Following
resizing, the image is cropped to a size of (384, 600) and then resized again to
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Table 5: Universal training evaluation results on detection, instance segmentation,
and visual grounding datasets.

Object Detection@AP Grounding@Acc Instance Seg@APMethods Objects365 [47] OpenImages [31] LVIS [22] VOC0712 [19] nuImages [3] RefCOCO+ [27] RefCOCOg [40] Flickr30K [44] RefCLEF [27] LVIS [22]

GiT-Buniversal 17.7 43.4 12.3 79.0 44.5 72.5 76.9 71.0 72.2 8.4
GiT-Luniversal 25.5 51.6 17.3 83.6 47.2 73.9 78.9 72.7 74.5 11.4
GiT-Huniversal 31.9 57.7 21.7 84.9 50.0 78.3 80.7 77.5 75.8 14.8

Table 6: Evaluation of universal training on segmentation datasets, with all results
measured using the mIoU metric.

Methods COCO-Stuff [4] Pascal Context [41] BDD100K [60] Mapillary Vistas [42]

GiT-Buniversal 42.6 56.8 57.8 23.0
GiT-Luniversal 46.0 60.4 59.3 25.4
GiT-Huniversal 49.1 63.3 61.5 28.9

1120 × 1120 pixels.
Semantic Segmentation. In semantic segmentation, specific preprocessing
steps are applied to images to ensure their size is standardized and to increase
diversity. Initially, images are acquired with a size of 672 × 672 pixels, employ-
ing random selection between two methods. The first method directly resizes the
image to 672 × 672, disregarding the original aspect ratio. The second method
involves scaling the image to sizes ranging from 100% to 200% of 672, again with-
out preserving the original aspect ratio. Following this, a random crop is applied
to ensure the image size remains 672 × 672 pixels. Moreover, to augment image
diversity, two additional operations are performed with a 50% probability: hor-
izontal flipping and photometric distortions. These steps collectively contribute
to a more robust dataset for segmentation tasks.
Image Captioning. As for this task, we initiate preprocessing with a dynamic
crop, varying size ratio in [0.08, 1.0] and aspect ratio in [3/4, 4/3] in relation to
the original image. Following this crop, the image is resized to 224×224 dimen-
sions. Additionally, there is a 50% probability of horizontally flipping the image
for further augmentation.
Visual Grounding. Visual grounding augmentation includes color adjustments
with a 50% probability, enabling changes in brightness, contrast, saturation, and
hue. Subsequently, the image undergoes a random crop within a relative range
of (0.8, 0.8) of the original size. Finally, we resize the image to 224×224 without
keeping the original aspect ratio.

4 Evaluation

4.1 Auto-regressive Decoding

We tailor unique decoding rules for various tasks based on task templates. For ex-
ample, in object detection, using the template <c><x1><y1><x2><y2>, the
category is decoded in the first position, drawing from a vocabulary containing
all categories in the dataset. The subsequent four positions decode numerical
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Table 7: Decoding steps for all five tasks.

Task Object Detection Instance Segmentation Semantic Segmentation Image Captioning Visual Grounding

Decoding Step 5 31 16 20 4

Table 8: Inference speed of GiT-B on A100.

Task Resolution Grid Number Decoding Step FPS

Object Detection 1120 × 1120 625 5 2.5
Instance Segmentation 1120 × 1120 625 31 0.7
Semantic Segmentation 672 × 672 1764 16 1.5

Image Captioning 224 × 224 1 20 3.2
Visual Grounding 224 × 224 1 4 8.1

Table 9: Latency comparison with
SAM on semantic segmentation task.

Method (ADE20K) Resolution #Params FPS

SAM-B [41] 672 × 672 90M 1.6
GiT-B 672 × 672 131M 1.5

values, drawing from a vocabulary of discretized locations. Table 7 illustrates
the fixed decoding step number for all tasks, with no terminator token required
except for image captioning. In image captioning, predictions following the ter-
minator are disregarded during inference.

4.2 Inference Speed

In Table 8, we present the inference speed of GiT-B across five tasks, measured
on a single NVIDIA A100 GPU with a batch size of 1. Due to our adherence
to the auto-regressive decoding paradigm commonly seen in NLP, we inherit
the drawback of slow inference speed. This limitation becomes more pronounced
in high-resolution object-level and semantic segmentation tasks that necessi-
tate per-pixel predictions. However, we contend that leveraging multiple parallel
decoding has significantly improved our method’s speed, bringing it to an ac-
ceptable level. As shown in Table 9, our approach demonstrates comparable
segmentation speed to SAM. Given that our structure and prediction approach
closely align with LLM, the inference acceleration techniques [7] employed for
LLM also hold promise for enhancing our method.

4.3 Benchmarking Setup

Multi-Task Learning. On the multi-task datasets, we conducted evaluations
on the validation sets, except for COCO Caption [4], where we used the Karpa-
thy split [26] for evaluation on the test set.
Universal Learning. We evaluate our universal models on several key datasets.
Table 4 presents their performance on representative datasets for five tasks. How-
ever, due to the less frequent sampling of these analyzable multi-task datasets
during universal training, their performance slightly lags behind models trained
on multi-task benchmark. For further performance insights on other datasets,
refer to Tables 5 and 6. Notably, for image captioning, all datasets except COCO
Caption are entirely used in training, obviating the need for extra evaluation.
Few-shot Learning. We adopt the classical N-way K-shot [20] setting to create
a support set for few-shot evaluation. In this setup, for each class in the dataset,
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Table 10: Few shot datasets.

Dataset Size Category Number Support Set Size Training Iters

DRIVE [51] 40 2 10 100
LoveDA [52] 5,987 7 35 100
ISPRS Potsdam [24] 5,472 6 30 100
WIDERFace [57] 32,203 1 5 50
DeepFashion [38] 800,000 15 75 100

Table 11: Ablation of text conditioning on
visual grounding task.

Models Text Conditioning Acc@0.5

GiT-Bsingle-task 82.7
GiT-Bsingle-task ✓ 83.3
GiT-Bmulti-task 78.6
GiT-Bmulti-task ✓ 85.8

Table 12: Ablation of beam number on
image captioning task.

Beam Number BLEU-4 CIDEr

1 33.1 106.9
2 33.5 107.2
3 33.7 107.9
5 33.7 107.6

we extract k samples labeled with the corresponding class, resulting in the se-
lection of N×K samples. By default, K is set to 5. As depicted in Table 10, we
sample varying quantities of support sets depending on the number of categories
in each dataset. Each experiment, by default, iterates 100 times on the support
set. However, due to the limited size of the support set in WIDERFace [57], we
reduce the iteration count to 50 times to mitigate the risk of overfitting. All
few-shot training is conducted with a fixed learning rate of 2e-4.

We select Faster R-CNN [45] and DeepLabV3 [9], two classic methods, as
comparative baselines. In the case of Faster R-CNN, we employ the version with
ResNet-50 as the backbone, utilizing pre-trained weights from the COCO [36]
dataset. For DeepLabV3, we opt for the version with ResNet-101 as the back-
bone, leveraging pre-training on the ADE20K [61] dataset.

5 More ablation studies

Text Conditioning. In visual grounding, we incorporate image-to-text atten-
tion during network forwarding, enhancing task differentiation between detection
and visual grounding. Table 11 demonstrates that incorporating text condition-
ing results in a modest improvement of +0.6 in visual grounding when trained
independently. However, its impact becomes more significant in multi-task train-
ing, showing a remarkable enhancement of +7.2, aligning with our hypothesis.
Beam Search. Table 12 demonstrates how performance varies with different
beam sizes in beam search. We observe an improvement as the beam size in-
creases from 1 to 2, but performance stabilizes between 2 and 5, with only a
minor drop in CIDEr. Given that larger beam sizes lead to longer inference
times, we have selected a default beam size of 2.
Mass Center and Ray Number. Table 16 presents an ablation of instance
segmentation settings. Utilizing mass center yields better results than box cen-
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ter, probably because the box center might fall outside the object. Employing 36
rays slightly improves performance but at the cost of significant training time.
Model initialization. Our model is initialized with SAM encoder. Table 14
indicates that SAM weight excels in fine-grained tasks, while MAE is better for
image-level tasks.
Interaction among instances. GiT’s flexibility allows us to easily integrate
popular instance interaction methods from [5, 10]. Specifically, we apply global
self-attention, similar to DETR, across all grid local tokens <Local>. For causal
attention, we also use it with these local prompts. Table 13 shows their improve-
ments.
Number of New Layers. Table 15 shows adding just one new layer can sig-

Table 13: Interaction.

Attention Type mAP

no 45.1
causal 45.4

global self 45.5

Table 14: Ablation study on initialization.

Pretrain Detection Ins Seg Sem Seg Caption Grounding
Weight AP AP mIoU(SS) CIDEr P@0.5

SAM 46.7 31.9 47.8 112.6 85.8
MAE 44.1 29.7 46.2 113.7 87.9

nificantly boost performance, improving mAP by 2.6, likely due to the difference
between image input and language targets. Involving more layers continues to
improve results, with gains leveling off after six layers.

6 Specific Modules of Comparison Methods

In Table 17, we outline the specific modules and parameter quantities utilized
for method comparison. Many methods, regardless of whether they are special-
ist or generalist models, incorporate task-specific modules and modality-specific
encoders in their designs. In contrast, our approach is characterized by its sim-
plicity, as it does not rely on such intricate designs.

7 Visualization

Task Visualization. In Figure 4, we visualize an example for each task, show-
casing the image input, text-formatted predictions, and the visualization of the
prediction results from left to right. For simplicity, we selected a few examples
of local responses predicted by the model and listed their corresponding text-
formatted predictions.
Zero-shot Visualization. In Figure 5, we showcase qualitative examples of
predictions on zero-shot datasets made by GiT-Huniversal. Notably, our model ac-
curately predicts missing annotations in some cases. For instance, in Cityscapes
detection, it correctly identifies unannotated bicycles and vehicles, even under
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Table 15: Ablation study of new layer on GiT-Bsingle-task.

New Layers Detection@AP

0 40.2
1 42.8
2 43.8
3 44.6
6 45.1

Table 16: Ablation on instance segmentation settings.

Box Center Mass Center Ray Number mAP Training Time

✓ 24 29.0 32h
✓ 36 29.2 49h

✓ 24 31.4 32h
✓ 36 31.7 49h

low-light conditions. A similar accuracy is observed in SUN RGB-D segmenta-
tion, where the model detects all chairs, although only two are annotated. In
Cityscapes segmentation, despite the dataset’s bias of excluding self-owned ve-
hicles from annotation, our model demonstrates exceptional generalization by
correctly classifying these vehicles, relying on minimal information and without
dataset-specific fine-tuning.
Few-shot Visualization. Figure 6 provides visual representations of the qual-
itative predictions made by GiT-Huniversal on few-shot datasets. These examples
highlight the remarkable performance of our model in situations with limited
data, emphasizing its potential for applications across diverse domains.

8 Discussion

Comparison with Fuyu-8B. Compared to Fuyu-8B [2], which focuses on well-
explored vision-language tasks, our GiT extends the scope of the multi-layer
transformer to often-overlooked object and pixel-level tasks with a universal
language interface. To achieve it, we design a flexible parallel decoding template
using point prompts for task unification across various perceptual scales. The
local image prompt is also introduced to enhance fine-grained perception ability.
Comparison with adapter-based methods. Our method provides an alter-
native solution for LVMs. Unlike previous fine-tuning efforts with LLMs, we aim
to close the architectural gap between vision and language. Moreover, our GiT
allows easy end-to-end implementation without module-specific design, greatly
simplifying the training process and model scaling.
Limitations. Constrained by training data limited to five selected tasks with
relatively straightforward task prompts, GiT struggles to generalize to entirely
new tasks in zero-shot settings. Task-level zero-shot remains challenging, even for
capable LLMs. GiT closely aligns with it and inherits this limitation. However,
our GiT shows strong extendibility in task unification, potentially supporting
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Table 17: Specific modules and their corresponding parameter quantities for the meth-
ods used for comparison. The parameter of text embedding is excluded because it op-
erates in a zero-computation index manner.

Methods Specific Modules Num #Params

Specialist Models
Faster R-CNN-FPN [45] ResNet,FPN,RPN,ClassficationHead,RegressionHead 5 42M
DETR-DC5 [5] ResNet,Encoder,Decoder,ClassficationHead,RegressionHead 5 41M
Deformable-DETR [63] ResNet,Encoder,Decoder,ClassficationHead,RegressionHead 5 40M
Mask R-CNN [23] ResNet,FPN,RPN,RPNHead,ClassficationHead,RegressionHead 6 46M
Polar Mask [55] ResNet,FPN,ClassficationHead,CenternessHead,RegressionHead 5 55M
Mask2Former [14] ResNet,PixelDecoder,TransformerDecoder,ClassficationHead,MaskHead 5 44M
Pix2Seq [10] ResNet,Encoder,Decoder 3 37M
UNITER [13] Faster R-CNN,Project Layer, Encoder,Decoder 4 303M
VILLA [21] Faster R-CNN, Encoder,Decoder 3 369M
MDETR [25] CNN,RoBERTa,Image Adapter, Text Adapter,Encoder,Decoder 6 188M
VL-T5 [15] Faster R-CNN, Encoder,Decoder 3 440M
DeepLabV3+ [9] ResNet,Decoder,Auxiliary Head 3 63M
TokenFusion [54] Segformer,YOLOS,Fusion Module,GroupFree 4 79M
U-Net [46] Encoder,Decoder,Decode Head 3 8M
AerialFormer [56] Transformer Encoder, CNNs Stem, Multi-Dilated CNNs Decoder 3 114M
RetinaFace [17] ResNet,FPN,ClassficationHead,RegressionHead,ContextModule 5 30M

Generalist Models
UniTab [58] Image Encoder,Text Encoder, Multimodal Encoder, Decoder 4 185M
Uni-Perceiver [64] None 1 124M
Uni-Perceiver-MoE [62] None 1 167M
Uni-Perceiver-V2 [32] ResNet,RPN,Mask DINO,RoBERTa,Decoder,ClassficationHead,RegressionHead,MaskHead 8 308M
Pix2Seq v2 [11] ViT,Decoder 2 132M
Unified-IOXL [39] VQ-VAE Encoder,VQ-VAE Decoder,Encoder,Decoder 4 2.9B
Shikra-13B [8] ViT,Vicuna,Image Adapter 3 13B
Ferret-13B [59] ViT,Vicuna,Visual Sampler,KNN 4 13B
VisionLLM-R50 [53] ResNet,Language-Guided Image Tokenizer,Encoder,Decoder,Alpaca-7B 5 7B
GLIP-T [35] Swin,FPN,Text Encoder,Dy-Head,Fusion Module 5 431M
Grounding DINO-T [37] Swin,DINO,BERT,Feature Enhancer,Decoder,Query Selection 6 174M
BLIP (129M) [34] ViT-L,BERT,Image-grounded Text Encoder, Image-grounded Text Decoder 4 583M
BLIP-2 (129M) [33] ViT-G,Qformer,Adapter,LLM 4 12.1B
ReCo+ [49] DeiT-SIN,CLIP,DenseCLIP,DeepLabV3+ 4 46M
XDecoder(T) [65] FocalNet,Encoder,Decoder,Latent Query 4 165M

various other tasks by incorporating relevant data.
Negative Societal Impact. Our largest model necessitates 7 days of training
on 96 A100 GPUs, leading to considerable carbon emissions. Furthermore, the
generated content might reflect biases from the training data, stemming from a
lack of alignment with human preferences.
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Fig. 4: Visualization of five standard vision-centric tasks.
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Fig. 5: Qualitative results on zero-shot datasets. Zoom in for better viewing.
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Fig. 6: Qualitative results on few-shot datasets. Zoom in for better viewing.
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