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Fig. 1: Generalist Vision Transformer. a) Examples of tasks supported by GiT. b)
Architectural comparison between previous LVMs (e.g., LLaVA [48]), and ours. GiT
seamlessly handles various vision-centric tasks, particularly fine-grained visual percep-
tion, via a universal language interface using a plain transformer (e.g., ViT and GPT).

Abstract. This paper proposes a simple, yet effective framework, called
GiT, simultaneously applicable for various vision tasks only with a vanilla
ViT. Motivated by the universality of the Multi-layer Transformer ar-
chitecture (e.g., GPT) widely used in large language models (LLMs),
we seek to broaden its scope to serve as a powerful vision foundation
model (VFM). However, unlike language modeling, visual tasks typi-
cally require specific modules, such as bounding box heads for detection
and pixel decoders for segmentation, greatly hindering the application of
powerful multi-layer transformers in the vision domain. To solve this, we
design a universal language interface that empowers the successful auto-
regressive decoding to adeptly unify various visual tasks, from image-level
understanding (e.g. captioning), over sparse perception (e.g. detection),
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to dense prediction (e.g. segmentation). Based on the above designs, the
entire model is composed solely of a ViT, without any specific additions,
offering a remarkable architectural simplification. GiT is a multi-task vi-
sual model, jointly trained across five representative benchmarks without
task-specific fine-tuning. Interestingly, our GiT builds a new benchmark
in generalist performance, and fosters mutual enhancement across tasks,
leading to significant improvements compared to isolated training. This
reflects a similar impact observed in LLMs. Further enriching training
with 27 datasets, GiT achieves strong zero-shot results over various tasks.
Due to its simple design, this paradigm holds promise for narrowing the
architectural gap between vision and language. Code and models are
available at https://github.com/Haiyang-W/GiT.

Keywords: Unified Visual Modeling · Multi-Task Learning

1 Introduction

Developing a universal model capable of completing various tasks aligned with
human intention is a long standing goal in Machine Learning. In language pro-
cessing, the emergence of LLMs [1,60,71,89] opens up a promising route, which
only employs several stacked transformer layers for adaptable task management
with minimal prompts. In this paper, we explore this simple multi-layer trans-
former [73] architecture in visual modeling, seamlessly integrating numerous vi-
sion tasks with a universal language interface, aiming to close the architecture
gap between vision and language.

The Machine Learning community is undergoing a paradigm shift with the
rise of foundation models (e.g., GPT [9], BERT [37], DALL-E [62]) trained on
massive data, enabling the sharing of conceptual knowledge, and offering seam-
less adaptability to diverse downstream tasks. Language models [9, 37, 71] have
greatly benefited from this recently, thanks to a homogenized representation (i.e.,
input and output are uniformly represented as token sequence). State-of-the-art
models like GPT4 [56], LLaMA [71], PaLM2 [1] and Gemini [70] have shown an
unprecedented ability to follow human instructions and solve open-ended tasks.
Thanks to their success, this architecture is potentially viewed [8,63] as a general
framework for other machine learning tasks beyond NLP.

Motivated by this opportunity, the community has developed several large
vision models, such as LLaVA [48], Unified-IO [52] and OFA [77], by leverag-
ing vision features [28, 34] as foreign language of open-source LLMs [61, 69, 71].
However, this progress still retained task-specific designs, including diverse visual
encoders [77,91], perception heads [42], RPN [42], and specific target representa-
tions [52]. Task-specific modules require intricate designs for each task a model
needs to solve, potentially hindering progress towards a general vision model.
Moreover, these task-specific designs typically involve numerous separate train-
ing stages [78], complicating model scaling across different tasks. We argue that
an alternative general-purpose framework could employ lightweight components
through a more universal input-output interface, and allocate most of the model
resources to learning a general model across these tasks.

https://github.com/Haiyang-W/GiT
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Table 1: Columns from left to right display task source examples, dataset counts, total
samples, percentages, and multi-task sampling rates, then task modalities. Highlighted
rows summarize statistics for similar task groups. See appendix for the complete list.

Example Size Input Modalities Output Modalities
Sources Dataset Size Percent Weight Text Image Text Sparse Dense

Image-Level 10 11.4m 67.1 40 ✓ ✓ ✓ ✓ -
Image Captioning CC12M [13], VG [40], SBU [57] 5 11.3m 66.6 30 - ✓ ✓ - -
Visual Grounding RefCOCO [87], Flickr30k [59] 5 115k 0.7 10 ✓ ✓ - ✓ -

Object-Level 11 5.2m 30.9 40 - ✓ - ✓ ✓
Object Detection Objects365 [66], COCO [47] 8 3.8m 22.6 20 - ✓ - ✓ -
Instance Segmentation OpenImages [41], LVIS [31] 4 1.4m 7.9 20 - ✓ - ✓ ✓

Pixel-Level 6 322k 2.0 20 - ✓ - - ✓
Semantic Segmentation COCOStuff [11], ADE20K [90] 6 322k 2.0 20 - ✓ - - ✓

All Tasks 27 17m 100 100 ✓ ✓ ✓ ✓ ✓

Previous attempts [3, 7, 26, 44, 48, 79, 91] on large visual modeling predom-
inantly focused on the image-level vision-language domain, mainly due to its
straightforward integration into LLMs by viewing the image as a foreign lan-
guage. This approach often overlooks the incorporation of classical perception
tasks, such as detection and segmentation. Developing a unified framework for
fundamental visual perception has proven to be quite challenging since it requires
the model to predict multiple outputs with different formats in parallel, with an-
notations varying widely in representations, ranging from coarse-grained image
level to fine-grained pixel level. For example, detection yields variable numbers
of bounding boxes, segmentation produces binary masks, and image captioning
generates textual answers. These drawbacks make it difficult to design a single
model simultaneously applicable across all visual tasks.

Recent developments in LLMs [4,9,55,56] have shown the potential of Trans-
former [73] being a universal computation architecture. Inspired by this, we in-
troduce GiT, a vision foundation model that can handle diverse vision-centric
tasks. As shown in Figure 1, compared to previous unified models [52, 77, 78],
our method features a minimalist design, comprising just several Transformer
layers without any vision-specific additions other than the patch projection lay-
ers, closely aligning with LLM architectures. Similar to language modeling, all
visual tasks are structured into an auto-regressive framework through a univer-
sal language interface. Specifically, our targets are expressed as token sequences
using a unified representation, relying solely on a standard vocabulary without
involving extra tokens [63,78]. To be compatible with various visual tasks across
different perceptual scales, we introduce a flexible multi-task template for task
unification. It partitions the whole image into N subregions by grid sampling
and concurrently processes each subregion with efficient parallel decoding.

The above designs facilitate multi-task training of our model across five repre-
sentative benchmarks without task-specific fine-tuning. As shown in Table 3 and
4, leveraging shared parameters and representation, our model achieves strong
generalist results and mirrors the multi-task capabilities of LLMs [4]. Tasks with
overlapping abilities can mutually enhance each other, leading to significant gains
over separate training (see §5.2 for more analysis). To further enhance general-
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izability, we incorporate 27 standard visual datasets into training (see Table 1),
resulting in strong zero- and few-shot performances on unseen data.

In particular, our work makes the following contributions:

– Foundational framework for unified visual modeling. We introduce a simple
visual modeling paradigm with a straightforward multi-layer transformer,
greatly simplifying the model design. Our model integrates various vision-
centric tasks, especially the often-neglected object- and pixel-level tasks, via
an efficient universal language interface.

– Multi-task ability like LLMs. Weight-sharing and unified learning objectives
enable us to obtain the multi-task capability as observed in LLMs, achieving
the best and mutually enhanced generalist performance over five benchmarks.

– Strong generalizability. Fully embracing the one-stage joint training strategy
as used in LLMs, our model is trained on 27 publicly available datasets,
achieving strong zero- and few-shot performance across various tasks.

2 Related Work

Multi-layer Transformer [73] has emerged as a universal learning architec-
ture, becoming a cornerstone in most LLM frameworks. Notable LLMs like GPT
series [4, 9, 55, 56, 58, 60], as well as LLaMA [71], PaLM [1], and OPT [89] have
made significant advances in this domain. Beyond language, plain transformer
also has proven effective in 2D vision with ViT [28], 3D vision via DSVT [74],
multimodal imaging in UniTR [75]. Despite their success, these straightforward
transformers are often limited to feature encoding and require task-specific mod-
ules, greatly hindering the progress toward a general learner. To solve this, we
aim to broaden the scope of multi-layer transformer, moving beyond their con-
ventional encoder-only function to an LLM-like visual modeling, narrowing the
architectural gap between the vision and language.
Vision Foundation Model excels in handling diverse visual tasks within a uni-
fied architectural framework. Motivated by the success of seq2seq models in NLP,
innovations like Flamingo [3], LLaVA [48] and Gato [63] have reframed vision-
language tasks as sequence generation problems, which is further developed by
Pix2Seq v2 [20], and VisionLLM [78] to process spatial information across more
tasks. However, these methods face challenges such as inefficient inference from
non-parallel decoding [20], negative transfer [92] or complex vision-specific ad-
ditions [42,52,78], slowing progress towards a universal vision model.

3 Universal Language Interface

In this section, we propose a simple universal language interface that integrates
five fundamental visual tasks, ranging from image, over object to the pixel level,
into the successful auto-regressive framework. All our targets are expressed as to-
ken sequences via a unified representation (§3.1), and then organized by a general
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Table 2: Summary of architecture configu-
ration. Shared parameters account for over
98% of the whole model. The parameter of
text embedding is excluded because it oper-
ates in a zero-computation index manner.

Multi-Modal Tokenizers Multi-layer Layer TotalModel Text Image Out-of-vocab Transformer Number Parameter

GiT Base 0 0.4% 1.8% 97.8% 18 (12+6) 131M
GiT Large 0 0.2% 1.1% 98.7% 30 (24+6) 387M
GiT Huge 0 < 0.1% 0.8% 99.1% 38 (32+6) 756M

Table 3: Abilities required for each task
and the performance improvements af-
ter multi-task training. † means polygon-
based segment [82, 83], different from the
popular mask-based methods [32].

Task Image Language Segment Localization Improve (single→multi)

Detection ✓ - - ✓ +1.6@AP
InsSeg ✓ - ✓† ✓ +1.6@AP50, +0.2@AP75

Grounding ✓ ✓ - ✓ +2.5@Acc
Caption ✓ ✓ - - +4.7@CIDEr
SemSeg ✓ - ✓ - +0.1@mIoU

multi-task template (§3.2), which partitions the fine-grained visual perception
into a series of parallel-decoded subproblems. Figure 2 illustrates the multi-task
input templates for three tasks, namely image captioning (image-level task, left),
object detection (object-level task, middle) and semantic segmentation (pixel-
level task, right). Further technical details are provided below.

3.1 Unified Input and Output Representation

To support various modalities such as images, language, bounding boxes, masks,
etc, it’s essential to represent them in a unified space. To achieve this, we straight-
forwardly project the input image and text into patch and language token em-
beddings. Following this, all targets are represented via a universal language
interface and tokenized entirely based on a standard vocabulary [81].
Text representation. Vision-language tasks often require text processing, like
image captioning, where a natural language description is generated based on
the given image. To handle it, we follow the practice of BERT [37], texts are
transformed into WordPiece [81] subwords, with a ∼30,000 token vocabulary,
and then embedded via a lookup table into a learnable embedding space. Posi-
tion encodings are added to indicate local positions within time steps.
Out-of-vocabulary representation. Visual perception typically relies on

complex textual concepts comprised of multiple pieces, such as “traffic light”
and “20 47”, the category name and numerical value used in object detection.
As discussed in [45, 78], using multiple tokens to represent them is inefficient.
1) Adding separators like </c>“traffic light”</c> to identify categories will
extend sequence length, particularly impractical for dense prediction tasks. 2)
Varying token length for multi-piece words leads to inconsistent decoding steps,
necessitating complex and rule-based post-processing to achieve reliable out-
comes. To tackle this problem, some solutions [52, 63, 78] introduce new tokens
of category and number terms while facing challenges when considering token
capacity constraints. Instead of expanding the vocabulary, we treat multi-piece
concepts as continuous text and compress them into a single token as follows,

I0, I1 = Tokenizer(“traffic light”), I is the token index,
F0,F1 = Attention(TE(I0) + PE(0),TE(I1) + PE(1)), Ftraffic light = F0,

(1)

where Attention(·) is a single-layer attention, TE(·) and PE(·) are text and
position embedding functions. Our approach offers an alternative solution for
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Fig. 2: Task-level customization spans from image- to object- and pixel-level, setting
N to 1, 625 (25×25), and 1764 (42×42), in real implementation. Red point means
localized visual token, generated by image bilinear interpolation at its grid point. Task
prompt is text, converted into a token via text and out-of-vocabulary representation.

handling any out-of-vocabulary terms without expanding the basic vocabulary,
which greatly simplifies the post-processing for achieving effective perception.
Sparse representation. In the context of sparse object-level perceptions such
as object detection [12, 30] and instance segmentation [33], which generate var-
ious category and location representations (for example, bounding boxes and
instance masks), we propose a standardized output format. This format is de-
fined as a tuple (C,P ), where C represents the category label, and P={xi, yi}Ni=1

denotes a set of N points that identify the object’s location. To align with the
format of linguistic tokens, both the class and location targets are tokenized by
the prior text and out-of-vocabulary representation. Following VisionLLM [78],
continuous coordinates are uniformly discretized into integers within [-range,
range]. A bounding box is formulated with four points as {x1, y1, x2, y2}, rep-
resenting its top-left and bottom-right coordinates, while instance mask defines
its fine-grained region via multiple points along the boundary [82,83].
Dense representation. Various perceptual tasks, such as semantic segmenta-
tion [51,65], require models to generate dense outputs, often involving per-pixel
predictions. To handle these tasks, we start by converting per-pixel labels into
unified tokens. For example, semantic classes [47] are firstly tokenized by text and
out-of-vocabulary representation. Then, these dense labelings are flattened into
a 1D sequence in raster order, represented autoregressively, similar to iGPT [18].
Image representation. Images are converted into a non-overlapping 16 × 16
patch sequence in raster order and then embedded to tokens with a trainable
linear projection and a learnable positional embedding, as done in ViT [28].

3.2 Multi-Task Template with Parallel Decoding

Prior to constructing the templates, we first divide 2D visual understanding into
three distinct categories, each defined by their perceptual granularity and output
representation. Our focus encompasses five core tasks for training and analysis:
1) Image-level tasks, exemplified by Image Captioning and Visual Grounding,
2) Object-Level tasks like Object Detection and Instance Segmentation, and 3)
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Fig. 3: Our multi-task formulation is broadly illustrated as processing four types of
user inputs: image patches, instructive language tokens, and N parallel point-based
subprocesses, each with its interpolated local image feature and task identifier for effi-
cient parallel visual prediction. As for the language interface, we use a basic vocabulary,
a specific vocabulary list required by the current task, and the task-agnostic out-of-
vocabulary module (§3.1) to dynamically create vocabulary sets for each task.

Pixel-Level tasks such as Semantic Segmentation. Then, we introduce a unified
seq2seq framework that seamlessly integrates various task formulations, from
purely visual to those involving language, enabling flexible task customization.
General Formulation. Inspired by well-established language models, we adapt
the widely accepted instruction template of LLMs to the vision community (e.g.,
vision-language and spatial-aware visual perception). As shown in Figure 2 and
3, the instructional template is defined as follows,

<Image><Instruction>︸ ︷︷ ︸
shared global observation


<LocalFeature1 ><Task1 > : <Response1 >

...
...

...
<LocalFeatureN><TaskN> : <ResponseN>.︸ ︷︷ ︸

multi-track local observations and responses

(2)

In our template, user input is structured into four segments. The first comprises
image patches, as done in ViT. The second involves instruction inputs, like lan-
guage expression used for visual grounding. For the third and fourth segments,
targeting efficient object- and pixel-level visual perception like simultaneously
predicting multiple bounding boxes as in traditional object detection, we parti-
tion the task into N parallel local subprocesses by grid sampling, as shown in
Figure 2. Each subprocess works with a local image token, created by bilinearly
interpolating image features based on its grid point position, and a pure text
task identifier, converted into a single token via text and out-of-vocabulary rep-
resentation. For Vision-Language tasks, we set N to 1, while for vision-centric
tasks like detection and segmentation, N is adjustable to match the required
prediction resolution. These designs allow our method to flexibly handle nearly
all 2D vision tasks. Notably, some segments are optionally required by different
tasks, e.g., image captioning only requires image inputs and a task prompt.

In contrast to the traditional encoder and decoder setups, we employ var-
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Fig. 4: An illustration of pixel-level multiple parallel decoding. Consider a 64×64 image
divided into 16 patches, where each patch is 16×16. With N=16 and a decoding step
of 16 per subprocess, each grid point covers one patch to predict a 4×4 semantic map,
which is then upsampled 4× to the original size for the final result.

ious mask matrices to determine the token representation context. As shown
in Figure 3, our method processes inputs (i.e., image and instruction) by ap-
plying bidirectional self-attention, similar to a typical encoder. Importantly, we
enable image-to-text attention to enhance its ability of text-conditioning image
processing (see Table 7). As for computing local and task prompts, and target
prediction of each subprocess, we use left-to-right unidirectional attention for
modeling causal relations, in line with decoder-only autoregressive approach.
Image-Level. The definition for image-level tasks such as image captioning and
visual grounding is straightforward, closely mirroring the NLP tasks. Following
previous vision-language methods, we set N to 1 and structure the token se-
quence of image captioning as {<image> “image captioning”: <text>}, and
visual grounding as {<image> <instruction> “visual grounding”: <bbox>}.
Object-Level. Developing a generative framework that adeptly manages clas-
sical object-level perception tasks, including object detection and instance seg-
mentation, presents a significant challenge. It demands a model capable of con-
currently generating all the bounding boxes and masks. To address this, as shown
in Figure 2, we introduce a point-based parallel decoding framework designed
for visual prompt perception. It starts by sampling a grid of N points across the
image, where N is set to 625, corresponding to a 25 × 25 sampling resolution for
1120 × 1120 images. Following this, we conduct generative perception at each
point using the format: {<image> <local feature> <task identifier>:
<sparse response>}. <image> is the patch tokens shared by all grid sub-
processes. <sparse response> indicates our chosen object-level sparse rep-
resentation as detailed in §3.1. Notably, if the point is in the negative part,
<background> token will be predicted.

An example of detection for a grid point: {<image><local feature> “ob-
ject detection”: <c><x1><y1><x2><y2>}, where <c> is the class label, and
(<x1><y1><x2><y2>) indicate the box points’ offsets from the grid points.
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Pixel-Level. The auto-regressive decoding paradigm [9, 56, 60] struggles with
high-dimensional outputs, particularly in cases like computing all pixel semantic
categories in a single sequence, incurring considerable computational overhead.
Earlier efforts [52, 54] attempted to alleviate this using compressed tokens via
VQ-VAE [72]. However, this approach compromised the pure language interface
and introduced intricate modules. To tackle this issue, as illustrated in Fig-
ure 4, we convert per-pixel labels into linguistic tokens and further divide the
image into N uniform sub-regions, just like object-level tasks. Specifically, for
segmentation tasks, we set N to 1764 to achieve a 42×42 perceptual resolution
for images sized 672 × 672. Each subprocess independently conducts sequential
pixel-level predictions in parallel, leading to enhanced efficiency.

An example of semantic segmentation for a single track with 16 decoding
steps: {<image> <local feature> “semantic segmentation”: <c1> <c2> · · ·
<c15> <c16>}, where <ci > is the i-th class token of each sub-region.

4 Training

4.1 Architecture: Multi-layer Transformer

By employing the universal language interface, we formulate a diverse array of
2D vision tasks as sequences of discrete input and output tokens. This method
has paved the way for extending the successful architectures (such as Multi-layer
Transformers [9, 60,73]) in Large Language Models, to unified visual modeling.

Building on the visual foundations, we leverage the structure of window-based
ViT [28,46], identical to the visual encoder used in SAM [39], for both linguistic
sequences and high-resolution images. A few global attention blocks are evenly
integrated into the model for feature propagation. Notably, within the window
attention layer, each patch token only interacts with grid points located in the
same window. Our approach can be built upon such a common structure (i.e.,
ViT) without architectural changes, enhancing the framework’s universality.

Benefiting from the above designs, our architecture can allocate the most of
computational parameters (> 98%) to general inference, complemented by a few
lightweight modules for diverse modality inputs, as shown in Table 2.

4.2 Multi-Task and Universal Training

GiT undergoes joint training across various tasks and datasets. Our goal is to
assess the capability of a unified model to handle multiple tasks simultaneously.
Thus, we refrain from task-specific fine-tuning, despite prior studies demonstrat-
ing its potential to enhance task performance.
Various Tasks and Datasets. To build a singular unified model for diverse
perception and V&L tasks, we construct an analyzable multi-task benchmark
comprising the most representative datasets across five fundamental tasks we
previously identified, spanning from image- to pixel-level visual understanding.
To enhance the model’s adaptability, we augment the benchmark by integrating
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27 datasets from 16 publicly accessible data sources, as listed in Table 1.
Joint Multi-Task Training. We jointly train GiT on the above multi-task
benchmark by mixing samples from these datasets. As detailed in Table 1, to
prevent overshadowing tasks with smaller data during joint training and avoid
potential performance drops, we uniformly sample from all tasks (1/5), regard-
less of their data sizes. In universal settings where tasks span multiple domains,
sampling inside each task is balanced across scenarios like daily life, indoor, and
outdoor. Within these domains, datasets are sampled in proportion to their size.

Regarding the learning objective, different tasks require distinct vocabular-
ies. For example, visual grounding uses numerical coordinates, whereas segmen-
tation involves semantic concepts. To tackle this problem, as illustrated in Figure
3, we approach all tasks as the next token generation problem using standard
CrossEntropy loss, while employing a task-specific vocabulary. This allows for
dynamically controlling vocabulary sets, adapting to the unique requirements of
each task during both training and inference phases.
Scaling Models. We adopt a variant of ViT [28] similar to SAM [39], aug-
mented with six extra transformer layers and text embeddings used in BERT [37]
to improve non-visual modality processing (refer to appendix). To study the de-
pendence of performance on model scale, we introduce three different sizes of
model built up on ViT-B, -L, and -H, with parameters ranging from 131M to
756M, detailed in Table 2. The initial layers inherit parameters pretrained by
SAM, while the new layers start with random initialization.

5 Experiments

5.1 Experimental Settings

Multi-Task Datasets. To facilitate in-depth analysis and fair evaluation, we
built an analyzable multi-task benchmark, choosing one of the most representa-
tive datasets for each task. To ensure consistency and enable comparison with
VisionLLM [78], we retained the same datasets they used for the four vision-
centric tasks: COCO2017 [47] for object detection and instance segmentation,
COCO Caption [21] for image captioning, and the RefCOCO series [53, 87] for
visual grounding. For the semantic segmentation not included in VisionLLM, we
employed the widely used ADE20K dataset [90].
Extended Datasets. To showcase the universality of our unified framework, we
enhanced our multi-task benchmark by integrating more standard and publicly
available datasets from vision-language and visual perception (see §4.2).
Training and Evaluation Details. To illustrate the flexibility and efficacy of
our model, we established three training paradigms: single-task, multi-task, and
universal setting. In single-task training, the focus is on optimizing performance
on individual benchmarks. Multi-task training, on the other hand, targets the
development of a general learner across five selected datasets. Drawing from the
insights in Uni-Perceiver v2 [42], we adopt an unmixed sampling strategy (i.e.,
sampling one task per iteration) for faster and more stable training, However, our
framework is also compatible with in-batch mixing strategies [52,94] as suggested



GiT: Generalist Vision Transformer 11

Table 4: Results on standard vision-centric benchmarks. “single-task" refers to mod-
els trained on each task separately, while “multi-task" indicates models trained jointly
across all selected benchmarks. “⋆” denotes the model is capable of the task, though
no number is reported. “-” means incapability in that specific task. “†” indicates that
the generalist model embedded previous task-specific models to enhance performance.
GiT stands out as the first generalist model to support all listed vision tasks, delivering
competitive outcomes without task-specific adaption. Following [15,42], some general-
ist models that only report results with task-specific fine-tuning are not included, e.g.,
OFA [77] and X-Decoder [95]. We highlight the top-1 entries of one-stage multi-task
generalist models and joint training improvements with bold font. Specific module
counts exclude non-computational ones, like index-based text tokenizers.

Specific Modules Object Detection Instance Seg Semantic Seg Captioning GroundingMethods Examples Num #Params AP AP50 AP75 AP AP50 AP75 mIoU(SS) BLEU-4 CIDEr Acc@0.5

Specialist Models
Faster R-CNN-FPN [64] ResNet,RPN 5 42M 40.3 61.0 44.0 - - - - - - -
DETR-DC5 [12] ResNet,Encoder 5 41M 43.3 63.1 45.9 - - - - - - -
Deformable-DETR [93] ResNet,Encoder 5 40M 45.4 64.7 49.0 - - - - - - -
Pix2Seq [19] ResNet,Encoder 3 37M 43.0 61.0 45.6 - - - - - - -
Mask R-CNN [32] ResNet,RPN 6 46M 41.0 61.7 44.9 37.1 58.4 40.1 - - - -
Polar Mask [82] ResNet,FPN 5 55M - - - 30.5 52.0 31.1 - - - -
Mask2Former [23] ResNet,Decoder 5 44M - - - 43.7 - - 47.2 - - -
VL-T5 [24] Faster R-CNN 3 440M - - - - - - - 34.5 116.5 -
UNITER [22] Faster R-CNN 4 303M - - - - - - - - - 81.4
MDETR [36] RoBERTa,DETR 6 188M - - - - - - - - - 86.8

Generalist Models (Pre-training + MultiTask-Tuning)
UniTab [86] Encoders 4 185M - - - - - - - ⋆ 115.8 88.6
Pix2Seq v2 [20] ViT,Decoder 2 132M 46.5 ⋆ ⋆ 38.2 ⋆ ⋆ - 34.9 ⋆ ⋆
Unified-IOXL [52] VQ-VAE 4 2.9B - - - - - - ⋆ ⋆ 122.3 ⋆
Shikra-13B [15] ViT,Vicuna 3 13B - - - - - - - ⋆ 117.5 87.8

Generalist Models (MultiTask-Training)
Uni-Perceiver [94] None 1 124M - - - - - - - 32.0 ⋆ ⋆
Uni-Perceiver-MoE [92] None 1 167M - - - - - - - 33.2 ⋆ ⋆

Uni-Perceiver-V2 [42] Mask DINO,Swin 8 308M 58.6† ⋆ ⋆ 50.6† ⋆ ⋆ - 35.4 116.9 ⋆
VisionLLM-R50 [78] Deform-DETR 6 7B 44.6 64.0 48.1 25.1 50.0 22.4 - 31.0 112.5 80.6

GiT-Bsingle-task None 1 131M 45.1 62.7 49.1 31.4 54.8 31.2 47.7 33.7 107.9 83.3
GiT-Bmulti-task None 1 131M 46.7 64.2 50.7 31.9 56.4 31.4 47.8 35.4 112.6 85.8
Improvement (single→multi) +1.6 +1.5 +1.6 +0.5 +1.6 +0.2 +0.1 +1.7 +4.7 +2.5
GiT-Lmulti-task None 1 387M 51.3 69.2 55.9 35.1 61.4 34.7 50.6 35.7 116.0 88.4
GiT-Hmulti-task None 1 756M 52.9 71.0 57.8 35.8 62.6 35.6 52.4 36.2 118.2 89.2

by recent studies. Universal training expands our approach to incorporate 27
comprehensive benchmarks introduced in §4.2. All models leverage AdamW [38]
optimizer with a cosine annealing schedule, setting the initial learning rate to
0.0002 and weight decay to 0.05. The largest models of the universal setting are
trained on 96 A100 GPUs for 320k iterations. All experiments are evaluated on
the selected datasets using standard protocols. More details are in Appendix.

5.2 In-distribution Benchmarking

Comparison with Specialist Models. We compare our single-task model
with well-established specialist baselines in Table 4. Our model shows the ability
to perform various visual tasks individually within the same framework, narrow-
ing the performance gap with specialized models. It achieves comparable results
in most tasks but slightly underperforms in instance segmentation. This is typical
for polygon-based methods, which often yield lower results than mask manner.
GiT builds a new polygon-based benchmark (+0.9 against PolarMask [82]).
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Table 5: Zero shot results. “⋆” and “-” follow Table 4. † are the performance reproduced
on mmdetection [14]. “universal” extends multi-task setting by including more datasets.

Specific Modules Object Detection Instance Seg Semantic Seg CaptioningMethods Examples Num #Params Cityscapes [25] Cityscapes [25] Cityscapes [25] SUN RGB-D [67] nocaps [2]

Supervised
Faster R-CNN-FPN [64] ResNet,RPN 5 42M 40.3 - - - -
Mask R-CNN [32] ResNet,RPN 6 46M 40.9 36.4 - - -
DeepLabV3+ [17] ResNet,Decoder 3 63M - - 80.9 ⋆ -
Mask2Former [23] ResNet,Decoder 5 44M - - 80.4 ⋆ -
TokenFusion [80] Segformer,YOLOS 4 - - - ⋆ 48.1 -

Zero-Shot Transfer
GLIP-T [45] Swin,Dy-Head 5 156M 28.1† - - - -
Grounding DINO-T [49] Swin,DINO 6 174M 31.5† - - - -
BLIP-2 (129M) [43] ViT-G,Qformer 4 12.1B - - - - 15.8
XDecoder-T [95] FocalNet,Encoder 4 165M - 16.0 47.3 34.5 ⋆

GiT-Bmulti-task None 1 131M 21.8 14.3 34.4 30.9 9.2

GiT-Buniversal None 1 131M 29.1 17.9 56.2 37.5 10.6
GiT-Luniversal None 1 387M 32.3 20.3 58.0 39.9 11.6
GiT-Huniversal None 1 756M 34.1 18.7 61.8 42.5 12.6

Notably, to maintain a universal interface, our method only uses the simplest
label assignments, leaving huge room for performance gains. For example, label
assignment used in detection closely mirrors Deformable-DETR [93]. Adopting
more advanced strategies like DINO [88] could further improve our results.
Comparison with Generalist Models. Some generalist models [15,20,52,77]
employ a two-stage training process, initially leveraging large-scale, task-relevant
datasets like image-text pairs or diverse perception data, and then undergoing
single- or multi-task downstream tuning within the same framework to enhance
performance. Our GiT fully embraces the more challenging one-stage joint train-
ing, popularized in LLMs, that blends all data for unified modeling followed by
direct downstream evaluation, without any task-specific adaptation.

Table 4 shows that our model not only adeptly manages dense prediction but
also outperforms the former leading generalist model, VisionLLM [78], across all
tasks, with 50× fewer parameters and a much simpler framework.

Table 4,5,6 show that scaling our model greatly improves multitask, zero-
and few-shot performance, sometimes even matching supervised approaches.
Discussion about multi-task capacity. Table 4 reveals that GiT-Bmulti-task
outperforms GiT-Bsingle-task, showing notable improvements in each task after
joint training on five standard datasets. As observed in Table 3, multi-task train-
ing typically boosts performance when tasks share the same capabilities but are
less effective otherwise. It’s clearly observed in the shared localization ability
across detection, grounding, and instance segmentation. Conversely, specialized
skills, like dense prediction in semantic segmentation and polygon-based regres-
sion in instance segmentation don’t see significant gains from multi-tasking.

5.3 Out-of-distribution Analysis

Zero-Shot Transfer. After large-scale multi-task training, GiT is readily as-
sessed on a variety of novel data sources. To demonstrate this capability, we
conducted zero-shot evaluations on three established datasets across five config-
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Table 6: Few shot results of out-distributed domains. We conduct this experiment
based on weights pretrained in the universal stage. “⋆” , “-” and † follow Table 5.

Specific Modules Medical Imaging@mDice Remote Sensing@mIoU Human Centric@mAPMethods Examples Num DRIVE [68] LoveDA [76] Potsdam [35] WIDERFace [85] DeepFashion [50]

Supervised
U-Net [65] None 1 81.4 ⋆ ⋆ - -
AerialFormer [84] Encoder,Stem 3 - 54.1 89.1 - -
RetinaFace [27] ResNet,FPN 5 - - - 52.3 -
Mask R-CNN [32] ResNet,RPN 6 - - - ⋆ 59.9

Few-Shot Transfer
Faster RCNN [64] ResNet,RPN 4 - - - 25.4† 14.9†

DeepLabV3 [16] ResNet,ASPP 3 32.1† 20.3† 24.2† - -

GiT-Bmulti-task None 1 34.3 24.9 19.1 17.4 23.0

GiT-Buniversal None 1 51.1 30.8 30.6 31.2 38.3
GiT-Luniversal None 1 55.4 34.1 37.2 33.4 49.3
GiT-Huniversal None 1 57.9 35.1 43.4 34.0 52.2

urations, addressing four vision tasks beyond visual grounding. These evalua-
tions span a range of contexts, from indoor environments like SUN RGB-D [67],
outdoor scenes such as Cityscapes [25], and daily life like nocaps [2]. We report
mIoU and SPICE [5] for semantic segmentation and captioning, mAP for object
detection and instance segmentation.

As shown in Table 5, our universal models achieve the best results in nearly
all tasks. With comparable parameters, GiT-Buniversal surpasses X-Decoder [95]
on Cityscapes (+8.9) and SUN RGB-D (+3.0) on semantic segmentation, and
shows similar advantages in instance segmentation and object detection. Scaling
the model further enhances its zero-shot capabilities, nearing supervised perfor-
mance. BLIP-2 [43] outperforms GiT-H on nocaps, likely attributed to its in-
tegration with pretrained language models and extensive training data (129M).
Notably, to our knowledge, GiT is the first generalist model to achieve zero-shot
performance across various domains and tasks.
Few-Shot Transfer. GiT demonstrates rapid adaptation to out-of-distribution
data sources. We conducted a comprehensive few-shot evaluation on five datasets
in medical imaging (i.e., DRIVE [68]), remote sensing (i.e.,LoveDA [76] and IS-
PRS [35]), and human-centric scenarios (i.e., WIDERFace [85] and DeepFash-
ion [50]). Our approach follows the N-way K-shot [29] setting (i.e., K=5) and
directly fine-tune the pre-trained model on support sets [10].

As for segmentation, we choose DeeplabV3 as baseline, which aligns with the
dataset (i.e., ADE20K) used for training our multi-task variant. We observed
that both GiT multi-task and DeeplabV3 perform poorly in few-shot setting. How-
ever, after large-scale universal training, GiT-Buniversal demonstrates significant
improvement. This trend is mirrored in detection, underscoring the advantages
of our universal framework for enhancing generalization capabilities.

5.4 Ablation Study

Decoder-only Architecture. Our model follows the GPT’s decoder-only de-
sign, though its advantages over encoder-decoder frameworks are not well-explored.
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Table 7: Ablation of modality experts and text conditioning on GiT-Bmulti-task, using
multiple FFN for multimodal learning and image-to-text attention in visual grounding.

Modality Experts Text Conditioning Detection@AP Ins Seg@AP Sem Seg@mIoU(SS) Caption@CIDEr Grounding@Acc(0.5)

46.1 31.4 47.8 111.8 78.6
✓ 46.2 31.6 47.7 112.2 78.7

✓ 46.7 31.9 47.8 112.6 85.8

Table 8: Ablation study between encoder-decoder and decoder-only architecture.

Methods Enc Layer Dec Layer Detection@AP Ins Seg@AP Sem Seg@mIoU(SS) Caption@CIDEr Grounding @Acc(0.5)

GiT-Bmulti-task 12 6 46.3 31.6 46.9 110.8 84.8
GiT-Bmulti-task 0 18 46.7 31.9 47.8 112.6 85.8

Fig. 5: Model size scaling law results.

We transformed GiT-B’s initial 12 lay-
ers into an encoder for image and text,
excluding target tokens. Table 8 shows
that the encoder-decoder paradigm
underperforms decoder-only models.
This might be due to decoder-only
models allocating more layers (18 vs
6) for processing target tokens.
Modality Experts. Although em-
ploying multiple FFN as modality ex-
perts is a commonly used practice [6,
92] for multimodal processing, Table 7
shows no notable performance gains in
our approach, leading us to exclude it for achieving a simpler framework.
Text Conditioning. As for visual grounding, we enable image-to-text atten-
tion. Table 7 shows the remarkable multi-task improvements, likely due to better
differentiation between detection and visual grounding. These two tasks function
at distinct image scales (i.e., 1120 and 224), where the former involves identify-
ing multiple boxes and the latter needs to generate a single box guided by text.
Scaling Law Analysis. Figure 5 presents an in-distribution performance of our
universal model against its parameter count, offering insights into the potential
enhancements with expanding model capacity. We plot performance progression
for three model sizes based on a composite score averaging key metrics from all
tasks, showing gains with increased scale at a consistent token count.

6 Conclusion

In this paper, we introduce GiT, a simple yet powerful vision foundation model
that utilizes only a ViT to integrate diverse visual tasks via a universal language
interface. Mirroring multi-task abilities in LLMs, GiT sets new benchmarks in
generalist performance. With training over 27 datasets, GiT becomes the first
general vision model to excel in zero-shot tasks across diverse domains using
shared parameters, showcasing the foundational role of multi-layer transformer.
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