
ScatterFormer: Efficient Voxel Transformer with
Scattered Linear Attention

Chenhang He1, Ruihuang Li1,2, Guowen Zhang1, and Lei Zhang1,2

1 The Hong Kong Polytechnic University, Hong Kong SAR, China
2 OPPO Research, Shenzhen, China

chenhang.he@polyu.edu.hk
csrhli@comp.polyu.edu.hk

guowen.zhang@connect.polyu.edu.hk
cslzhang@comp.polyu.edu.hk

Abstract. Window-based transformers excel in large-scale point cloud
understanding by capturing context-aware representations with afford-
able attention computation in a more localized manner. However, the
sparse nature of point clouds leads to a significant variance in the number
of voxels per window. Existing methods group the voxels in each win-
dow into fixed-length sequences through extensive sorting and padding
operations, resulting in a non-negligible computational and memory over-
head. In this paper, we introduce ScatterFormer, which to the best of our
knowledge, is the first to directly apply attention to voxels across different
windows as a single sequence. The key of ScatterFormer is a Scattered
Linear Attention (SLA) module, which leverages the pre-computation
of key-value pairs in linear attention to enable parallel computation on
the variable-length voxel sequences divided by windows. Leveraging the
hierarchical structure of GPUs and shared memory, we propose a chunk-
wise algorithm that reduces the SLA module’s latency to less than 1
millisecond on moderate GPUs. Furthermore, we develop a cross-window
interaction module that improves the locality and connectivity of voxel
features across different windows, eliminating the need for extensive win-
dow shifting. Our proposed ScatterFormer demonstrates 73.8 mAP (L2)
on the Waymo Open Dataset and 72.4 NDS on the NuScenes dataset,
running at an outstanding detection rate of 23 FPS. The code is available
at https://github.com/skyhehe123/ScatterFormer.

Keywords: 3D Object Detection · Voxel Transformer

1 Introduction

In the field of 3D object detection, the use of point clouds has become increas-
ingly popular, especially for providing accurate and reliable perception results in
autonomous systems. Unlike image data, point clouds obtained from LiDAR are
often sparse and nonuniformly distributed, with varying density depending on
their distances from the sensor. Earlier approaches utilize point-cloud operators

https://github.com/skyhehe123/ScatterFormer

2 C. He et al.

MHSA

(B, M, D)

(N, D)

SST, SWFormer,
DSVT, etc.

SLA

ScatterFormer
(ours) (N, D)

(B, M, D)(a)

MHSA

(B, M, D)

(N, D)

SST, SWFormer,
DSVT, etc.

SLA

ScatterFormer
(ours) (N, D)

(B, M, D)

(b)

Fig. 1: Illustration of (a) group-based attention and (b) our scattered linear attention
on variable-length sequences. The square in different colors represent voxels in different
windows and the square with a cross represents the padding voxel.

like PointNet++ [31] for feature extraction in continuous space [37]. Some ap-
proaches [5,9,16,18,49,50,52,60] have transformed point clouds into voxel grids,
which are then efficiently processed by a sparse convolutional neural network
(SpCNN) [49].

Recently, the success of vision transformers [7, 21] has motivated a number
of attention-based methods to process indoor point clouds [12, 22, 24, 25, 27, 57].
Inspired by SwinTransformer [21], various studies [8, 14, 23, 47] have advanced
the application of window-based Transformers in large-scale 3D detection tasks
within outdoor environments, achieving outstanding performance and highlight-
ing their potential as alternatives to SpCNN. However, due to the inherent spar-
sity of point clouds, the number of features grouped by windows can vary sig-
nificantly, hampering the parallelism in attention computation. To resolve this
issue, SST [8] and SWFormer [40] group the voxels within a window into different
batches and manages the attention computation in a hybrid serial-parallel man-
ner. More effectively, DSVT [47] alternatively sort the voxels within a window
from different axes and partition them into sequences of fixed length, which allow
parallel computation on sparse voxels. Albeit effective, these group-based meth-
ods, as shown in Figure 1(a), require extensive sorting and padding operations,
incurring substantial memory and computational overhead.

In this paper, we delve into the window-based voxel transformer where the
voxels grouped by windows form variable-length sequences {X1 ∈ Rn1×d, X2 ∈
Rn2×d, ..., Xk ∈ Rnk×d}. Their corresponding self-attention matrices {A1 ∈
Rn1×n1 , A2 ∈ Rn2×n2 ,..., Ak ∈ Rnk×nk} occupy irregular memory spaces, mak-
ing it a challenge to perform attention in parallel for the voxels of the entire
scene. Recent efforts on linear attention [1, 13,17, 48] have emerged a promising
alternative to traditional attention. By approximating softmax operation with
the kernel function, i.e., ϕ(Q) ·ϕ(K)T ≈ softmax(QKT), we can change the com-
putation order from (Q ·KT) · V to Q · (KT · V). This not only results in linear
complexity but also yields a compressed hidden state S ∈ Rd×d that is invariant
to the sequence length. Another attractive property of linear attention is that it

ScatterFormer 3

can be converted into a “recurrent” form:

ot = qtSt; St = St−1 + kTt vt (1)

where the sequences can be divided into non-overlapping chunks, {qj , kj , vj}j=1:t.
The output can be calculated by scanning over the sequence, based on an up-
dated hidden state St. This enables the use of chunk-level computation to address
the inability to parallelize at the sequence level due to varying lengths.

Inspired by this, we introduce the Scattered Linear Attention (SLA) mod-
ule, which accommodates linear attention in a window-based voxel transformer.
As shown in Figure 1(b), the SLA module treats the voxels of the entire scene
into a single sequence and processes them directly without padding voxels. Us-
ing the recurrent form of linear attention, we develop an I/O-aware algorithm to
further optimize matrix multiplication on voxel sequences. Specifically, we divide
the voxel sequence into multiple chunks and loaded them into the shared mem-
ory (SRAM) of the GPU. The computation of the hidden state matrix in each
window is then achieved through a series of chunk-wise matrix multiplications
and cumulative sums. This optimized implementation significantly reduces I/O
overhead and memory usage, resulting in extremely fast and memory-efficient
attention computation.

In addition, current window-based transformer models use window shifting to
propagate the information across the windows. After performing an instruction-
level analysis of existing implementations, we observe that the voxel permuta-
tion operations caused by window shifting consume significant computational
overhead. To address this issue, we propose a cross-window interaction (CWI)
module, which is composed of depth-wise convolutions with small 2D kernels and
lengthy 1D kernels that allow the voxel features in each window to fully interact
with the features in other windows. As a result, the proposed CWI module can
improve both the locality and connectivity of the voxel features while requiring
minimal computational effort.

Building upon the SLA and CWI modules, we propose the ScatterFormer,
an innovative voxel transformer for large-scale point cloud understanding. Our
experiments show that ScatterFormer achieves linear complexity without com-
promising accuracy. It achieves superior results compared to the state-of-the-art
model DSVT [47]. The latency of ScatterFormer is significantly lower than that
of transformer-based detectors [8, 14, 47], which is comparable to that of sparse
convolution-based detectors [52].

In conclusion, we delve into attention on voxels grouped by windows, high-
lighting the challenges in memory allocation and computation for variable-length
sequences. Then, we introduce an SLA module, which can directly process the
voxels grouped by windows by facilitating the linear attention formula. A chunk-
wise matrix multiplication algorithm is proposed to further accelerate the atten-
tion computation in SLA. Finally, we present ScatterFormer, which has linear
complexity and can efficiently process large-scale LiDAR scenes, achieving better
accuracy with lower latency compared to existing transformer-based detectors.

4 C. He et al.

2 Related Work

2.1 Point Cloud-based 3D Object Detection

There exist two primary point-cloud representations in 3D object detection, i.e.,
point-based and voxel-based ones. In point-based methods [28, 29, 37, 39, 55],
point clouds are first passed through a point-based backbone network [30], in
which the points are gradually sampled and features are learned by point cloud
operators. F-Pointnet [29] first employs PoinNet to detect 3D objects based
on the frustums lifted by 2D proposals. PointRCNN [37] direct generates 3D
proposals from point-based features with foreground segmentation. VoteNet [28]
clusters objects from the surface points using a deep Hough voting method.
Other point operators based on the point graph [39,55] and the range view [10]
have also been developed for point cloud processing.

Point-based methods are primarily limited by their inference efficiency and
the absence of contextual features in a continuous space. On the other hand,
voxel-based approaches [5,16,18,49,52,58,60] transform the entire point clouds
into regular grids through voxelization, showcasing superior efficiency and con-
text representation. VoxelNet [60] proposes a voxel feature encoding (VFE) mod-
ule and combines it with 3D convolutions to extract voxel features in an end-to-
end manner. SECOND [49] optimizes 3D convolution for sparse data, resulting in
a significant reduction in both time and memory. PointPillars [18] demonstrates
an efficient model by stacking voxels into vertical columns, subsequently process-
ing them with naive 2D convolutions. There are also efforts [16,35] that explore
hybrid representations of point-based and voxel-based networks, demonstrating
a better trade-off between speed and accuracy. However, a common limitation
across these methods is their reliance on small convolution kernels with restricted
receptive fields, making them less adept at capturing the global context for 3D
object detection.

In this paper, we shed light on the voxel-based methods and introduce a
Scattered Linear Attention module that enables dynamic modeling among vox-
els within each window with linear complexity, thereby efficiently extracting
window-based contextual features.

2.2 Transformer on Point Cloud

Inspired by the significant success of self-attention in NLP [46] and CV [7, 45],
Transformers have been adapted for 3D vision due to their ability to cap-
ture long-range dependencies. The Point Transformers [27,57] employ attention
to modulate point clouds for classification and segmentation tasks. PCT [12]
presents an optimized offset attention module, which, when combined with the
implicit Laplacian operator and normal estimation, becomes more adept at
point-cloud processing. Some methods like [8, 22] opt for voxels or key points
to optimize latency. 3DETR [25] proposes a query-based 3D object detection
scheme. CT3D [33] enhances the region-based network using a channel-wise

ScatterFormer 5

Scattered Linear
Attention

Voxelization

BEV CN
N

D
etection H

eads
Input
Point

Clouds

Batch N
orm

Cross W
indow

Interaction

Voxel-to-Pillar

ScatterFormer Block × 3

CPE

Feed-Forw
ard

N
etw

ork

Batch N
orm

Batch N
orm

D
ow

n

ScatterFormer
Block × 3

Fig. 2: The macro design of ScatterFormer. The backbone comprises a Conditional
Position Encoding (CPE) and six transformer blocks. Each block is composed by a
Scattered Linear Attention (SLA) module, a Cross-Window Interaction (CWI) module,
and a Feed-Forward Network (FFN).

Transformer framework. To achieve context-rich representations, several stud-
ies [8, 14, 23, 24, 47] have integrated the attention module into point- or voxel-
based encoders. For instance, VoTr [24] utilizes dilated attention for expanded re-
ceptive fields; VoxSet [14] applies set attention for extracting point-based features
in set-to-set translation; SST [8] employs local attention with shifted windows;
and OcTr [59] adopts an Octree-based attention for efficient hierarchical context
learning. Nevertheless, how to efficiently leverage global context from attention
remains a challenge due to the intrinsic sparsity of point clouds. DSVT [47] and
FlatFormer [23] group the voxels within each window into a series of fixed-length
voxel sets, thus extracting the features in a fully parallel manner. Recently, a
group-free state-space model [54] was proposed to directly process voxels as a
sequence. However, these approaches more or less lose the spatial proximity and
incur extensive computational overhead in grouping and sorting the voxels.

3 Method

The overall architecture of our proposed ScatterFormer is depicted in Figure 2.
It begins with the input point clouds, which are voxelized and transformed into
high-dimensional embeddings using a VFE layer [60]. These embeddings are then
processed through Conditional Positional Encoding (CPE) using a shallow con-
volutional network [6]. The encoded features enter the ScatterFormer backbone,
consisting of six ScatterFormer blocks. Each block includes a Scattered Lin-
ear Attention (SLA) module, a Cross-Window Interaction (CWI) module, and
a Feed-Forward Network (FFN), interspersed with Batch Normalization layers
and skip connections. After three ScatterFormer blocks, the voxel features are
downsampled via a sparse convolutional layer. The downsampled features are
then converted into pillar features [47], generating compact BEV features for
bounding-box prediction. ScatterFormer ScatterFormer stands out by not re-
quiring voxel features to be organized into fixed-length sets [8, 23, 47], enabling
flexible attention computation across windows. Additionally, the CWI module
obviates the need for window shifting. These innovations allow ScatterFormer
to avoid unnecessary memory allocation and permutation operations, achieving
high efficiency comparable to CNN-based models.

6 C. He et al.

3.1 Linear Attention

We begin by revisiting the self-attention introduced by [46]. Given an input
matrix x ∈ RN×d, where N denotes the number of tokens and d denotes the
dimensionality. Self-attention first linearly projects the input to queries, keys,
and values using weight matrices WQ, WK , and WV , such that Q = xWQ,K =
xWK , V = xWV . Then it computes a Softmax-based attention map based on
queries and keys i.e., A(Q,K) = Softmax(QKT)/

√
d. The output of self-attention

is defined as the weighted sum of N values with the weights corresponding to
the attention map, i.e., O = A(Q,K)V . This approach involves calculating the
similarity for all query-key pairs, which yields a computational complexity of
O(N2).

Linear attention [1, 17] offers a notable alternative to self-attention by sig-
nificantly reducing its computational complexity from O(N2) to O(N). This
efficiency is achieved through the application of kernel functions on the query
(Q) and key (K) matrices, which effectively approximates the original attention
map without relying on Softmax, i.e., A(Q,K) = ϕ(Q)ϕ(K)T. Taking advantage
of the associative property of matrix multiplication, the computation shifts from
(ϕ(Q)ϕ(K)T)V to ϕ(Q)(ϕ(K)TV). This modification leads to a computational
complexity proportional to the number of tokens, maintaining an order of O(N).

3.2 Scattered Linear Attention (SLA)

Instead of organizing the voxels within a window into fixed-length subsets, we
arrange the voxels of the entire scene into a single flattened matrix, as illustrated
in Figure 3(a). These voxels are ordered based on their window coordinates,
ensuring that voxels from the same window form a sub-matrix in contiguous
memory. Initially, we use a shared projection layer to map all the voxels in the
scene to query, key, and value representations, denoted Q, K, V . Subsequently,
we perform attention computations on these submatrices separately, resulting in
the scattered linear attention (SLA) formula as follows:

SLA(Q,K, V) = Concat[LA(Qj ,Kj , V j)]j=1:M , (2)

where M is the number of non-empty window in the current scene and LA is the
linear attention formula used in [17]. Based on this formula, the output voxel
features Oj in the jth window can be defined as:

LA : Oj =
ϕ(Q)

∑mj

i=1 ϕ(Ki)
⊤Vi

ϕ(Q)
∑mj

i=1 ϕ(Ki)⊤
(3)

where mj is the number of voxel in the window and ϕ(x) is the kernel function.

Hardware Efficient Implementation. It should be noted that the implemen-
tation of Equation 2 is not straightforward, as the sub-matrices have different
numbers of rows. One naive implementation is to cache the “kv” matrix of each

ScatterFormer 7

Inner loop

Inner loop
Q

𝑲𝐓

v

HBM to SRAM

(a) (b)

⋮ ⋮ ⋮ ⋮⋮
⋮

Voxels grouped by window

S
LA

K

e
rn

e
l

QKVFlatten Chunk

Multi-thread (in parallel)

𝑋ଵ

𝑋ଶ

𝑋ଷ

M
u

lti-th
re

a
d

 (in
 p

a
ra

lle
l)

Fig. 3: (a) The voxel features are sorted by windows and flattened to a single ma-
trix, which is further partitioned into multiple chunks of uniform length and sent to
SLA kernel for attention computation. (b) In SLA, we first allocate individual threads
to each window, each of them iterates over all corresponding key and value chunks,
calculates, and accumulates their products to obtain the hidden state matrix of each
window. Then, multiple threads are allocated to these query chunks qi ∈ Q, calculating
the chunk-wise output by multiplying qi with the corresponding hidden state matrix.

voxel and apply scatter3 operator to accumulate them within each window. How-
ever, this would consume a high memory overhead and IO latency. Considering
that GPUs feature a memory hierarchy that includes larger, slower global GPU
memory (high-bandwidth memory; HBM) and smaller, faster shared memory
(SRAM), optimal utilization of SRAM to minimize HBM I/O costs can lead
to significant speed-ups. Based on this, we partition the flattened Q,K, V into
multiple chunks, load them from slow HBM to fast SRAM. Specifically, for each
window, we allocate an single thread. Each thread iterates over all the key and
value chunks, calculates, and accumulates their products to obtain the hidden
state matrix of the current window. After calculating the hidden state matrix in
window, we assign individual thread to each query chunk qi ∈ Qj and calculate
the chunk-wise output can then be following Equation 3. Figure 3(b) illustrates
this chunk-wise matrix multiplication approach. As can be seen, it not only
avoids outputting large matrices but also allows for more flexible processing of
variable-length sequences.

In our implementation, we use Triton [44] to perform chunk-wise matrix mul-
tiplication. As illustrated in Figure 4, it outperforms the naive scattered-based
operation, demonstrating improved speed and reduced memory usage when com-
puting attention for extremely long sequences.

3.3 Cross Window Interaction

Traditional window-based transformers [8,40,47] utilize window shifting for inter-
window connection. For point cloud sequences, this requires recalculating win-
dow coordinates and rearranging the voxels. In DSVT, the computation of voxel
3 https://github.com/rusty1s/pytorch_scatter

8 C. He et al.

1024 2048 4096 8192 16384 32768 65536 131072
Sequence length

0

10

20

30

40

Ru
nt

im
e

(m
s)

Runtime vs Sequence length
Chunk-wise Impl
Naive Scatter Impl

1024 2048 4096 8192 16384 32768 65536 131072
Sequence length

0

5

10

M
em

or
y

(G
B)

Memory vs Sequence length
Chunk-wise Impl
Naive Scatter Impl

Fig. 4: Comparison between between scatter-based implementation (yellow) and our
chunk-wise implementation (blue).

indices in subsets and the rearrangement of voxel matrices are particularly time
consuming, accounting for 24% of the total backbone latency, as shown in
Figure 5. To alleviate this unnecessary computational overhead from window
shifting, we introduce the Cross-Window Interaction (CWI) module, which em-
ploys convolutions with large kernel to blend voxel features across windows.

We adhere to the design principles of the Inception architecture [42], where
the input features are divided along the channel dimension and processed through
multiple branches using group-wise convolutions. Instead of employing a single
large kernel for convolution, we adopt more efficient 1D kernels along different
axes for feature aggregation. Specifically, we apply a (Sh+1)×1×1 convolution
in one branch and a 1×(Sw+1)×1 convolution in another branch, where (Sw, Sh)
denotes the window size. Additionally, we incorporate a standard 3× 3× 3 con-
volution in one branch to enhance locality, while another branch performs an
identity mapping. Given input X of channel 4c, the output X ′ of the Cross
Window Interaction module can be written as:

X ′ = Concat(Xk, Xw, Xh, X
3c:4c), (4)

where

Xk = DWConv(Sh+1)×1×1(X
:c), (5)

Xw = DWConv1×(Sw+1)×1(X
c:2c), (6)

Xh = DWConv3×3×3(X
2c:3c). (7)

ScatterFormer 9

18% Indices
Generation

76% Computation

DSVT ScatterFormer

98.4% Computation

0.6% Voxel
Sorting 1% Offset

Generation

6% Voxel
Sorting

Fig. 5: Runtime decomposition in DSVT [47] and ScatterFormer backbones. The offsets
generation means computing the starting address of each chunk in the flattened matrix.

In our experiments, we found that this axis-decomposed large kernel design can
achieve a better precision-latency trade-off. With these lengthy kernels, the voxel
features can be efficiently blended among different windows.

3.4 Detection Head and Loss

To complement existing detection heads, ScatterFormer generates dense BEV
feature maps from sparse voxel representations by placing them back to their
spatial locations and filling the unoccupied positions with zeros. For the BEV
network, we simply follow [53] by adopting a cascaded CNN with convolutional
blocks at multiple levels of strides. In terms of detection head and loss function,
we follow the design identical to that used in DSVT [47]. We train the detection
model with heatmap estimation, bounding box regression, and incorporate an
IoU loss for confidence calibration. On the nuScenes dataset, the detection head
follows the architecture used in Transfusion [2].

4 Experiments

4.1 Datasets and Evaluation Metrics

Waymo Open Dataset (WOD). This dataset contains 230,000 annotated
samples split into 160,000 for training, 40,000 for validation, and 30,000 for
testing. It uses two metrics for 3D object detection: mean average precision
(mAP) and mAP weighted by heading accuracy (mAPH), further categorized
into Level 1 (L1) for objects detected by more than five LiDAR points and Level
2 (L2) for those detected with at least one point.

NuScenes. This dataset comprises 40,000 annotated samples, with 28,000
for training, 6,000 for validation, and 6,000 for testing. On this dataset, the
model performance is measured by mean average precision (mAP) across mul-
tiple distance thresholds (0.5, 1, 2, and 4 meters) and the nuScenes detection
score (NDS), which combines mAP with a weighted sum of five additional met-
rics assessing true positive predictions in translation, scale, orientation, velocity,
and attribute accuracy.

10 C. He et al.

5 10 15 20 25 30
Frame per second (FPS)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Pe
rfo

rm
an

ce
 (m

AP
@

L2
)

ScatterFormerHEDNet

DVST-Pillar
DSVT-Voxel

PV-RCNN++

PV-RCNN

VoxSet
CenterPoint-Voxel

SSTPart-A2

CenterPoint-Pillar

PointPillarsSecond

Performance vs. Speed

Fig. 6: The detection performance (mAPH/L2) vs. speed (FPS) of different methods
on Waymo validation set. The speeds are measured on an NVIDIA A100 GPU.

4.2 Implementation Details

Our approach is implemented using the open-source framework OpenPCDet [43].
To construct ScatterFormer, we set the voxel size to (0.32m, 0.32m, 0.1875m) for
the Waymo dataset and (0.3m, 0.3m, 8m) for the NuScenes dataset. The window
sizes (Sw, Sh) for the two datasets are set to (12, 12) and (20, 20), respectively. We
stack six building blocks for the backbone network. We configure our attention
module to have 4 heads with a dimensionality of 128. ScatterFormer is trained
for 24 epochs with a learning rate of 0.006 on Waymo Dataset and 20 epochs
with a learning rate of 0.004 on NuScenes Dataset. In the last 4 epochs, we
disabled the data augmentation strategy of ground-truth sampling. The model
is trained on 8 RTX A6000 GPUs with a batch size of 32. Other settings for
training and inference adhere strictly to DSVT [47].

4.3 Comparison with State-of-the-Arts

Results on Waymo Open Dataset (WOD). We conduct a detailed com-
parison of ScatterFormer against the published results on the validation set of
the Waymo Open Dataset. In line with standard practices, we distinctly cate-
gorize and list the methods utilizing single-frame and multi-frame approaches.
To ensure comprehensive coverage, we also include comparisons with methods
incorporating long-term temporal modeling, such as those described in [4,15,61].
As demonstrated in Table 1, our single-stage model outperforms most two-stage
methods and achieves better performance than state-of-the-art methods such
as DSVT [47] and HEDNet [53]. Moreover,our model achieves 76.0 and 76.7
level 2 mAPH on 3 and 4 frame settings, respectively, outperforming previous
multiframe methods by a margin of 1.1. Furthermore, as shown in Figure 6,

ScatterFormer 11

Table 1: Performance comparison on the validation set of Waymo Open Dataset.
Symbol ‘*’ denotes the methods with temporal modeling, and ‘-’ means that the result
is not available.

ALL (3D mAPH) Vehicle (AP/APH) Pedestrian (AP/APH) Cyclist (AP/APH)Method Frames L1 L2 L1 L2 L1 L2 L1 L2

SECOND [49] 1 63.05 57.23 72.27/71.69 63.85/63.33 68.70/58.18 60.72/51.31 60.62/59.28 58.34/57.05
PointPillar [18] 1 63.33 57.53 71.60/71.00 63.10/62.50 70.60/56.70 62.90/50.20 64.40/62.30 61.90/59.90

IA-SSD [56] 1 64.48 58.08 70.53/69.67 61.55/60.80 69.38/58.47 60.30/50.73 67.67/65.30 64.98/62.71
LiDAR R-CNN [20] 1 66.20 60.10 73.50/73.00 64.70/64.20 71.20/58.70 63.10/51.70 68.60/66.90 66.10/64.40

RSN [41] 1 - - 75.10/74.60 66.00/65.50 77.80/72.70 68.30/63.70 - -
Part-A2 [38] 1 70.25 63.84 77.05/76.51 68.47/67.97 75.24/66.87 66.18/58.62 68.60/67.36 66.13/64.93

Centerpoint [52] 1 - 65.50 - -/66.20 - -/62.60 - -/67.60
VoTR [24] 1 - - 74.95/74.25 65.91/65.29 - - - -

VoxSeT [14] 1 72.24 66.22 74.50/74.03 65.99/65.56 80.03/72.42 72.45/65.39 71.56/70.29 68.95/67.73
SST-1f [8] 1 - - 76.22/75.79 68.04/67.64 81.39/74.05 72.82/65.93 - -

SWFormer-1f [40] 1 - - 77.8/77.3 69.2/68.8 80.9/72.7 72.5/64.9 - -
PV-RCNN [35] 1 69.63 63.33 77.51/76.89 68.98/68.41 75.01/65.65 66.04/57.61 67.81/66.35 65.39/63.98
PillarNet [34] 1 74.60 68.43 79.09/78.59 70.92/70.46 80.59/74.01 72.28/66.17 72.29/71.21 69.72/68.67

PV-RCNN++ [35] 1 75.21 68.61 79.10/78.63 70.34/69.91 80.62/74.62 71.86/66.30 73.49/72.38 70.70/69.62
FlatFormer [23] 1 - 67.2 - 69.0/68.6 - 71.5/65.3 - 68.6/67.5

PillarNext-1f [19] 1 75.74 69.74 78.40/77.90 70.27/69.81 82.53/77.14 74.90/69.80 73.21/72.20 70.58/69.62
VoxelNext [5] 1 76.3 70.1 78.2/77.7 69.9/69.4 81.5/76.3 73.5/68.6 76.1/74.9 73.3/72.2

FSD [9] 1 77.3 70.8 79.2/78.8 70.5/70.1 82.6/77.3 73.9/69.1 77.1/76.0 74.4/73.3
DSVT-1f [47] 1 78.2 72.1 79.7/79.3 71.4/71.0 83.7/78.9 76.1/71.5 77.5/76.5 74.6/73.7

HEDNet-1f [53] 1 79.5 73.4 81.1/80.6 73.2/72.7 84.4/80.0 76.8/72.6 78.7/77.7 75.8/74.9
ScatterFormer (ours) 1 79.7 73.8 81.0/80.5 73.1/72.7 84.5/79.9 77.0/72.6 79.9/78.9 77.1/76.1

SST-3f [8] 3 - - 78.66/78.21 69.98/69.57 83.81/80.14 75.94/72.37 - -
FlatFormer-3f [23] 3 - 72.0 - 71.4/71.0 - 74.5/71.3 - 74.7/73.7
SWFormer-3f [40] 3 - - 79.4/78.9 71.1/70.6 82.9/79.0 74.8/71.1 - -
PillarNext-3f [19] 3 80.0 74.5 80.6/80.1 72.9/72.4 85.0/82.1 78.0/75.2 78.9/77.9 76.7/75.7

DSVT-4f [47] 4 81.3 75.6 81.8/81.4 74.1/73.6 85.6/82.8 78.6/75.9 80.4/79.6 78.1/77.3
ScatterFormer-3f (ours) 3 81.7 76.0 82.0/81.4 75.0/ 74.1 85.7/83.2 79.0/76.1 80.6/79.5 78.1/ 77.7
ScatterFormer-4f (ours) 4 81.9 76.7 82.4/81.9 75.2/74.7 86.1/83.4 79.3/76.6 81.2/80.4 78.9/78.1

*3D-MAN [51] 16 - - 74.53/74.03 67.61/67.14 71.7/67.7 62.6/59.0 - -
*CenterFormer [61] 4 77.0 73.2 78.1/77.6 73.4/72.9 81.7/78.6 77.2/74.2 75.6/74.8 73.4/72.6
*CenterFormer [61] 8 77.3 73.7 78.8/78.3 74.3/73.8 82.1/79.3 77.8/75.0 75.2/74.4 73.2/72.3

*MPPNet [4] 4 79.83 74.22 81.54/81.06 74.07/73.61 84.56/81.94 77.20/74.67 77.15/76.50 75.01/74.38
*MPPNet [4] 16 80.40 74.85 82.74/82.28 75.41/74.96 84.69/82.25 77.43/75.06 77.28/76.66 75.13/74.52
*MSF [15] 4 80.20 74.62 81.36/80.87 73.81/73.35 85.05/82.10 77.92/75.11 78.40/77.61 76.17/75.40
*MSF [15] 8 80.65 75.46 82.83/82.01 75.76/75.31 85.24/82.21 78.32/75.61 78.52/77.74 76.32/75.47

our method significantly enhances the detection runtime. This improvement is
attributed to our use of Linear Attention, which eliminates the need for exten-
sive voxel sorting and padding operations. Furthermore, as presented in Table
2, ScatterFormer achieves the highest Level 1 and Level 2 mAPH scores in all
categories of the Waymo test set, highlighting its superior detection quality and
precision. Remarkably, our approach, as a one-shot method, delivers performance
that is on par with methods that require temporal modeling. This finding un-
derscores the critical importance of network design and architecture in achieving
high-performance architecture.

Results on NuScenes. We compare ScatterFormer with the previous best
performing methods on the nuScenes dataset. As shown in Table 3, Scatter-
Former achieves the state-of-the-art performance in terms of val NDS (72.4)
and mAP (68.3), surpassing HEDNet [53] by 1.0 and 1.6 respectively. Compared
to TransFusion [2], ScatterFormer achieves a significant improvement of 2.8% in
mAP, demonstrating that its backbone network is superior to the sparse con-
volutional network. ScatterFormer exhibits particularly strong performance on
categories like Bus, Bike, Construction Vehicle and Trailer, suggesting its ability
to effectively capture and encode detailed contextual features.

12 C. He et al.

Table 2: Performance comparison on the test set of Waymo Open Dataset. ‘-’ means
that the result is not available.

ALL (3D mAPH) Vehicle (AP/APH) Pedestrian (AP/APH) Cyclist (AP/APH)Method L1 L2 L1 L2 L1 L2 L1 L2
PointPillar [18] - - 68.10 60.10 68.00/55.50 61.40/50.10 - -

StarNet [26] - - 61.00 54.50 67.80/59.90 61.10/54.00 - -
M3DETR [11] 67.1 61.9 77.7/77.1 70.5/70.0 68.2/58.5 60.6/52.0 67.3/65.7 65.3/63.8
3D-MAN [51] - - 78.28 69.98 69.97/65.98 63.98/60.26 - -

PV-RCNN++ [36] 75.7 70.2 81.6/81.2 73.9/73.5 80.4/75.0 74.1/69.0 71.9/70.8 69.3/68.2
CenterPoint [52] 77.2 71.9 81.1/80.6 73.4/73.0 80.5/77.3 74.6/71.5 74.6/73.7 72.2/71.3

RSN [41] - - 80.30 71.60 78.90/75.60 70.70/67.80 - -
SST-3f [8] 78.3 72.8 81.0/80.6 73.1/72.7 83.3/79.7 76.9/73.5 75.7/74.6 73.2/72.2

HEDNet [53] 79.05 73.77 83.78/83.39 76.33/75.96 83.46/78.98 77.53/73.25 75.86/74.78 73.13/72.09
PillarNext-3f [19] 79.00 74.09 83.28/82.83 76.18/75.76 84.40/81.44 78.84/75.98 73.77/72.73 71.56/70.55

ScatterFormer-4f (ours) 80.71 75.84 85.60/85.13 78.34/78.07 84.58/81.64 79.12/76.32 76.20/75.35 74.02/73.13

Table 3: The performance on the validation set of NuScenes.

Method NDS mAP Car Truck Bus T.L. C.V. Ped. M.T. Bike T.C. B.R.
CenterPoint [52] 66.5 59.2 84.9 57.4 70.7 38.1 16.9 85.1 59.0 42.0 69.8 68.3
VoxelNeXt [5] 66.7 60.5 83.9 55.5 70.5 38.1 21.1 84.6 62.8 50.0 69.4 69.4

TransFusion-L [2] 70.1 65.5 86.9 60.8 73.1 43.4 25.2 87.5 72.9 57.3 77.2 70.3
PillarNext [19] 68.4 62.2 85.0 57.4 67.6 35.6 20.6 86.8 68.6 53.1 77.3 69.7

DSVT [47] 71.1 66.4 87.4 62.6 75.9 42.1 25.3 88.2 74.8 58.7 77.8 70.9
HEDNet [53] 71.4 66.7 87.7 60.6 77.8 50.7 28.9 87.1 74.3 56.8 76.3 66.9

ScatterFormer (ours) 72.4 68.3 88.6 65.4 79.3 45.4 29.1 88.7 74.7 61.5 78.2 72.3

4.4 Ablation Study

In this section, we conduct ablation experiments in ScatterFormer using 20% of
the Waymo training and validation data. Each model was trained for 24 epochs
and run on default parameters. Table 4 shows four different configurations of
ScatterFormer: (a) removing the Scattered Linear Attention module (SLA), (b)
removing the Cross Window Interaction (CWI) module, (c) replacing the CWI
with Shifted Window (SW) approach, and (d) removing Conditional Position
Encoding (CPE) module.

As can be seen in Table 4, configuration (a) results in ScatterFormer experi-
encing a decrease of (3.1%, 3.9%, and 3.2%) APH on three categories.This high-
lights the effectiveness of the SLA, as it successfully captures long-range contexts
and facilitates dynamic feature extraction for object detection. In configuration
(b), ScatterFormer, which lacks cross-window interaction capability, exhibits a
performance drop of (1.9%, 1.0%, and 2.0%) APH across the three categories.
While the Shifted Window approach in configuration (c) enhances performance,
the improvement is not as substantial as that achieved by the proposed CWI
module. The results in configuration (d) indicate that CPE contributes to a
certain degree of performance enhancement.

Window Size. In Table 5, We tested the impact of different window sizes
on the detection performance of various target types. It can be observed that
ScatterFormer is not highly sensitive to window size. Slightly increasing the
window size can enhance the detection performance for small targets, indicating
that for objects like pedestrians and bicycles, where the point cloud is overly
sparse, appropriate contextual information can enhance the recognition of these

ScatterFormer 13

Table 4: Ablation experiments on the validation set of Waymo Open Dataset. “SLA”
and “CWI” refer to the proposed Scattered Linear Attention and Cross-Window In-
teraction modules, respectively. “CPE" refers to Conditional Position Embedding. AP
and APH scores on LEVEL2 are reported.

Ablation Veh. Ped. Cyc.
- baseline 71.6/71.1 76.0/70.9 74.2/73.1

(a) w/o SLA module 68.5/68.0 73.3/67.0 71.0/69.9
(b) w/o CWI module 69.6/69.2 74.0/69.9 72.1/71.1
(c) CWI → SW 69.9/69.5 75.0/70.4 73.8/72.4
(d) w/o CPE 70.2/69.8 73.3/67.2 72.4/70.5

Table 5: Comparison of model performance using different window sizes at various
stages. The APH (L2) scores on different categories are reported.

Window Size Region Size Veh. Ped. Cyc.
10 3.20 m 70.2 69.2 71.0
12 3.84 m 71.1 70.9 73.1
14 4.48 m 71.3 69.9 72.5
16 5.12 m 71.0 69.2 72.3

objects. However, excessively large windows can degrade the performance. We
speculate that this is because larger windows encompass more tokens, thereby
mitigating the focusing power of linear attention.

Kernel Design in CWI. Table 6 presents the performance under various
kernel configurations in the Cross-Window Interaction (CWI) module. Increasing
the number of parameters in the kernel significantly enhances performance. For
example, using a large 7×7 kernel brings notable performance improvements,
but also introduces more latency. Additionally, larger kernel strides enhance the
exchange rate of tokens across windows. For example, using dilated convolutions
in CWI performs slightly better than using non-dilated convolutions. Instead
of scaling up large, we decompose large kernel into more efficient 1D kernels,
which achieves the optimal latency while keeping comparable performance. As
the current Spconv library lacks support for depth-wise convolution, we have
developed a modified version to address this limitation.4

4.5 Comparison with Different Linear Attentions

We further explored the performance of ScatterFormer by conducting experi-
ments with several other linear attention mechanisms, including Gated Linear
Attention [32], Cross-covariance Attention (XCA) [1], and Focused Linear At-
tention [13]. The results are summarized in Table 7. Our findings suggest that
the window-based attention framework employed by ScatterFormer is not highly
sensitive to the specific form of linear attention used. Notably, Efficient Atten-
tion [3] performs slightly worse than XCA [1] in the Vehicle class but better in the
4 https://github.com/skyhehe123/spconv

https://github.com/skyhehe123/spconv

14 C. He et al.

Table 6: Performance with various kernel configurations in the Cross-Window Inte-
gration (CWI) module. Each configuration is specified by the notation “KxDy", where
“Kx" refers to the kernel size, and “Dy" denotes the dilation rate. The APH (L2) scores
on different categories are reported.

Kernel Latency Veh. Ped. Cyc.
Conv1DK13 × 2 47ms 71.1 70.9 73.1
Conv2DK5D1 49ms 69.5 69.0 71.1
Conv2DK5D2 49ms 70.7 70.4 72.8
Conv2DK7D1 65ms 71.5 71.0 72.5

Table 7: Performance with different linear attention designs. The APH (L2) scores on
different categories are reported.

Linear Attention Veh. Ped. Cyc.
Efficient Attn [3] 71.1 70.9 73.1
Gated Linear Attn [32] 69.9 69.0 72.5
Focused Linear Attn [13] 70.4 69.5 72.3
XCA [1] 71.5 70.4 72.8

Pedestrian and Cyclist classes. Focused Linear Attention introduces additional
computational overhead, while Gated Linear Attention adds more learnable pa-
rameters to the model.

4.6 Limitations

ScatterFormer relies on our customized operators, which have not yet been im-
plemented as plugins in TensorRT. Therefore, deploying ScatterFormer on in-
vehicle devices will require additional engineering efforts. Despite this, Scatter-
Former is more efficient than current models based on sparse convolution and
traditional attention when used on consumer-grade GPU cards. Furthermore,
ScatterFormer can be optimized by dynamically partitioning matrices according
to different GPU architectures to leverage TensorCore for hardware acceleration.

5 Conclusion

We introduced ScatterFormer, an innovative architecture designed for 3D ob-
ject detection using point clouds, specifically targeting the challenges associated
with processing sparse and unevenly distributed data from LiDAR sensors. The
cornerstone of our approach is the Scattered Linear Attention (SLA) module,
which effectively addresses the limitations of conventional attention mechanisms
in managing voxel features of varying lengths. SLA ingeniously combines linear
attention with a chunk-wise matrix multiplication algorithm, tailored to meet
the distinct requirements of processing voxels grouped by windows. By integrat-
ing SLA with a novel cross-window interaction (CWI) module, ScatterFormer
achieves higher accuracy and lower latency, surpassing traditional transformer-
based and sparse CNN-based detectors in extensive 3D detection tasks.

ScatterFormer 15

References

1. Ali, A., Touvron, H., Caron, M., Bojanowski, P., Douze, M., Joulin, A., Laptev,
I., Neverova, N., Synnaeve, G., Verbeek, J., et al.: Xcit: Cross-covariance image
transformers. Advances in neural information processing systems 34, 20014–20027
(2021)

2. Bai, X., Hu, Z., Zhu, X., Huang, Q., Chen, Y., Fu, H., Tai, C.L.: Transfusion:
Robust lidar-camera fusion for 3d object detection with transformers. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition. pp.
1090–1099 (2022)

3. Cai, H., Gan, C., Han, S.: Efficientvit: Enhanced linear attention for high-resolution
low-computation visual recognition. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (2023)

4. Chen, X., Shi, S., Zhu, B., Cheung, K.C., Xu, H., Li, H.: Mppnet: Multi-frame fea-
ture intertwining with proxy points for 3d temporal object detection. In: European
Conference on Computer Vision. pp. 680–697. Springer (2022)

5. Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: Voxelnext: Fully sparse voxelnet for
3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 21674–21683 (2023)

6. Chu, X., Tian, Z., Zhang, B., Wang, X., Shen, C.: Conditional positional encodings
for vision transformers. ICLR (2023)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. ICLR
(2021)

8. Fan, L., Pang, Z., Zhang, T., Wang, Y.X., Zhao, H., Wang, F., Wang, N., Zhang, Z.:
Embracing single stride 3d object detector with sparse transformer. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp.
8458–8468 (2022)

9. Fan, L., Wang, F., Wang, N., Zhang, Z.: Fully sparse 3d object detection. Advances
in Neural Information Processing Systems 35, 351–363 (2022)

10. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: Rangedet: In defense of range
view for lidar-based 3d object detection. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). pp. 2918–2927 (October 2021)

11. Guan, T., Wang, J., Lan, S., Chandra, R., Wu, Z., Davis, L., Manocha, D.: M3detr:
Multi-representation, multi-scale, mutual-relation 3d object detection with trans-
formers. In: Proceedings of the IEEE/CVF winter conference on applications of
computer vision. pp. 772–782 (2022)

12. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: Point
cloud transformer. Computational Visual Media 7(2), 187–199 (Apr 2021). https:
//doi.org/10.1007/s41095-021-0229-5, http://dx.doi.org/10.1007/s41095-
021-0229-5

13. Han, D., Pan, X., Han, Y., Song, S., Huang, G.: Flatten transformer: Vision trans-
former using focused linear attention. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. pp. 5961–5971 (2023)

14. He, C., Li, R., Li, S., Zhang, L.: Voxel set transformer: A set-to-set approach to 3d
object detection from point clouds. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8417–8427 (2022)

15. He, C., Li, R., Zhang, Y., Li, S., Zhang, L.: Msf: Motion-guided sequential fusion
for efficient 3d object detection from point cloud sequences. In: Proceedings of the

https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1007/s41095-021-0229-5
https://doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/s41095-021-0229-5
http://dx.doi.org/10.1007/s41095-021-0229-5

16 C. He et al.

IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5196–
5205 (2023)

16. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3d
object detection from point cloud. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 11873–11882 (2020)

17. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: Fast
autoregressive transformers with linear attention. In: International conference on
machine learning. pp. 5156–5165. PMLR (2020)

18. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 12697–12705 (2019)

19. Li, J., Luo, C., Yang, X.: Pillarnext: Rethinking network designs for 3d object
detection in lidar point clouds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 17567–17576 (2023)

20. Li, Z., Wang, F., Wang, N.: Lidar r-cnn: An efficient and universal 3d object
detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2021)

21. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 10012–
10022 (October 2021)

22. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection
via transformers. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 2949–2958 (October 2021)

23. Liu, Z., Yang, X., Tang, H., Yang, S., Han, S.: Flatformer: Flattened window
attention for efficient point cloud transformer. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1200–1211 (2023)

24. Mao, J., Xue, Y., Niu, M., Bai, H., Feng, J., Liang, X., Xu, H., Xu, C.: Voxel
transformer for 3d object detection. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). pp. 3164–3173 (October 2021)

25. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3d object
detection. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 2906–2917 (October 2021)

26. Ngiam, J., Caine, B., Han, W., Yang, B., Chai, Y., Sun, P., Zhou, Y., Yi, X.,
Alsharif, O., Nguyen, P., et al.: Starnet: Targeted computation for object detection
in point clouds. arXiv preprint arXiv:1908.11069 (2019)

27. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3d object detection with point-
former. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 7463–7472 (June 2021)

28. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (October 2019)

29. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object
detection from rgb-d data. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 918–927 (2018)

30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 652–660 (2017)

31. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Advances in neural information processing
systems. pp. 5099–5108 (2017)

ScatterFormer 17

32. Qin, Z., Li, D., Sun, W., Sun, W., Shen, X., Han, X., Wei, Y., Lv, B., Yuan, F.,
Luo, X., Qiao, Y., Zhong, Y.: Scaling transnormer to 175 billion parameters (2023)

33. Sheng, H., Cai, S., Liu, Y., Deng, B., Huang, J., Hua, X.S., Zhao, M.J.: Im-
proving 3d object detection with channel-wise transformer. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 2743–2752
(October 2021)

34. Shi, G., Li, R., Ma, C.: Pillarnet: Real-time and high-performance pillar-based
3d object detection. In: European Conference on Computer Vision. pp. 35–52.
Springer (2022)

35. Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (June 2020)

36. Shi, S., Jiang, L., Deng, J., Wang, Z., Guo, C., Shi, J., Wang, X., Li, H.: Pv-
rcnn++: Point-voxel feature set abstraction with local vector representation for
3d object detection. International Journal of Computer Vision 131(2), 531–551
(2023)

37. Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 770–779 (2019)

38. Shi, S., Wang, Z., Wang, X., Li, H.: Part-aˆ 2 net: 3d part-aware and ag-
gregation neural network for object detection from point cloud. arXiv preprint
arXiv:1907.03670 (2019)

39. Shi, W., Rajkumar, R.: Point-gnn: Graph neural network for 3d object detection
in a point cloud. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. pp. 1711–1719 (2020)

40. Sun, P., Tan, M., Wang, W., Liu, C., Xia, F., Leng, Z., Anguelov, D.: Swformer:
Sparse window transformer for 3d object detection in point clouds. In: European
Conference on Computer Vision. pp. 426–442. Springer (2022)

41. Sun, P., Wang, W., Chai, Y., Elsayed, G., Bewley, A., Zhang, X., Sminchisescu,
C., Anguelov, D.: Rsn: Range sparse net for efficient, accurate lidar 3d object
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 5725–5734 (2021)

42. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2818–2826 (2016)

43. Team, O.D.: Openpcdet: An open-source toolbox for 3d object detection from point
clouds. https://github.com/open-mmlab/OpenPCDet (2020)

44. Tillet, P., Kung, H.T., Cox, D.: Triton: An intermediate language and compiler
for tiled neural network computations. In: Proceedings of the 3rd ACM SIG-
PLAN International Workshop on Machine Learning and Programming Languages.
p. 10–19. MAPL 2019, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3315508.3329973, https://doi.org/
10.1145/3315508.3329973

45. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jegou, H.: Training
data-efficient image transformers & distillation through attention. In: Inter-
national Conference on Machine Learning. vol. 139, pp. 10347–10357 (July 2021)

46. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

https://github.com/open-mmlab/OpenPCDet
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973

18 C. He et al.

47. Wang, H., Shi, C., Shi, S., Lei, M., Wang, S., He, D., Schiele, B., Wang, L.:
Dsvt: Dynamic sparse voxel transformer with rotated sets. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13520–
13529 (2023)

48. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with
linear complexity (2020)

49. Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sen-
sors 18(10), 3337 (2018)

50. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 7652–7660 (2018)

51. Yang, Z., Zhou, Y., Chen, Z., Ngiam, J.: 3d-man: 3d multi-frame attention network
for object detection. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 1863–1872 (2021)

52. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and track-
ing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 11784–11793 (2021)

53. Zhang, G., Chen, J., Gao, G., Li, J., Hu, X.: Hednet: A hierarchical encoder-decoder
network for 3d object detection in point clouds. arXiv preprint arXiv:2310.20234
(2023)

54. Zhang, G., Fan, L., He, C., Lei, Z., Zhang, Z., Zhang, L.: Voxel mamba: Group-
free state space models for point cloud based 3d object detection. arXiv preprint
arXiv:2406.10700 (2024)

55. Zhang, Y., Huang, D., Wang, Y.: Pc-rgnn: Point cloud completion and graph neu-
ral network for 3d object detection. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 35, pp. 3430–3437 (2021)

56. Zhang, Y., Hu, Q., Xu, G., Ma, Y., Wan, J., Guo, Y.: Not all points are equal:
Learning highly efficient point-based detectors for 3d lidar point clouds. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 18953–18962 (2022)

57. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp.
16259–16268 (October 2021)

58. Zheng, W., Tang, W., Jiang, L., Fu, C.W.: Se-ssd: Self-ensembling single-stage
object detector from point cloud. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 14494–14503 (2021)

59. Zhou, C., Zhang, Y., Chen, J., Huang, D.: Octr: Octree-based transformer for
3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5166–5175 (2023)

60. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4490–4499 (2018)

61. Zhou, Z., Zhao, X., Wang, Y., Wang, P., Foroosh, H.: Centerformer: Center-based
transformer for 3d object detection. In: European Conference on Computer Vision.
pp. 496–513. Springer (2022)

	ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention

