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Abstract. Accurate detection of cephalometric landmarks is crucial for
orthodontic diagnosis and treatment planning. Current methods rely on
a cascading form of multiple models to achieve higher accuracy, which
greatly complicates both training and deployment processes. In this pa-
per, we introduce a novel regression paradigm capable of simultane-
ously detecting all cephalometric landmarks in high-resolution X-ray
images. Our approach only utilizes the encoder module from the trans-
former to design a dual-encoder architecture, enabling precise detec-
tion of cephalometric landmark positions from coarse to fine. Specifi-
cally, the entire model architecture comprises three main components:
a feature extractor module, a reference encoder module, and a fine-
tune encoder module. These components are respectively responsible
for feature extraction and fusion for X-ray images, coarse localization
of cephalometric landmark, and fine-tuning of cephalometric landmark
positioning. Notably, our framework is fully end-to-end differentiable
and innately learns to exploit the interdependencies among cephalomet-
ric landmarks. Experiments demonstrate that our method significantly
surpasses the current state-of-the-art methods in Mean Radical Error
(MRE) and the 2mm Success Detection Rate (SDR) metrics, while also
reducing computational resource consumption. The code is available at
https://github.com/huang229/D-CeLR

Keywords: Cephalometric landmark · High-resolution · Dual-encoder ·
Reference encoder · Finetune encoder

1 Introduction

Cephalometric analysis represents a pivotal diagnostic tool extensively utilized in
orthodontics and orthognathic surgery. This analysis involves the annotation of
dental, skeletal, and soft tissue structures in lateral cephalometric radiographs.
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(a) Cephalometric landmark coordi-
nate positions.
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(b) Cephalometric landmark medical name

Fig. 1: Cephalometric landmark visualization. (a) Cephalometric landmark coordinate
positions. Red indicates hard tissue points and blue indicates soft tissue points. (b)
Cephalometric landmark medical name.

As illustrated in Figure 1, these cephalometric landmarks are core to the anal-
ysis, providing reference points for subsequent qualitative assessments of angles
and distances. However, the manual annotation of these landmarks is a labori-
ous, time-consuming, and highly subjective task, impacting the accuracy of the
annotations. Consequently, a precise and robust automated method for annotat-
ing cephalometric landmarks holds significant importance for effective treatment
planning [1, 6, 7, 14,23].

Existing methods for cephalometric landmark detection can be broadly clas-
sified into two categories: heatmap-based and regression-based approaches. The
heatmap-based approach involves predicting a heatmap that indicates the proba-
bility of each pixel in a region corresponding to various cephalometric landmarks.
This modality has seen extensive applications in the detection of cephalometric
landmarks. For example, Chen et al. [6] introduced a feature pyramid fusion-
based heatmap method for simultaneous landmark detection, achieving impres-
sive results. Qian J et al. [26] advanced the accuracy of cephalometric landmark
detection by designing a multi-head attention module and a novel regional loss
function. However, heatmap-based methods exhibit certain disadvantages. 1).
The ground truth requires manual design and heuristic adjustments, with in-
evitable noise impacting the final outcomes [13,29,40]. 2). post-processing oper-
ations are necessary to locate single maximum values in heatmaps. These oper-
ations are typically heuristic and non-differentiable, undermining the model’s
capacity for end-to-end training. 3). models generally adopt a U-net struc-
ture [27, 28, 41], while processing high-resolution X-ray images, consumes more
computational resources and is prone to missing cephalometric landmarks.

Regression-based methods directly map the input image to the coordinates
of cephalometric landmarks, typically employing a feedforward network (FFN)
for prediction. The regression-based methods is considerably more streamlined
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compared to heatmap-based methods, as the prediction of cephalometric land-
marks is inherently a process of determining a set of coordinate values. Numer-
ous regression-based techniques exist for predicting cephalometric landmarks.
For example, Song Y et al. [29] utilizes a base network for coarse localization of
cephalometric landmarks, followed by region-specific cropping and refined po-
sitioning using a secondary model. Gilmour L et al. [11] constructs individual
models for each landmark to predict their locations. Regression-based meth-
ods circumvent the necessity for non-maximum suppression, heatmap genera-
tion, and quantization error correction. However, to achieve higher precision on
high-resolution X-ray images, current approaches predominantly rely on cascad-
ing multiple models, which compromises the inherent advantages of end-to-end
training and prediction for regression-based methods.

To address these issues, we introduce a novel regression paradigm that exclu-
sively utilizes the encoder module of transformer for the one-time detection of all
cephalometric landmarks on high-resolution X-ray images. Specifically, we design
a feature extraction module based on Convolutional Neural Networks (CNN) to
accomplish feature extraction and fusion for X-ray images. Subsequently, the
extracted features are fed into a reference encoder module for the coarse local-
ization of cephalometric landmarks. Finally, the coarsely localized cephalometric
landmarks, along with the fused features, are inputted into a finetune encoder
module, which iteratively refines the positioning of the cephalometric landmarks
from coarse to fine detail. Moreover, our method pioneers the complete end-
to-end training and deployment for the detection of cephalometric landmarks
on high-resolution X-ray images. Extensive experiments demonstrate that our
approach achieves state-of-the-art performance on popular benchmarks with a
ResNet-34 backbone. Specifically, we achieve a Mean Radial Error (MRE) of
1.01mm, 1.27mm, and 0.9372mm on the ISBI2015 test1, ISBI2015 test2, and
ISBI2023 test datasets, respectively. Furthermore, our method significantly re-
duces GFLOPs, by 132% compared to the previously best method [11].

The main contributions of this work are as follows:

– We propose an innovative regression paradigm for high-resolution X-ray im-
ages, which enables the prediction of all cephalometric landmarks through a
single model. Moreover, our method facilitates end-to-end training and pre-
diction, which not only improves efficiency but also enhances the feasibility
of the model in practical applications.

– We have designed a dual-encoder structure, comprising a reference encoder
module and a finetune encoder module. The reference encoder module ac-
complishes coarse localization of cephalometric landmarks, while the finetune
encoder module refines this localization in a layer-by-layer updating manner.

– Our proposed regression approach significantly enhances the precision of
cephalometric landmark detection. Compared to state-of-the-art methods,
we achieve superior performance on both the ISBI2015 and ISBI2023 test
datasets.
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2 Related Work

With the seminal work of Lee et al. [19], which first introduced the use of
deep learning for cephalometric landmark detection. Deep learning-based meth-
ods [2,17,34] have fully surpassed traditional pattern matching [4,10] and random
forest regression-based methods [3, 22] in terms of accuracy for cephalometric
landmark detection. This section primarily focuses on two deep learning-based
approaches for cephalometric landmark detection and the transformer architec-
tures for regression of keypoints.

2.1 Heatmap-Based Methods

Heatmap-based methods predict the likelihood of each pixel in the image corre-
sponding to each cephalometric landmark. King C H et al. [17] utilized object
detection techniques and designed a multitask loss without bounding box con-
straints to optimize landmark acquisition in the model. Chen R et al. [6] pro-
posed a heatmap detection method based on feature pyramid fusion to complete
all cephalometric landmark detection, surpassing other methods in effectiveness,
but their multi-scale feature pyramid fusion is highly memory-intensive. Zhong
Z et al. [40] adopted a two-stage landmark detection approach, which not only
reduces memory consumption but also allows for fine-tuning of coarse landmark
detection results on local image regions. Qian J et al. [26] enhanced the accu-
racy to new heights in the ISBI 2015 dataset by designing a multi-head atten-
tion module and a new regional loss function, while Ao Y et al. [2] developed
a multiscale feature aggregation (MSFA) module and multi-head loss function.
Although heatmap-based cephalometric landmark detection achieves high ac-
curacy, its application to high-resolution X-ray images and the common use of
U-net structures in models result in substantial memory resource consumption.
Moreover, the post-processing required in heatmap-based methods disrupts the
integrity of end-to-end training and deployment of the model.

2.2 Regression-Based Methods

Currently, the majority of regression methods for cephalometric landmark detec-
tion on high-resolution X-ray images utilize multi-stage or multi-model strate-
gies. Song Yet et al. [29,30] proposed a method combining traditional regression
algorithms with deep learning for coarse localization of landmarks, followed by
cropping the region of interest in the original image to create a new image for
refined localization using a secondary model. However, their accuracy is sub-
stantially lower than that achieved by heatmap-based methods [2, 26]. Zeng M
et al. [36] introduced a three-tier cascading neural network for cephalometric
landmark regression, akin to the concept used in the MTCNN model [38] for
face detection. This approach significantly reduced memory resource consump-
tion but did not achieve the desired level of accuracy. Gilmour L et al. trained
19 distinct models to predict each cephalometric landmark position, attaining
accuracy on the ISBI 2015 cephalometric dataset comparable to heatmap-based
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methods [26,34]. This greatly encouraged the use of low-memory-consuming re-
gression methods in landmark detection. However, the necessity of maintaining a
separate model for each landmark adds complexity to training and deployment.
While some regression methods have reached heatmap-based method accuracy
levels, they typically involve designing multiple network models for predictions.
Moreover, these methods have also not achieved end-to-end training and deploy-
ment.

2.3 Transformer-based architectures

The Transformer [31], proposed by Vaswani et al., originally designed for nat-
ural language processing tasks, employs an encoder-decoder architecture based
on self-attention and feed-forward networks. Recently, Transformer-based models
have demonstrated significant potential in computer vision tasks [5,9], including
various works applying the Transformer structure to keypoint estimation. Such
as TransPose [33] and HRFormer [35] utilized the encoder-decoder structure of
transformers for human keypoint regression. Poseur [24] and DTLD [20] have
adopted the latest deformable transformer architecture for efficient regression of
human keypoints and facial landmarks. Despite the high performance achieved
by transformer-based methods in keypoint regression tasks, they present certain
challenges: 1) They are primarily used for low-resolution images; 2) The de-
formable transformer architecture is more complex for deployment. In contrast,
our method addresses these issues and achieves significantly higher performance.

3 Method

The overall architecture, as illustrated in Figure 2, presents our proposed dual-
encoder model which progressively predicts cephalometric landmark coordinate
from coarse to fine on high-resolution X-ray images. It comprises a feature ex-
tractor for image feature extraction, a reference encoder for coarse cephalometric
landmark localization, and a finetune encoder for precise cephalometric landmark
localization. For the input image, we initially obtain multi-scale features (S2,
S3, S4, and S5) and a fused feature Fu through the feature extractor (Sec.3.1).
The feature map S5 is flattened to produce the image context queries V C

FR, and
coarse landmark content queries V C

LR are initialized randomly. The image context
queries V C

FR and coarse landmark context queries V C
LR are fed into the reference

encoder along with their position queries V P
R , updating to corresponding con-

text queries V C′

LR and V C′

FR. Subsequently, the context queries V C′

LR are utilized to
predict the coarse coordinate of cephalometric landmark µR ∈ RK×2 and coarse
distribution σR ∈ RK×1 via FFN (Sec.3.2). Next, the fused feature map Fu is
also flattened to generate image context queries V C

FA, and fine landmark content
queries V C

LA are initialized. Unlike the reference encoder module, which solely
uses content and position queries as input, the coarse landmark coordinates µR

and feature map Fu are also fed into the finetune encoder module to update
the content queries V C′

LA and V C′

FA . Finally, the content queries V C′

LA is operated
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Fig. 2: The overview architecture of our method, which contains (a) feature extractor
module, (b) reference encoder module and (c) finetune encoder module.

by the FFN to produce cephalometric landmark coordinate µA ∈ RK×2 and
distribution σA ∈ RK×1 (Sec.3.3). In addition, different loss functions are em-
ployed for supervising the training of various modules. For the feature extractor
module, Dice loss and Mean Squared Error (MSE) loss are utilized to aid model
optimization. For the reference encoder and finetune encoder modules, Residual
Log-likelihood Estimation(RLE) loss is applied to optimize the model’s output
cephalometric landmark coordinates µ and distribution σ (Sec.3.4).

3.1 Feature Extractor

ResNet34 [16] is utilized as the backbone in our model, from which multi-level
feature maps [39] are extracted, as illustrated in Figure 2. Initially, we apply
downsampling operations to scale the feature maps S2, S3, and S4 to the same
dimension and size as the feature map S5. Subsequently, the feature maps out-
putted by the backbone are summed with their respective positional maps (Pos)
to yield new feature maps F2, F3, F4, and F5. These feature maps F2, F3, F4,
and F5 are aggregated to generate the fused feature map Fu. The feature map S5
is directly fed into the reference encoder module to coarse locate cephalometric
landmark, while the fused feature map Fu is fed into the finetune encoder mod-
ule to precise locate cephalometric landmark. Moreover, to enhance the model’s
performance, the feature map S5 is processed through convolution to generate
a heatmap, which is optimized by Dice loss and MSE loss.

3.2 Reference Encoder

The reference encoder aims to establish the relationship between cephalometric
landmark queries and feature maps, thereby facilitating the coarse prediction of
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(a) reference encoder module
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(b) finetune encoder module

Fig. 3: The detailed illustration of (a) reference encoder module and (b) finetune en-
coder module.

cephalometric landmark. As illustrated in Figures 2b and Figure 3a, the reference
encoder module follows the typical transformer encoder paradigm. It comprises
N identical layers within the encoder, each layer consisting of Layer Normal-
ization (LN), Multi-Head Self-Attention (MHSA), and Feed-Forward Networks
(FFN). Specifically, we initialize K cephalometric landmark content queries V R

CL

and utilize the feature map S5 as the image content queries V R
CF . Drawing inspi-

ration from the positional encoding of the BERT [8], we generate the positional
queries V R

P . These content and positional queries are fed into the reference en-
coder. After N layers of iteration, the reference encoder outputs the updated
cephalometric landmark content queries V C′

LR. These content queries are calcu-
lated by FFN layer to predict the coarse cephalometric landmark coordinates
µR and distribution σR.

3.3 Finetune Encoder

The finetune encoder employs a layer-to-layer update mechanism to achieve more
precise cephalometric landmark detection. The structure of the finetune encoder,
as shown in Figure 2c and Figure 3b, also adheres to the typical transformer en-
coder paradigm, consisting of M identical layers within the encoder. Unlike the
reference encoder module, cephalometric landmark coordinate µR is continually
updated in each layer of the finetune encoder module. Specifically, we initialize K
cephalometric landmark content queries V C

LA and flatten the fused feature map
Fu to serve as the image content queries V C

FA. Drawing inspiration from the posi-
tional encoding of the BERT, we generate position queries V P

A . Five parameters
are fed into the finetune encoder module, namely fine landmark context queries
V C
LA, image context queries V C

FA, position queries V P
A , the fused feature map Fu,
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and coarse landmark coordinates µR. Within the finetune encoder module, we
first sample feature vectors on the fused feature map Fu using coarse cephalo-
metric landmark coordinates µR, then add it to the fine landmark queries V C

LA.
We combine content and position queries and feed them into the encoder to cal-
culate the relationships among fine landmark and image context queries. Next,
to adjust the landmark positions, we use the updated cephalometric landmark
content queries V C′

LA to calculate the (∆x,∆y) offsets by FFN layer and add
them back to the previous cephalometric landmark coordinates µR. In this way,
the finetune encoder module refines the content queries progressively by stacking
multiple aforementioned layers, outputting V C′

LA and V C′

FA. Finally, the cephalo-
metric landmark content queries V C′

LA, followed by FFN layer, predicts the fine
cephalometric landmark coordinates µA and distribution σA.

3.4 Loss Function

As shown in Figure 2, the loss function of our method is composed of two
key components: 1) The heatmap loss of the feature extraction module, 2) The
cephalometric landmark regression loss for both the reference encoder and fine-
tune encoder modules. The overall loss function of our method can be formulated
as follows:

L = λHMLHM + λRELRE + λFELFE (1)

where LHM , LRE and LFE represent feature extraction, reference encoder, and
finetune encoder module loss functions respectively. λHM , λRE , and, λFE are
the hyper-parameters used to balance the three losses, and they are set to 1.0,
1.0, and 1.0, respectively. LHM consists of the Dice loss and the MSE loss. LHM

is defined as follows:

LHM = Dice(
∧
Php, Php) +Mse(

∧
Php, Php) (2)

where
∧
Php and Php are the prediction heatmap and ground truth heatmap re-

spectively. For the cephalometric landmark regression loss of the reference en-
coder module, we adopt Residual Log-likelihood Estimation(RLE) loss. The loss
is defined as follows:

LRE = RLE(µR, σR;µg) (3)

where µR and σR are coarse cephalometric landmark coordinate and distribution
output by the reference encoder module. µg is cephalometric landmark ground
truth coordinate. For the cephalometric landmark regression loss of the finetune
encoder module, we also adopt RLE loss. The loss is defined as follows:

LFE =

M∑
i=1

RLE(µA,i, σA,i;µg) (4)

where M is number of finetune encoder layer. µA,i and σA,i represent the cephalo-
metric landmark coordinate and distribution output by the i-th layer reference
encoder module.



Du-CeLR 9

4 Experiments

In this section, we assess our method on some benchmarks for cephalometric
landmark detection task. We first perform several ablation studies to underline
the advantage of our proposed methods and to establish the optimal setting
for hyperparameters. Finally, we compare the performance of our model with
state-of-the-art methods.

4.1 Implementation Details

Our model is built on the PyTorch framework. We use ResNet-34, pre-trained
on ImageNet, as the backbone. Our architecture includes 4 layers for both the
reference encoder and finetune encoder module. All additional layers that we
introduce are initialized randomly. The model training and testing are performed
on one NVIDIA 3060(12GB) GPU. For model optimization, we use Adam [18],
with parameters β1 = 0.9, β2 = 0.999, and a weight decay of 10−4. The batch size
is set to 4. The model is trained for 1000 epoch. The initial learning rate is 2×
10−4, and dynamically updated the learning rate using the cosine strategy during
the training process. Data augmentation techniques are employed, encompassing
random cropping and random rotation. For the random cropping operation, all
cephalometric landmarks are preserved during each cropping process. Regarding
the random rotation operation, we select a rotation angle range of [-30, 30]
degrees. Ultimately, the image is scaled to 1024×1024 for both training and
inference of the model.

4.2 Dataset and Evaluation Metric

ISBI 2015 Challenge Dataset [37]. This is a widely utilized benchmark
dataset in the field of cephalometric landmark detection. This dataset comprises
400 cephalometric images, of which 150 are designated for training, 150 for Test
1, and the remaining images for Test 2. Each image has been annotated with 19
landmarks by two experienced medical practitioners, and the average of these
annotations is taken as the ground truth. This dataset provides a rich array
of annotated data, enabling researchers to effectively train and evaluate their
cephalometric landmark detection methods.

ISBI 2023 Challenge Dataset [25]. This is a recently introduced cephalo-
metric landmark detection dataset, collected from seven distinct imaging de-
vices. Following the training strategy in reference [15], we randomly selected
500 images as training data, with the remaining 200 images utilized for evaluat-
ing model performance. Experiments were conducted with k-fold(k=10) method
cross-validation, and the average results were considered as the final outcome.
This dataset provides 29 landmarks, but only the same 19 landmarks as in the
ISBI 2015 dataset are used, ensuring a fair comparison with other methods. This
new dataset offers researchers a more challenging scenario to test the general-
ization capabilities of their methods across various imaging devices.
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Evaluation metric. The evaluation of cephalometric landmark detection
models typically employs the Mean Radial Error (MRE) and the Successful
Detection Rate (SDR) [7]. MRE is used to calculate the distance error between
the predicted cephalometric landmarks and the ground truth, commonly serving
as a measure of detection accuracy. The calculation method for MRE is defined
as follows:

Rj
i =∥ µj

A(xi, yi)− µj
g(xi, yi) ∥2 (5)

MRE =
1

TK

T∑
i=1

K∑
j=1

Rj
i (6)

where Rj
i denotes the radial error of the i − th landmark in the j − th im-

age. µj
A(xi, yi) represents the coordinates of the i− th cephalometric landmark

predicted for the j-th image. µj
g(xi, yi) denotes the ground truth coordinates of

thei − th cephalometric landmark in the j − th image. T represents the num-
ber of test images, and K denotes the number of cephalometric landmark in
each image. SDR is employed to quantify the discrepancy between the predicted
cephalometric landmark and the ground-truth. If the radial error Rj

i is no greater
than z mm (where z = 2mm, 2.5mm, 3mm, 4mm), the detection is considered as
a successful one (Usually, 2mm range is acceptable in medical analysis [32,40]).
The SDR is defined as follows:

SDRi =
1

TK

T∑
j=1

K∑
j=1

{Rj
i < z} (7)

4.3 Ablation Study

In this section, we perform several ablation studies on ISBI 2015 Challenge
dataset to illustrate the effectiveness of the proposed component.

Table 1: Varying different model structures. “MF” denotes Multi-level Features. “HP”
denotes Heatmap. “RE” denotes Reference Encoder. “RL” denotes RLE Loss. “FE”
denotes Finetune Encoder.

ID Baseline Feature Extractor module Reference Encoder module Finetune Encoder module MRE(mm) 2mm(SDR%)
MF HP RE RL FE RL

1 ✓ 2.8974 54.75
2 ✓ ✓ 2.2586 61.91
3 ✓ ✓ 2.5698 57.07
4 ✓ ✓ ✓ 2.0125 65.01
5 ✓ ✓ 1.6745 74.04
6 ✓ ✓ ✓ 1.2434 83.65
7 ✓ ✓ ✓ ✓ ✓ 1.1468 86.84
8 ✓ ✓ ✓ ✓ 1.1514 86.31
9 ✓ ✓ ✓ ✓ ✓ 1.0230 88.12
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.0088 89.51
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Fig.3 Headmap visualization. The attention heatmap come from the feature extraction 
module。 

除此之外，我们在图3中对heatmap进行了可视化展示。可以发现我们提出的方
法
We visualize the attention heatmap from the feature extraction module, and the 
heatmap is highly responsive at locations near the cephalometric landmarks.

Finally, we visualize the attention heatmap in Figure. The heatmap is highly 
responsive at locations near the cephalometric landmarks.

Fig. 4: Headmap visualization. The attention heatmap come from the feature extrac-
tion module.

Varying the model structures. We conduct experiments to verify the
different model structures. All experimental results are presented in Table 1.
Regarding the feature extractor module, the combination of the multi-level fea-
ture (MF) module improves the baseline in MRE and 2mm SDR indicators by
0.3276mm and 7.16% respectively, while the introduction of the heatmap (HP)
module improves the baseline by 0.3276mm and 2.32%. When both MF and
HP modules are integrated, there is 0.8849mm and 10.26% enhancement over
the Baseline, underscoring the significant role of the feature extractor module
in accuracy improvement. For the reference encoder module, the addition of ref-
erence encoder (RE) components and RLE Loss (RL) elements on the baseline
foundation yielded 1.654mm and 28.9% accuracy improvement. When used in
conjunction with the feature extractor module, the model’s accuracy further in-
creased by 0.0996mm and 3.19%. Regarding the finetune encoder module, its
combined use with the feature extractor module led to a 1.8744mm and 33.37%
improvement in model accuracy. The highest accuracy, reaching 1.0088mm and
89.51%, was achieved when the finetune encoder module was used in combination
with both the reference encoder module and the feature extractor module. This
underscores the significant impact of the three proposed modules on enhancing
model accuracy. Finally, we visualize the attention heatmap in Figure 4. The
heatmap is highly responsive at locations near the cephalometric landmarks.

Varying the levels of fuse feature map. We explore the impact of feeding
different levels of fuse feature maps into the proposed finetune encoder. As shown
in Table 2, the performance grows consistently with more levels of fuse feature
maps, e.g., 89.20%, 89.33%, 89.42%, 89.51% for 2, 3, 4, 5 levels of feature maps
on 2mm SDR, respectively.

Varying parameter of encoder module. We study the impact of encoder
module on model performance from two aspects: the number of layers and fea-
ture dimensions. To simple the validation approach, the reference encoder and
finetune encoder modules are set to the same number of layers and dimensions.
First, we investigate the effects of altering the dimension of the encoder module.
As illustrated in Table 3, there is a discernible enhancement in model efficacy
concomitant with an increase in the dimensions of encoder layers. The peak
performance of the model is attained when the dimension is augmented to 512.
Furthermore, we conduct experiments by varying the number of encoder layers.
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As shown in Table 4, the performance grows at the first four layers and saturates
at the fifth decoder layer.

Table 2: Varying the scale levels of fuse
feature map for feature extraction module.

F5 F4 F3 F2 MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
✓ 1.0181 89.20 93.48 96.18 98.41
✓ ✓ 1.0156 89.33 93.49 96.32 98.41
✓ ✓ ✓ 1.0113 89.42 93.50 96.38 98.54
✓ ✓ ✓ ✓ 1.0088 89.51 93.54 96.42 98.56

Table 3: Varying feature queries dimen-
sions of encoder module.

Dim MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
128 1.0201 89.03 93.26 95.76 98.17
256 1.0194 89.32 93.35 96.02 98.32
512 1.0088 89.51 93.58 96.42 98.56
768 1.0091 89.47 93.61 96.39 98.53

Varying the input image resolutions. We undertake experimental in-
vestigations to ascertain the robustness of our method across varying input
resolutions. As depicted in Table 5, there is a significant enhancement in the
performance of the model concomitant with an increase in the resolution of in-
put images. When the input image resolution is 1024×1024, the model reaches
1.0088mm and 89.51% in MRE and 2mm SDR metrics respectively. A further
escalation in input image resolution results in a decline for model performance.

Table 4: Varying the numbers of encoder
layers.

Num MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
1 1.0835 87.23 93.05 95.51 97.96
2 1.0247 88.98 93.31 95.92 98.32
3 1.0137 89.46 93.47 96.28 98.47
4 1.0088 89.51 93.54 96.42 98.56
5 1.0091 89.48 93.54 96.45 98.59

Table 5: Varying the input image resolu-
tions.

Resolution MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
256×256 1.2012 84.56 91.79 95.44 98.49
512×512 1.0674 88.07 93.30 96.25 98.57
768×768 1.0129 89.40 93.33 96.07 98.60

1024×1024 1.0088 89.51 93.54 96.42 98.56
1280×1280 1.0153 89.31 93.51 95.44 98.32

4.4 Main Result

We evaluated our method on two cephalometric landmark datasets: ISBI 2015
Challenge [37] and ISBI 2023 Challenge datasets [25]. The final results are pre-
sented in Tables 6,7,8. The proposed approach achieved the least Mean Radical
Error (MRE) and the highest 2mm Success Detection Rate (SDR), which is
considered as the clinically accepted. Moreover, our method achieves end-to-end
training and prediction for cephalometric landmarks.

ISBI 2015 Challenge test1. Table 6 presents the evaluation results for the
ISBI 2015 Challenge test1 dataset. These state-of-the-art methods can be cate-
gorized into heatmap-based and regression-based methods. Our method demon-
strates clear superiority over heatmap-based methods. Compared to the best
heatmap-based method [2], our method achieves improvements of 0.11mm and
1.48% respectively in MRE and the 2mm SDR metrics. Additionally, compared
to the best regression-based method, our method achieves improvements of
1.19% on the 2mm SDR metrics. Moreover, compared to the best approach,
our method exhibits a significant advantage in terms of GFLOPs. In addition,
compared to other low-resolution methods, our method has the lowest GFLOPs
of only 23.0, while the 2mm SDR reaches 88.07%, which is superior to the other
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(a) ISBI 2015 Challenge test1 (b) ISBI 2015 Challenge test2 (c) ISBI 2023 Challenge

Fig. 5: Qualitative detection results on ISBI 2015 and 2023 Challenge datasets. (a)
and (b) correspond the detection results for the ISBI 2015 Challenge test1 and test2.
(c) depicts the detection outcomes for the ISBI 2023 Challenge. The blue landmarks
represent results annotated by medical professionals, while the red landmarks indicate
the outcomes predicted by the model.

Table 6: Quantitative results on the ISBI 2015 Challenge test1 dataset . * denotes
other methods we implemented. Bold represents the best result.

Method Backbone Resolution GFLOPs MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
Heatmap-based Methods

Chen R et al. [6] ResNet50 800×640 215.7 1.17 86.67 92.67 95.54 98.53
Zhong Z et al. [40] U-Net 290×290+19×100×100 92.2 1.12 86.91 91.82 94.88 97.90

CephaNN [26] ResNeXt50 800×640 982.8 1.15 87.61 93.16 96.35 98.74
Yao J et al. [34] ResNet18 576×512+19×96×96 40.1 1.14 86.84 93.02 95.43 98.95
Ao Y et al. [2] Densenet121 800×640 157.2 1.12 88.03 92.73 95.96 98.48

Huang K et al. [13] - - - 1.09 87.87 92.45 95.54 98.59
SimCC* [21] HRNet48 800×640 164.9 1.12 87.16 91.96 95.37 98.18

Regression-based Methods
Gilmour L et al. [11] ResNet34 2432×1920 220.2 1.01 88.32 93.12 96.14 98.63

Song Y et al. [29] ResNet50 256×256+19×256×256 102.5 1.08 86.40 91.70 94.80 97.80
Song Y et al. [30] U-Net 480×387 286.8 1.19 85.20 91.20 94.40 97.20
Zeng M et al. [36] - - - 1.34 81.37 89.09 93.79 97.86

King C H et al. [17] - - - 1.17 86.14 91.72 94.91 97.96
Hong W et al. [12] - - - 1.12 85.26 90.67 93.54 97.19

Poseur* [24] ResNet50 800×640 46.1 1.14 86.56 91.09 94.00 97.23
Ours ResNet34 512×512 23.0 1.07 88.07 93.30 96.25 98.57
Ours ResNet34 1024×1024 95.0 1.01 89.51 93.54 96.42 98.56

methods. The qualitative detection results of the ISBI 2015 Challenge test1
dataset are displayed in Figure 4.

ISBI 2015 Challenge test2. The evaluation results for the ISBI 2015
Challenge test2 dataset are presented in Table 7. Our method outperforms
heatmap-based methods by significant margins. Compared to best method [13],
our method achieves an increase of 0.07mm in MRE and 0.48% in 2mm SDR.
In addition, We introduce an end-to-end human keypoint detection method
into the cephalometric landmark detection task, which is implemented based
on the deformable decoder architecture. Experiments show that our method is
significantly better than the human keypoint method in accuracy. Moreover, our
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method is more convenient to deploy. Finally, the performance of the released
methods on ISBI 2015 Challenge Test1 dataset are all better than Test2. It
seems that the data distribution of Test1 dataset is more consistent with Train
dataset. Qualitative detection results of our method on the ISBI 2015 Challenge
test2 dataset can be found in Figure 5b.

Table 7: Quantitative results on the ISBI
2015 Challenge test2 dataset.

Method MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
Heatmap-based Methods

Chen R et al. [6] 1.48 75.05 82.84 88.53 95.05
Zhong Z et al. [40] 1.42 76.00 82.90 88.74 94.32

CephaNN [26] 1.43 76.32 82.95 87.95 94.63
Yao J et al. [34] 1.48 75.44 82.03 86.65 95.12
Ao Y et al. [2] 1.42 77.00 84.42 89.47 95.21

Huang K et al. [13] 1.34 79.05 87.95 89.79 95.05
SimCC* [21] 1.54 74.16 80.68 86.32 94.05

Regression-based Methods
Gilmour L et al. [11] 1.33 77.05 83.16 88.84 94.89

Song Y et al. [29] 1.54 74.00 81.30 87.50 94.30
Song Y et al. [30] 1.64 72.20 79.50 85.00 93.50
Zeng M et al. [36] 1.64 70.58 79.53 86.05 93.32

King C H et al. [17] 1.50 74.58 81.74 87.26 94.73
Hong W et al. [12] 1.28 79.24 85.32 90.47 96.32

Poseur* [24] 1.48 74.42 81.37 86.68 93.63
Ours 1.27 79.53 86.47 91.11 96.32

Table 8: Quantitative results on
the ISBI 2023 Challenge.

method MRE(mm) SDR%

2mm 2.5mm 3mm 4mm
Jin H et al. [15] 1.2200 83.76 89.71 92.79 96.08

Poseur* [24] 0.9982 88.51 92.82 95.37 97.79
SimCC* [21] 1.0795 88.39 93.12 95.31 97.81

Huang K et al.* [13] 1.0747 87.87 92.52 94.87 97.42
Gilmour L et al.* [11] 0.9793 89.37 93.47 95.97 97.42

Ours 0.9372 90.68 94.24 95.97 97.89

ISBI 2023 Challenge test. Regarding the ISBI 2023 Challenge test dataset,
as illustrated in Table 8, Our method achieves the best performance on all
metrics. Compared to the best-performing method [11], our approach signifi-
cantly reduces the Mean Relative Error (MRE) from 0.9793mm to 0.9372mm
and enhances the 2mm Success Detection Rate (SDR) from 89.37% to 90.68%.
Moreover, in comparison with transformer-based methods, our approach demon-
strates a lead of 0.061mm in MRE and 2.17% in 2mm SDR, respectively. Lastly,
the qualitative detection results of our method on the ISBI 2023 Challenge test
dataset are depicted in Figure 5c.

5 Conclusion

In this paper, we propose a novel regression model for cephalometric landmark
detection for high-resolution X-ray image. This model only employs the encoder
module within the transformer framework to construct the relationship between
landmark features and image features. It is capable of regressing cephalomet-
ric landmark coordinate from coarse to fine and completes end-to-end training.
Moreover, our model, compared to heatmap-based method, boasts low memory
consumption and robustness against missing landmark. It offers a more straight-
forward end-to-end design compared to current regression-based method, per-
forming one-time landmark detection on high-resolution X-ray images. Exten-
sive experiments on the ISBI2015 and ISBI2023 datasets demonstrate that our
method can achieve state-of-the-art performance compare with regression-based
and heatmap-based methods.
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