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Abstract. Recent advancements in transformer-based lightweight ob-
ject tracking have set new standards across various benchmarks due to
their efficiency and effectiveness. Despite these achievements, most cur-
rent trackers rely heavily on pre-existing object detection architectures
without optimizing the backbone network to leverage the unique de-
mands of object tracking. Addressing this gap, we introduce the Feature
Extraction and Relation Modeling Tracker (FERMT) - a novel approach
that significantly enhances tracking speed and accuracy. At the heart
of FERMT is a strategic decomposition of the conventional attention
mechanism into four distinct sub-modules within a one-stream tracker.
This design stems from our insight that the initial layers of a tracking
network should prioritize feature extraction, whereas the deeper layers
should focus on relation modeling between objects. Consequently, we
propose an innovative, lightweight backbone specifically tailored for ob-
ject tracking. Our approach is validated through meticulous ablation
studies, confirming the effectiveness of our architectural decisions. Fur-
thermore, FERMT incorporates a Dual Attention Unit for feature pre-
processing, which facilitates global feature interaction across channels
and enriches feature representation with attention cues. Benchmarking
on GOT-10k, FERMT achieves a groundbreaking Average Overlap (AO)
score of 69.6%, outperforming the leading real-time trackers by 5.6% in
accuracy while boasting a 54% improvement in CPU tracking speed. This
work not only sets a new standard for state-of-the-art (SOTA) perfor-
mance in light-weight tracking but also bridges the efficiency gap between
fast and high-performance trackers. The code and models are available
at https://github.com/KarlesZheng/FERMT.
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Fig. 1: Comparison of our
FERMT with other track-
ers on GOT-10k in terms
of speed (horizontal axis) on
the Inter Core I9-9900k CPU
and Average Overlap(vertical
axis). We set the real-time
tracking line at 20fps, and
FERMT achieved state-of-
the-art (SOTA) results among
real-time trackers.
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1 Introduction

With the development of deep learning [17,19,20] in recent years, object tracking
has made great progress, especially the use of Transformer plays a big role in
it. However, it is worth noting that most object tracking models only focus
on high performance but ignore tracking speed. In real scenarios with limited
device resources, the tracking speed of these models is difficult to achieve fast
responses. Many works on light-weight object tracking and models have been
proposed [2, 3, 5, 9, 18, 42], however, a significant performance disparity remains
between these efficient trackers and the mainstream high-performance trackers.

Among previous light-weight trackers, trackers using CNN architecture [11,
42] often have the advantages of small model size and fast tracking, but there
is a common problem of insufficient interaction between template and search
features, which leads poor tracking performance. Later Transformer-based light-
weight trackers [2, 5] used cross-attention to obtain global interaction between
template and search features, effectively improving tracking performance. How-
ever, they often only use an existing light-weight backbone network such as
LeViT [16], and do not conduct further exploration into the extraction and in-
teraction of the template and search image features in object tracking, which
makes the model backbone network parameters volume decline is limited.

In order to overcome the above problems, we decompose in detail the atten-
tion module [21,38] for feature extraction and relation modeling in the tracking
process, and designed a novel light-weight tracking model within an one-stream
architecture [46] to obvious decrease computation cost and simultaneously im-
prove tracking accuracy. In experiments, we found that the feature extraction
module in the deep layers of the attention model may be redundant for object
tracking, which leads our solution method, i.e., pruning feature extraction in
deep layers is useful to speed up tracking and optimize the tracking effect. In
addition, in order to alleviate the weakness of light-weight network feature ex-
traction, we design a CNN [7,47] based Dual Attention Unit to enhance feature
representation before images are fed into the transformer backbone network,
which further improve the tracking performance by adding a few parameters.
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Based on the above work, we proposed an light-weight tracking model FERMT,
and verified the high performance and efficiency of FERMT through a large num-
ber of experiments. Compared with HiT [18], the current best real-time tracking
model, FERMT improved by 5.6% on the GOT-10k, and also performed bet-
ter than it on several other conventional benchmarks. In addition, FERMT’s
tracking speed on CPU is improved by 54% compared to HiT, while using fewer
parameters (2.40G v.s. 4.34G) and fewer Flops (7.98M v.s. 42.14M). Compared
with high-performance trackers, FERMT is able to achieve similar performance
to Ostrack [46], but runs 2.8 times faster.

Our main contributions are summarized as follows:
(1) We conducted a detailed exploration on the role of feature extraction

and relation modeling in object tracking, and designed a new way of feature
fusion where feature extraction is no longer performed in the deep layers of the
backbone network. Instead, it solely relies on template frames and search frames
to interact with features, reducing the computational load of feature fusion. This,
in turn, enables faster tracking speed without compromising performance.

(2) The feature extraction capability of light-weight models has declined,
especially the information interaction at the channel layer is insufficient. There-
fore, we proposed a dual attention module Dual Attention Unit (DAU), which
interacts with features from different channels in the image and incorporates
attention information to enhance the expressive capability of the features.

(3) Based on the above work, we propose an one-stream efficient object
tracker based on a light-weight pre-trained backbone network. It reaches the
SOTA of real-time tracking models in multiple benchmarks including GOT-10k,
and performs excellently in terms of tracking speed.

2 Related Work

Visual Tracking based on Transformer. In the past object tracking re-
search, trackers usually use a set of parameter-sharing Siamese networks [22,23]
for feature extraction, and then perform convolution operations on the tem-
plate features and search features to complete the object prediction. In recent
years, with the rise of Transformer in the field of computer vision, models such
as TransT [6], STARK [43], and SwinTrack [25], after using CNN [19, 35] to
extract image features, use Transformer [38] to interact with features of tem-
plate frame images and search frame images, improving the tracking perfor-
mance of the model. Recently, the one-stream [4] architecture tracking model
has demonstrated strong competitiveness.Among them, Ostrack [46] first aban-
dons the traditional two-stream tracking architecture and performs feature ex-
traction and relation modeling in parallel. Mixformer [8] has further discussed
that it uses asymmetric interaction in the backbone network to improve track-
ing performance while reducing the amount of calculations. However, although
these models have good tracking accuracy, they often have a large number of
parameters and cannot demonstrate their advantages in a resource-constrained
environment.
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Vision Transformer. Since ViT [12] brought Transformer into the field of
computer vision, more and more Transformer-based visual networks [27, 33, 37,
40] have appeared, and they have achieved impressive results in fields such as
classification and object detection. Among many models, there are some light-
weight visual Transformer models [16, 30, 49] that have advantages in speed. In
addition to reducing feature dimensions and the number of model layers, most
of these light-weight vision transformer models adopt a pyramid structure of
layer-by-layer downsampling to reduce the number of model parameters and
increase speed. In this work, we used the pre-trained model ViT-Tiny [39], a
light-weight Transformer model with a non-pyramid structure as the backbone
network. ViT-Tiny reduces the dim of features extracted by Vit-Base [12] and
uses feature distillation [44, 45, 48] to obtain a light-weight visual model that
performs well in applications such as image classification.

Different from previous one-stream trackers, we use ViT-Tiny’s shallow-level
module to synchronize feature extraction and feature fusion, and in its deep-
level module, only template frame images and search frame images are processed
fusion of features.

Light-weight Tracking. In real-world scenarios, object trackers may need to
run on platforms with limited computational capabilities, which places demands
on their runtime speed. Early on, ECO [10] and ATOM [11] emerged as repre-
sentatives of efficient trackers, meeting the requirements of real-time tracking.
However, their performance across various datasets was unsatisfactory. Light-
Track [42] proposed the use of NAS to construct light-weight object tracking
networks, performing well on some short-term tracking datasets but falling short
on long-term tracking datasets like LaSOT. Recently, several light-weight track-
ers have made promising progress. FEAR [3] achieved a series of efficient and
accurate trackers by adopting dual-template representation and pixel-wise fusion
methods. HCAT [5] effectively reduced model computation by employing a hier-
archical design of cross-attention. HiT [18] utilized an one-stream architecture,
using pre-trained LeViT [16] as the backbone network to design a light-weight
object tracking model, showcasing excellent tracking capabilities while pursuing
efficiency. However, there still exists a significant performance gap between these
models and the current mainstream high-performance trackers.

In comparison to the aforementioned models, our FERMT focuses on a
detailed exploration of modeling interactions between template frame images,
search frame images, and their relation. We further validate the impact of fea-
ture extraction and relation modeling on object tracking at a deeper level. As
a result, we design a backbone network with fewer parameters while achieving
superior performance.

3 The Proposed Method

This section provides a detailed exposition of our one-stream light-weight track-
ing model, FERMT. Firstly, we provide a brief overview of the FERMT frame-
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Fig. 2: The overall framework of the proposed FERMT(a). The model consists of three
parts: Dual Attention Unit for image preprocessing, backbone network for feature ex-
traction and relation modeling, and a prediction head. Figure (b) details the compo-
sition of Attention Blocks in the backbone network, where Mixed-attention Blocks are
used for shallow feature operations of Attention Blocks, and Cross-attention Blocks are
used for deep feature operations of Attention Blocks.

work. Next, we present the specific architecture of the model, including a novel
feature extraction and interaction approach, CNN based Dual Attention Unit
and the head network. Finally, we describe the training and inference processes
of the model.

3.1 Overview

As shown in Figure Fig. 2(a),FERMT is an one-stream real-time tracking model,
including CNN based Dual Attention Unit for image preprocessing, a light-weight
visual Transformer module for feature extraction and relation modeling, and a
head network for object prediction. When the template images and search images
are input to the model, they are first sent to the DAU module for preprocessing
to enhance their feature representation.

Then we sent the image to the visual Transformer backbone network for
feature extraction and feature interaction. In this process, we designed two dif-
ferent types of Mixed-attention Block and Cross-attention Block for the shallow
and deep layers of the network, respectively. It replaces the standard attention
module [46] with high computational complexity in popular one-stream light-
weight tracking [18]. Finally, we send the obtained search image features into
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the prediction head [43] to predict the target position to obtain the tracking
results.

3.2 Model Architecture

Feature extraction and relation modeling. In previous tracking models,
the asymmetric interaction, i.e., relation modeling, proposed by Mixformer [8]
not only reduces the amount of calculations, but also eliminates the information
interference of the search frame on the template frame during the tracking pro-
cess, thereby increasing the tracking accuracy. It indicates that attention module
representing feature extraction and interaction need be explored to obtain more
efficient backbone network for object tracking.

In the attention module, we let t and x represent the template frame and the
search frame respectively, and generate tokens through linear changes. Then Qt,
Kt, and Vt are generated from the tokens of the template frame, and Qs, Ks,
and Vs are generated from the tokens of the search frame [21]. Let Q = [Qt;Qs],
K = [Kt;Ks], V = [Vt;Vs], the calculation process of attention in one-stream
tracker can be expressed as Eq. (1).

A(Q, K, V) = softmax

(
QKT

√
d

)
·V. (1)

In the following, to simplify the formula,
√
d is omitted. In order to deeply

explore the relation between feature extraction and interaction, we further write
Eq. (1) to Eq. (2):

A([Qt; Qs] , [Kt; Ks] , [Vt; Vs]) = softmax
(
[Qt; Qs] [Kt; Ks]

T
)
· [Vt; Vs]

= softmax

([
QtK

T
t QtK

T
s

QsK
T
t QsK

T
s

])
·
[
Vt

Vs

]
,

(2)

where QtK
T
t and QsK

T
s are self-attention modules, which respectively represent

the self-attention of the respective internal areas of the template frame and
search frame, and play the role of feature extraction; QtK

T
s and QsK

T
t are

cross-attention modules, which respectively represent the interaction from the
template frame to the search frame and the attention from the search frame
to the template frame, which play the role of feature interaction, i.e., relation
modeling of target template and search frame.

The calculation amount of Eq. (2) is a crucial factor in determining the track-
ing speed. Let the total number of tokens in the template be n, and the total
number of tokens searched be m. The time complexity of QtK

T
t and QsK

T
s is

O(n2) and O(m2), and the time complexity of QtK
T
s and QsK

T
t is both O(mn).

Generally, the image size of the search frame is much larger than that of the tem-
plate frame, i.e., m >> n, so in the calculation process of the attention module,
the feature extraction module for search frame occupies a large part amount
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of calculation. Therefore, if this module can be reduced, it will be beneficial to
reduce the amount of parameters.

In object tracking, The key content is the interaction between template
frames and search frames since its importance to estimate object location. So
we believe that the feature extraction effect decreases in the later stages of the
network, while the interaction effect increases. Therefore, we divide the back-
bone network into two stages. The first stage is based on feature extraction and
supplemented by feature interaction, in the form of MixFormer [8]. The second
stage only retains feature interaction and discards templates and search features
extraction that require large calculations.

As shown in Fig. 2(b), the first N1 layers Mixed-attention Blocks responsible
for shallow feature processing adopts an asymmetric structure to perform feature
extraction and one-way transmission of interactive information from template to
search; while the second N2 layers responsible for deep feature processing Cross-
attention Blocks deletes the self-attention within template and search, and only
models the relation between them.

Eq. (3) shows the attention calculation methods of two different structures
in our backbone network. In the experiment, when we set N1 = 6, N2 = 6, and
the sizes of template and search are (128, 128) and (256, 256), calculation of our
attention module is 42% less than that of the previous architecture represented
by Eq. (1). In the ablation experiments of Sec. 4.3, we verified the superiority of
this structure.

Amixed = softmax

([
QtK

T
t

QsK
T
t QsK

T
s

])
·
[
Vt

Vs

]
,

Across = softmax

([
QtK

T
s

QsK
T
t

])
·
[
Vt

Vs

]
,

(3)

CNN based Dual Attention Unit. After using the light-weight backbone
network, the reduction of dim limits the feature extraction ability of Trans-
former. In order to compensate for this effect, inspired by the Temporal Atten-
tion Unit [36], we took advantage of the strong local perception ability of CNN
to propose a Dual Attention Unit, DAU, to preprocess image feature.

The DAU consists of spatial attention and channel attention, as shown in
Fig. 3. When calculating spatial attention, we use small kernel depth-wise con-
volutions (DW_Conv) [7], depth-wise convolution with dilations (DWD_Conv)
[47] and 1× 1 convolutions for spatial attention modeling to capture the maxi-
mum feeling within the channel wild. Furthermore, we obtain channel attention
using an average pooling operation. Finally, we multiply the spatial attention
with the inter-channel attention to get the result. Eq. (4) shows its calculation
process:

SA = Conv1×1 (DWD_Conv (DW_Conv(X))) ,
CA = FC (AvgPool(X)) ,
X′ = (SA⊗ CA)⊙X,

(4)
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Fig. 3: Architecture of Dual
Attention Unit. It consists
of two parts : Spatial At-
tention and Channel Atten-
tion, which are used for im-
age preprocessing and en-
hance the interaction abil-
ity of features between chan-
nels.
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Spatial Attention
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X′
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where, X ∈ RB×C×H×W is the image input to the DAU,SA ∈ RB×C×H×W and
CA ∈ RB×C×1×1 represents spatial attention and channel attention respectively.
FC and AvgPool are fully connected layers and average pooling layers. At the
same time, we use ⊙ and ⊗ to represent Kronecker product [29] and Hadamard
product [1]. DAU adds only 10M FLops to the model, but increases tracking
performance.

Prediction Head. We use Corner Head [43] to predict the location of tar-
get. When the image features to be predicted are sent to Corner Head, we first
reweight the features based on the attention map, and enhance or suppress lo-
cal features based on global information. For this component, we extract search
region features via the encoder, which are then enriched using the attention
map. These enhanced features are reshaped to (Hx, Wx), and subsequently fed
into a fully convolutional network (FCN). This FCN comprises multiple sequen-
tial Conv-BN-ReLU layers, tasked with generating separate probability maps
indicating the likelihood of the top-left and bottom-right corners of the target
bounding box. Finally, by calculating the expectation of the probability distri-
bution of the corner point, we can obtain the predicted coordinates.

3.3 Training Loss

In the process of model training, we use both classification loss and regression
loss. The regression loss includes l1 loss and GIOU loss [34]. We summarize the
overall loss function as Eq. (5):

Ltrack = Lcls + λ1L1 + λGiouLGiou , (5)
where λ1 and λGiou represent the parameter weights of l1 loss and GIOU loss
respectively. In the experiment, we set them to λ1 = 5 and λGiou = 2 .

4 Experiments

After introducing the implementation details of FERMT, in this section we show
its experimental results compared with other SOTA trackers on 6 benchmarks.
Subsequent ablation studies verified the rationality of the proposed structure.
All trackers are implemented using Python3.8 and Pytorch1.11.0.
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4.1 Implementation Details

Backbone network. ViT-tiny [39], a light-weight visual Transformer pre-
trained model, is used as the backbone network of our trackers. Based on it,
we use different feature extraction and relation modeling methods to design 6
different network architectures and select the best among them to construct our
tracker FERMT, see Sec. 4.3.

Training. The training datasets for our model include the train-splits of GOT-
10k [24], TrackingNet [32], LaSOT [14] and COCO2017 [26]. Some common data
enhancement methods such as image scaling, translation and dithering are used
during the training process. In particular, for the evaluation of the GOT-10k test
set, we only used the training set of GOT-10k for training. The template and
search images sizes are set to 128 × 128 and 256 × 256 respectively. In addition,
we use the AdamW [28] optimizer to train the model and set the initial learning
rate to 4e-4 and the weight decay to 1e-4.

We use 4 Nvidia GeForce RTX 3090 GPUs, with the Batch Size of each GPU
set to 32, for a total of 128 total Batch Size, to train the model for 300 epoches.

Inference. During the inference process, we utilize the first frame of the video
sequence as the initial template. When a new frame image is input to the model,
we set the search region based on the target box from the previous frame. Then,
we perform feature extraction and interaction by combining the template frame,
ultimately obtaining the target result.

4.2 Comparison with the state-of-the-art trackers

To demonstrate the superiority of the proposed model, we compare it with cur-
rent state-of-the-art trackers on 6 benchmarks. In addition, we conducted track-
ing speed evaluation on Nvidia GeForce RTX 3090 GPU and Inter Core I9-9900K
CPU respectively. The results are shown in Tab. 1 and Tab. 2.

GOT-10k. GOT-10k [24] is a large dataset for object tracking. It covers 563
types of objects and has a total of 180 test sequences. The average sequence
length is about 150 frames. Only the training set of GOT-10k is used for train-
ing. As shown in Tab. 1, FERMT achieved the best AO score among real-time
trackers, improving 4.5 % AO compared to the previous best HCAT. Compared
to the non-real-time tracker Ostrack, FERMT achieves comparable performance
(69.6 vs 71.0) while being 1.7× faster on GPU and 2.8× faster on CPU.

TrackingNet. TrackingNet [32] is a large dataset selected from YouTube Bound-
ing Boxes, containing various situations and multiple categories in natural scenes,
with a total of 511 video test sequences. As shown in Tab. 1, FERMT achieved
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Method Source
GOT-10k(*) TrackingNet LaSOT Speed(fps)

AO SR0.5 SR0.75 AUC PNorm P AUC PNorm P GPU CPU

R
ea

l-
ti

m
e

ECO [10] CVPR2017 31.6 30.9 11.1 55.4 61.8 49.2 32.4 33.8 30.1 240 15
ATOM [11] CVPR2019 55.6 63.4 40.2 70.3 77.1 64.8 51.5 57.6 50.5 83 18

LightTrack [42] CVPR2021 61.1 71.0 - 72.5 77.8 69.5 53.8 - 53.7 128 41
FEAR-XS [3] ECCV2022 61.9 72.2 - - - - 53.5 - 54.5 96 35

HCAT [5] ECCV2022 65.1 76.5 56.7 76.6 82.6 72.9 59.3 68.7 61.0 195 45
E.T.Track [2] WACV2023 - - - 75.0 80.3 70.6 59.1 - - 150 45

MixformerV2-S [9] NeurIPS2023 - - - 75.8 81.1 70.4 60.6 69.9 60.4 325 30
HiT-B [18] ICCV2023 64.0 72.1 58.1 80.0 84.4 77.3 64.6 73.3 68.1 175 33
FERMT Ours 69.6 80.1 63.2 80.8 85.9 78.1 65.1 74.6 69.1 225 51

N
on

-r
ea

l-
ti

m
e TransT [6] CVPR2021 67.1 76.8 60.9 81.4 86.7 80.3 64.9 73.8 69.0 63 6

Stark-ST50 [43] ICCV2021 68.0 77.7 62.3 81.3 86.1 - 66.6 - - 50 7
SwinTrack [25] NeurIPS2022 71.3 81.9 64.5 81.1 - 78.4 67.2 - 70.8 96 16

MixFormer-22k [8] CVPR2022 70.7 80.0 67.8 83.1 88.1 81.6 69.2 78.7 74.7 32 5
Ostrack384 [46] CVPR2022 73.7 83.2 70.8 83.9 88.5 83.2 71.1 81.1 77.1 58 12
ARTrack384 [41] CVPR2023 75.5 84.3 74.3 85.1 89.1 84.8 72.6 81.7 79.1 28 4

Table 1: Comparison of the results between our model and state-of-the-art methods
on GOT-10k [24], TrackingNet [32], and LaSOT [14] benchmarks. We use gray color
to denote our tracker. The best two real-time results are shown in red and blue fonts.

the best real-time tracking results of 80.8%, 85.9%, and 78.1% in the three in-
dicators AUC, PNorm, and P respectively. In addition, compared with non-real-
time trackers such as SwinTrack [25] and Stark-ST50 [43], FERMT also achieved
similar results.

LaSOT. LaSOT [14] is a large-scale long-term object tracking dataset, con-
taining 1400 video sequences, with an average length of 2512 frames per video
sequence. The dataset covers 70 types of objects, each containing 20 video se-
quences. As shown in Tab. 1, FERMT also obtained SOTA results of the real-
time tracking model on the LaSOT dataset.

Speed. As shown in Tab. 1, FERMT ran 225fps and 51fps results on the GPU
and CPU respectively. In the case where the performance of multiple benchmarks
is stronger than HiT-B [18], FERMT still achieves faster speed than it. Further-
more, although MixformerV2-S [9] runs faster on the GPU than our model,
it does so at the expense of substantial performance. So overall, our FERMT
achieves fast and high-performance tracking performance on multiple devices.

NFS, UAV123 and LaSOText. NFS [15] is a dataset containing a series of
high-speed moving objects, which includes 100 video sequences. UAV123 [31]
is a manually annotated drone scene video, containing 123 video sequences.
LaSOText [13] is an extension of LaSOT [14] and consists of 150 videos in 15
object classes. As shown in Tab. 2, our FERMT achieved results of 65.1, 67.5
and 46.1 on NFS, UAV123 and LaSOText respectively, all achieving the best
performance of real-time trackers.
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Method Source NFS UAV123 LaSOText

R
ea

l-
ti

m
e

ECO [10] CVPR2017 46.6 53.2 22.0
ATOM [11] CVPR2019 58.4 64.2 37.6

LightTrack [42] CVPR2021 55.3 62.5 -
FEAR-XS [3] ECCV2022 61.4 - -

HCAT [5] ECCV2022 63.5 62.7 -
E.T.Track [2] WACV2023 59.0 62.3 -

MixformerV2-S [9] NeurIPS2023 - 65.1 -
HiT-B [18] ICCV2023 63.6 65.6 44.1
FERMT Ours 65.1 67.5 46.1

N
on

-r
ea

l-
ti

m
e TransT [6] CVPR2021 65.7 69.1 -

SwinTrack [25] NeurIPS2022 - - 47.6
MixFormer-22k [8] CVPR2022 - 70.4 -
Ostrack384 [46] CVPR2022 66.5 70.7 50.5
ARTrack384 [41] CVPR2023 66.8 70.5 51.9

Table 2: The results of our model are compared with state-of-the-art methods on
NFS [15], UAV123 [31], LaSOText [13] benchmarks. We use gray color to denote our
tracker. The best two real-time results are shown in red and blue fonts.

4.3 Ablation Study and Analysis

In order to verify the rationality of the FERMT model we designed, we designed
detailed ablation experiments and conducted result analysis on the GOT-10k [24]
benchmark.

Analysis on feature extraction and relation modeling. According to the
different functions of each sub-module of the attention module, we designed five
attention structures, and Eq. (6) shows their calculation methods.

A1 = softmax

([
QtK

T
t

QsK
T
s

])
·
[
Vt

Vs

]
,

A2 = softmax

([
QtK

T
t

QsK
T
t QsK

T
s

])
·
[
Vt

Vs

]
,

A3 = softmax
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,
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,
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(6)

where, A1 only uses the subdiagonal part of the attention module, and only
performs self-attention on template and search. A2 uses the same asymmetric
structure as Mixformer. While extracting features, information is transmitted
one-way from template to search. A3 utilizes all the information of the attention
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module, and feature extraction and two-way interaction are performed simulta-
neously. A4 and A5 cancel the feature extraction work and only use the infor-
mation of the attention subdiagonal. The difference is that A4 only performs
one-way information transmission from template to search, while A5 performs
two-way transmission. Our FERMT adopts a design combining A2 and A5.

In order to verify the rationality of the attention module design adopted by
FERMT, we compared different combination methods for experiments. Among
the five attention modules of A1−5, A1−3 is used for the first N1 layers, and A4−5

is used for the last N2 layers, thus obtaining FERMT_A1A4, FERMT_A1A5,
FERMT_A2A4, FERMT_A2A5 , FERMT_A3A4, FERMT_A3A5, these 6 model
architectures, Tab. 3 shows their tracking results.

Mixed and Cross represent the architectural types of Mixed-attention Blocks
and Cross-attention Blocks. In this ablation experiment, the Mixed layers and the
Cross layers adopt a 1:1 layer ratio, each with 6 layers. Dividing the experimental
results into three groups: #1#2, #3#4, and #5#6 for comparison, we found that
when the Cross-attention Blocks architecture is consistent, the A2 architecture
performs best in the Mixed-attention Blocks. Similarly, the experimental results
are divided into two groups of #1#3#5 and #2#4#6 for comparison. We find
the A5 architecture performs best in Cross-attention Blocks.

Table 3: The performance of the
model on the GOT-10k test set
when Mixed-attention Blocks and
Cross-attention Blocks adopt differ-
ent architectures respectively. The
best results are displayed in red
font.

# Mixed Cross AO SR0.5 SR0.75

1 A1 A4 65.0 75.0 59.1
2 A1 A5 67.7 78.0 61.5
3 A2 A4 67.3 77.5 61.8
4 A2 A5 68.6 79.6 62.5
5 A3 A4 66.8 76.9 60.5
6 A3 A5 68.2 78.1 62.1

Comparison of new architecture and usual architecture. In order to
further verify the redundancy of feature extraction work in the later process
of object tracking, we compared this combined architecture (#1) with models
that fully adopt the A2 architecture (#2) and the entire A3 architecture (#3).
For comparison, the results are shown in Tab. 4. It is easy to find that the
FERMT_A2A5 architecture shows strong competitiveness in terms of perfor-
mance. Moreover, compared with FERMT_A2 and FERMT_A3, the combined
architecture we designed has an advantage in computational complexity. Eq. (7)
shows the time complexity of their Attention module.

O(FERMT_A2A5) = O

(
1

2
n2 +

3

2
nm+

1

2
m2

)
,

O(FERMT_A2) = O
(
n2 + nm+m2

)
,

O(FERMT_A3) = O
(
n2 + 2nm+m2

)
,

(7)
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where n and m are the total number of tokens in template and search re-
spectively. In the experiment, we set the image sizes of template and search to
(128, 128) and (256, 256) respectively, thus obtaining n = 64 and m = 256. Ac-
cording to the calculations, compared with FERMT_A2 and FERMT_A3, the
calculation amount is reduced by 42% and 31% respectively in the Transformer
Attention part.

In addition, we have also designed models such as #4 and #5 that only per-
form feature interaction without relation modeling. Their tracking performance
has been greatly reduced, which shows that appropriate feature extraction work
is very important in object tracking. necessary.

Table 4: When using the architec-
ture combining A2 and A5 and us-
ing the A2, A3, A4 or A5 architec-
ture throughout, the model’s per-
formance on the GOT-10k test set,
the best results are shown in red
font.

# Model AO SR0.5 SR0.75

1 FERMT_A2A5 68.6 79.6 62.5
2 FERMT_A2 68.4 78.8 62.4
3 FERMT_A3 68.3 78.2 62.8
4 FERMT_A4 59.8 69.0 49.1
5 FERMT_A5 63.2 73.2 55.4

Influence of different feature extraction layer ratios. In order to verify the
importance of feature extraction for object tracking, we designed an experiment
to examine the impact of the layer ratio of Mixed-attention Blocks and Cross-
attention Blocks on tracking performance. We set the ratio N1:N2 of the layers
of A2 and A5 to 3:9 (#1) and 9:3 (#3) respectively, and compare the results with
the original 6:6 (#2). The results are shown in Tab. 5 shown. The experimental
results show that the ratio of the number of layers between A2 and A5 is 6:6,
which is the most appropriate choice.

Table 5: When the combined ar-
chitecture of A2 and A5 uses differ-
ent layer ratios, the model’s perfor-
mance on the GOT-10k test set, the
best results are shown in red font.

# N1 : N2 AO SR0.5 SR0.75

1 3 : 9 66.4 76.6 59.9
2 6 : 6 68.6 79.6 62.5
3 9 : 3 68.3 77.7 62.6

Effect of preprocessing image features using DAU. We introduced CNN
based DAU for image preprocessing based on the FERMT_A2A5 model archi-
tecture, and compared the performance of the tracker with or without DAU
on multiple benchmarks. The results are shown in Tab. 6, which show that the
DAU module improves the performance of trackers on multiple benchmarks.
In addition, the representative tracking results from three sequences in Fig. 4
demonstrate this more intuitively.
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# w/o DAU GOT-10k LaSOText NFS UAV123

1 without DAU 68.6 45.5 64.1 67.4
2 with DAU 69.6(+1.0) 46.1(+0.6) 65.1(+1.0) 67.5(+0.1)

Table 6: Based on the FERMT_A2A5 model architecture, whether DAU is added,
the model’s performance on the GOT-10k test set, the best results are displayed in red
font.

Frame 199 Frame 293 Frame 683 Frame 724

Frame 95 Frame 149 Frame 172 Frame 232

Frame 12 Frame 44 Frame 73 Frame 196

Fig. 4: This set of pictures displays the comparison of tracking results before and after
DAU is added to the tracker, where red represents the tracking results of FERMT with
DAU, green stands for the tracking results of trackers without DAU, and blue indicates
ground truth boxes.

5 Conclusion

This paper conducts an in-depth exploration of the impact of feature extrac-
tion and relation modeling in light-weight object tracking, and proposes a new
light-weight tracker based on Transformer, named FERMT. By using a backbone
network composed of mixed-attention blocks and cross-attention blocks and a
dual attention unit, FERMT improves the tracking speed and significantly re-
duces the amount of model calculations. A large number of experiments show
that FERMT achieves the SOTA results among real-time trackers and further
narrows the gap with high-performance trackers in terms of tracking perfor-
mance.

In the future, we will conduct a more detailed analysis for whole network ar-
chitecture including to light-weight backbone and predict head for better track-
ing accuracy and faster speed.
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